Hostname: page-component-68c7f8b79f-mk7jb Total loading time: 0 Render date: 2026-01-01T07:13:17.680Z Has data issue: false hasContentIssue false

Encouraging a Spatial Perspective in Third Sector Studies: Exploratory Spatial Data Analysis and Spatial Regression Analysis

Published online by Cambridge University Press:  01 January 2026

Heather MacIndoe*
Affiliation:
University of Massachusetts Boston, 100 Morrisey Blvd, Boston, MA 02144, USA
Deirdre Oakley
Affiliation:
Georgia State University, Atlanta, GA 30303, USA
Get access

Abstract

Geographic space or location is an important aspect of many research topics in the third sector. Methodological advances have made it possible for scholars to better identify, assess, and account for the spatial aspects of their data. Such advances include Geographic Information System descriptive mapping of items such as density and location, Explorative Spatial Data Analysis, and Spatial Regression Analysis. This paper reviews a range of third-sector research questions that can be addressed with spatial analysis. We then briefly summarize social science and nonprofit scholarship as they relate to spatial analysis. We conclude by describing an exploratory spatial statistic as well as a spatial regression that can be used to illustrate the usefulness of these techniques.

Information

Type
Research Papers
Copyright
Copyright © International Society for Third-Sector Research 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

References

Alghais, N., Pullar, D., & Charles-Edwards, E. (2018). Accounting for peoples’ preferences in establishing new cities: A spatial model of population migration in Kuwait. PloS one, 13(12), e0209065. doi: 10.1371/journal.pone.0209065.CrossRefGoogle ScholarPubMed
Anderson, K. F. (2017). Racial residential segregation and the distribution of health-related organizations in urban neighborhoods. Social Problems, 64(2), 256276. doi: 10.1093/socpro/spw058.CrossRefGoogle Scholar
Annoni, P., de Dominicis, L., & Khabirpour, N. (2019). Location matters: A spatial econometric analysis of regional resilience in the European Union. Growth and Change, 50(3), 824855. doi: 10.1111/grow.12311.CrossRefGoogle Scholar
Anselin, L. (1988). Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geographical Analysis, 20(1), 117. doi: 10.1111/j.1538-4632.1988.tb00159.x.CrossRefGoogle Scholar
Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93115. doi: 10.1111/j.1538-4632.1995.tb00338.x.CrossRefGoogle Scholar
Anselin, L. (1999). The future of spatial analysis in the social sciences. Geographic Information Sciences, 5(2), 6776.Google Scholar
Anselin, L., & Rey, S. (1991). Properties of tests for spatial dependence in linear regression models. Geographical Analysis, 23(2), 112131. doi: 10.1111/j.1538-4632.1991.tb00228.x.CrossRefGoogle Scholar
Anselin, L., & Rey, S. J. (2014). Modern spatial econometrics in practice: A guide to GeoDa. GeoDa Press LLC.Google Scholar
Appe, S. (2012). What about who is mapping and its implications? Comments on Brent Never’s “The case for better maps of social service provision”. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 23(1), 204212. doi: 10.1007/s11266-011-9189-1.CrossRefGoogle Scholar
Archibald, M. E., & Rankin, C. P. (2013). A spatial analysis of community disadvantage and access to healthcare services in the US. Social Science & Medicine, 90, 1123. doi: 10.1016/j.socscimed.2013.04.023.CrossRefGoogle ScholarPubMed
Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2003). Hierarchical modeling and analysis for spatial data. Chapman and Hall/CRC doi: 10.1201/9780203487808.CrossRefGoogle Scholar
Bielefeld, W., Murdoch, J., & Waddell, P. (1997). The influence of demographics and distance on nonprofit location. Nonprofit and Voluntary Sector Quarterly, 26(2), 207225. doi: 10.1177/0899764097262007.CrossRefGoogle Scholar
Bielefeld, W., & Murdoch, J. C. (2004). The locations of nonprofit organizations and their for-profit counterparts: An exploratory analysis. Nonprofit and Voluntary Sector Quarterly, 33(2), 221246. doi: 10.1177/0899764003260589.CrossRefGoogle Scholar
Brunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281298. doi: 10.1111/j.1538-4632.1996.tb00936.x.CrossRefGoogle Scholar
Cho, W. K. T., & Gimpel, J. G. (2010). Rough terrain: Spatial variation in campaign contributing and volunteerism. American Journal of Political Science, 54(1), 7489. doi: 10.1111/j.1540-5907.2009.00419.x.CrossRefGoogle Scholar
Clifford, D. (2018). Neighborhood context and enduring differences in the density of charitable organizations: Reinforcing dynamics of foundation and dissolution. American Journal of Sociology, 123(6), 15351600. doi: 10.1086/697895.CrossRefGoogle Scholar
Cohen, C. J. (2001). Social capital, intervening institutions, and political power. Social capital and poor communities, 267289.Google Scholar
Corradini, C., Santini, E., & Vecciolini, C. (2021). The geography of Industry 4.0 technologies across European regions. Regional Studies, 114.Google Scholar
Da Costa, M. M. (2016). What influences the location of nonprofit organizations? A spatial analysis in Brazil. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 27(3), 10641090. doi: 10.1007/s11266-016-9682-7.CrossRefGoogle Scholar
Godfrey, L. G., McAleer, M., & McKenzie, C. R. (1988). Variable addition and Lagrange multiplier tests for linear and logarithmic regression models. The Review of Economics and Statistics, 70, 492503. doi: 10.2307/1926788.CrossRefGoogle Scholar
Goodchild, M. F. (1987). A spatial analytical perspective on geographical information systems. International Journal of Geographical Information System, 1(4), 327334. doi: 10.1080/02693798708927820.CrossRefGoogle Scholar
Goodchild, M. F. (1992). Geographical information science. International Journal of Geographical Information Systems, 6(1), 3145. doi: 10.1080/02693799208901893.CrossRefGoogle Scholar
Grønbjerg, K., & Paarlberg, L. (2001). Community variations in the size and scope of the nonprofit sector: Theory and preliminary findings. Nonprofit and Voluntary Sector Quarterly, 30(4), 684706. doi: 10.1177/0899764001304004.CrossRefGoogle Scholar
Healey, R. G., & Stamp, T. R. (2000). Historical GIS as a foundation for the analysis of regional economic growth: Theoretical, methodological, and practical issues. Social Science History, 24(3), 575612.Google Scholar
Jeong, J., & Cui, T. S. (2020). The density of nonprofit organizations: Beyond community diversity and resource availability. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 31(1), 213226. doi: 10.1007/s11266-019-00175-8.CrossRefGoogle Scholar
Kim, M. (2015). Socioeconomic diversity, political engagement, and the density of nonprofit organizations in US counties. The American Review of Public Administration, 45(4), 402416. doi: 10.1177/0275074013504616.CrossRefGoogle Scholar
Kissane, R. J. (2010). “We call it the badlands”: How social-spatial geographies influence social service use. Social Service Review, 84(1), 328. doi: 10.1086/652988.CrossRefGoogle Scholar
Kovalerchuk, B., & Schwing, J. (2004). Visual and spatial analysis. Springer doi: 10.1007/978-1-4020-2958-5.CrossRefGoogle Scholar
Lindsey, R. (2013). Exploring local hotspots and deserts: Investigating the local distribution of charitable resources. Voluntary Sector Review, 4(1), 95116. doi: 10.1332/204080513X661563.CrossRefGoogle Scholar
Logan, J. R., Zhang, W., & Xu, H. (2010). Applying spatial thinking in social science research. GeoJournal, 75(1), 1527. doi: 10.1007/s10708-010-9343-0.CrossRefGoogle ScholarPubMed
MacIndoe, H. (2021). Understanding foundation philanthropy to human service organizations: Funding stratification in an urban grants economy. Human Service Organizations: Management, Leadership & Governance, 122.Google Scholar
Mandeville, J. (2007). Public policy grant making: Building organizational capacity among nonprofit grantees. Nonprofit and Voluntary Sector Quarterly, 36(2), 282298. doi: 10.1177/0899764006297668.CrossRefGoogle Scholar
Marwell, N., & Gullickson, A. (2013). Inequality in the spatial allocation of social services: Government contracts to nonprofit organizations in New York City. Social Service Review, 87(2), 319353. doi: 10.1086/670910.CrossRefGoogle Scholar
McDonnell, D., Mohan, J., & Norman, P. (2020). Charity density and social need: A longitudinal perspective. Nonprofit and Voluntary Sector Quarterly, 49(5), 10821104. doi: 10.1177/0899764020911199.CrossRefGoogle Scholar
McDougle, L. M. (2015). The accuracy of the core files for studying nonprofit location: How many nonprofits are there?. Nonprofit and Voluntary Sector Quarterly, 44(3), 609624. doi: 10.1177/0899764015573873.CrossRefGoogle Scholar
Merriman, B. (2015). Three conceptions of spatial locality in Chicago school sociology (and their significance today). The American Sociologist, 46(2), 269287. doi: 10.1007/s12108-014-9239-4.CrossRefGoogle Scholar
Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 1723. doi: 10.2307/2332142.CrossRefGoogle ScholarPubMed
Morenoff, J. D., & Sampson, R. J. (1997). Violent crime and the spatial dynamics of neighborhood transition: Chicago, 1970–1990. Social Forces, 76(1), 3164. doi: 10.2307/2580317.CrossRefGoogle Scholar
Never, B. (2011). The case for better maps of social service provision: Using the Holy Cross dispute to illustrate more effective mapping. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 22(1), 174188. doi: 10.1007/s11266-010-9123-y.CrossRefGoogle Scholar
Never, B., & Westberg, D. (2016). Place matters: The spatial effects of human service expenditures. Nonprofit Policy Forum, 7(3), 369388. doi: 10.1515/npf-2015-0025.CrossRefGoogle Scholar
Nickel, P. M., & Eikenberry, A. M. (2016). Knowing and governing: The mapping of the nonprofit and voluntary sector as statecraft. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 27(1), 392408. doi: 10.1007/s11266-015-9552-8.CrossRefGoogle Scholar
Onyx, J., Armitage, L., Dalton, B., Melville, R., Casey, J., & Banks, R. (2010). Advocacy with gloves on: The “manners” of strategy used by some third sector organizations undertaking advocacy in NSW and Queensland. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 21(1), 4161. doi: 10.1007/s11266-009-9106-z.CrossRefGoogle Scholar
Park, R. E., & Burgess, E. W. (2019/1925). The city. University of Chicago Press.10.7208/chicago/9780226636641.001.0001CrossRefGoogle Scholar
Peck, L. R. (2008). Do antipoverty nonprofits locate where people need them? Evidence from a spatial analysis of Phoenix. Nonprofit and Voluntary Sector Quarterly, 37(1), 138151. doi: 10.1177/0899764006298963.CrossRefGoogle Scholar
Quillian, L. (1999). Migration patterns and the growth of high-poverty neighborhoods, 1970–1990. American Journal of Sociology, 105(1), 137. doi: 10.1086/210266.CrossRefGoogle Scholar
Reardon, S. F., Matthews, S. A., O’sullivan, D., Lee, B. A., Firebaugh, G., Farrell, C. R., & Bischoff, K. (2008). The geographic scale of metropolitan racial segregation. Demography, 45(3), 489514. doi: 10.1353/dem.0.0019.CrossRefGoogle ScholarPubMed
Roth, B. J., & Allard, S. W. (2016). (Re) defining access to Latino immigrant-serving organizations: Evidence from Los Angeles, Chicago, and Washington, DC. Journal of the Society for Social Work and Research, 7(4), 729753. doi: 10.1086/689358.CrossRefGoogle Scholar
Sampson, R. (2012). Great American City: Chicago and the enduring neighborhood effect. University of Chicago Press doi: 10.7208/chicago/9780226733883.001.0001.CrossRefGoogle Scholar
Sampson, R., Morenoff, J., & Gannon-Rowley, T. (2002). Assessing “neighborhood effects”: Social processes and new directions in research. Annual Review of Sociology, 28(1), 443478. doi: 10.1146/annurev.soc.28.110601.141114.CrossRefGoogle Scholar
Schweers, S., Kinder-Kurlanda, K., Müller, S., & Siegers, P. (2016). Conceptualizing a spatial data infrastructure for the social sciences: An example from Germany. Journal of Map & Geography Libraries, 12(1), 100126. doi: 10.1080/15420353.2015.1100152.CrossRefGoogle Scholar
Siebert, H. (1969). Regional economic growth: theory and policy. Regional economic growth: theory and policy.Google Scholar
Silvey, S. D. (1959). The Lagrangian multiplier test. The Annals of Mathematical Statistics, 30(2), 389407. doi: 10.1214/aoms/1177706259.CrossRefGoogle Scholar
Suárez, D. F. (2012). Grant making as advocacy: The emergence of social justice philanthropy. Nonprofit Management and Leadership, 22(3), 259280. doi: 10.1002/nml.20054.CrossRefGoogle Scholar
Sullivan, C. M., Conway, F. D., Pomeroy, C., Hall-Arber, M., & Wright, D. J. (2015). Combining geographic information systems and ethnography to better understand and plan ocean space use. Applied Geography, 59, 7077. doi: 10.1016/j.apgeog.2014.11.027.CrossRefGoogle Scholar
Tobler, W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(sup1), 234240. doi: 10.2307/143141.CrossRefGoogle Scholar
Van Puyvelde, S., & Brown, W. A. (2016). Determinants of nonprofit sector density: A stakeholder approach. VOLUNTAS: International Journal of Voluntary and Nonprofit Organizations, 27(3), 10451063. doi: 10.1007/s11266-015-9656-1.CrossRefGoogle Scholar
Voss, P. R. (2007). Demography as a spatial social science. Population Research and Policy Review, 26(5), 457476. doi: 10.1007/s11113-007-9047-4.CrossRefGoogle Scholar
Walker, E. J., Waterhouse-Bradley, B., & Armour, C. (2020). Mapping voluntary sector services for hidden or hard-to-reach populations: Challenges and practice-based lessons for future research. Voluntary Sector Review, 11(1), 113122. doi: 10.1332/204080519X15567200679535.CrossRefGoogle Scholar
Wolch, J., & Geiger, R. (1983). The distribution of urban voluntary resources: An exploratory analysis. Environment and Planning A, 15(8), 10671082. doi: 10.1068/a151067.CrossRefGoogle Scholar
Xiaoyi, M., & Tao, P. (2010). Exploratory spatial data analysis of regional economic disparities in Beijing during 2001–2007 [J]. Progress in Geography, 12(29), 15551561.Google Scholar
Yan, J., Guo, C., & Paarlberg, L. (2014). Are nonprofit antipoverty organizations located where they are needed? A spatial analysis of the greater Hartford region. The American Statistician, 68(4), 243252. doi: 10.1080/00031305.2014.955211.CrossRefGoogle Scholar
Ye, X., & Dang, A. (2013). Spatial analysis and modeling of urban and regional development. Annals of GIS, 19(3), 129129. doi: 10.1080/19475683.2013.827448.CrossRefGoogle Scholar

Additional Resources for Learning about Spatial Analysis

Anselin, L. (2006). GeoDa: An introduction to spatial data analysis. Geographical Analysis, 38, 522. doi: 10.1111/j.0016-7363.2005.00671.x.CrossRefGoogle Scholar
Anselin, L., & Bera, A. K. (1998). Introduction to spatial econometrics. In Ullah, A. & Giles, D. E. A. (Eds.), Handbook of applied economic statistics. Marcel Dekker.Google Scholar
Cutts, A., & Graser, A. (2018). Learn QGIS: Your step-by-step guide to the fundamental of QGIS 3.4. Packet Publishing Ltd.Google Scholar
Waters, N. (2016). Tobler’s first law of geography. In Richardson, D., Castree, N., Goodchild, M. F., Kobayashi, A., Liu, W., & Marston, R. A. (Eds.), International encyclopedia of geography: People, the earth. Wiley-Blackwell: Environment and Technology.Google Scholar