Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T04:10:08.463Z Has data issue: false hasContentIssue false

Demonstration of a chipless harmonic tag working as crack sensor for electronic sealing applications

Published online by Cambridge University Press:  02 October 2015

Valentina Palazzi*
Affiliation:
Department of Engineering, University of Perugia, via G. Duranti 93, 06125, Perugia, Italy. phone: +39 075 585 3925
Chiara Mariotti
Affiliation:
Department of Engineering, University of Perugia, via G. Duranti 93, 06125, Perugia, Italy. phone: +39 075 585 3925
Federico Alimenti
Affiliation:
Department of Engineering, University of Perugia, via G. Duranti 93, 06125, Perugia, Italy. phone: +39 075 585 3925
Marco Virili
Affiliation:
Department of Engineering, University of Perugia, via G. Duranti 93, 06125, Perugia, Italy. phone: +39 075 585 3925
Giulia Orecchini
Affiliation:
Department of Engineering, University of Perugia, via G. Duranti 93, 06125, Perugia, Italy. phone: +39 075 585 3925
Paolo Mezzanotte
Affiliation:
Department of Engineering, University of Perugia, via G. Duranti 93, 06125, Perugia, Italy. phone: +39 075 585 3925
Luca Roselli
Affiliation:
Department of Engineering, University of Perugia, via G. Duranti 93, 06125, Perugia, Italy. phone: +39 075 585 3925
*
Corresponding author: V. Palazzi Email: valentina.palazzi@studenti.unipg.it
Get access

Abstract

This work proposes a chipless radio frequency identification approach based on the working principle of the harmonic radar. A frequency multiplication stage is performed by a non-linearity (i.e. a Shottky diode) on the tag in order for the tag answer to be insulated from the interrogation signal, thus avoiding the need for clutter cancellation techniques. Firstly, the performance of a simple one-bit harmonic tag relying on a low-power frequency doubler is analyzed and then a novel crack sensor, implemented by adding a disposable band-stop filter, is presented. Both solutions demonstrate tag-to-reader operational distances beyond 1 m. The characterizing blocks (namely the frequency doubler and the filter) are fabricated on cellulose substrates (i.e. regular photographic paper), thus being conformal to their implementation for applications in the new paradigm of Internet of Things.

Type
Chipless RFID
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Preradovic, S.; Karmakar, N.C.: Chipless RFID: bar code of the future. IEEE Microw. Mag., 11 (7) (2010), 8797.Google Scholar
[2] Kim, S.; Mariotti, C.; Alimenti, F.; Mezzanotte, P.; Georgiadis, A.; Collado, A.; Roselli, L.; Tentzeris, M.M.: No battery required: perpetual RFID-enabled wireless sensors for cognitive intelligence applications. IEEE Microw. Mag., 14 (5) (2013), 6677.Google Scholar
[3] Nair, R.; Perret, E.; Tedjini, S.: Chipless RFID based on group delay encoding, in IEEE Int. Conf. on RFID-Technologies and Applications, 15–16 September 2011.CrossRefGoogle Scholar
[4] Hu, S.; Zhou, Y.; Law, C.L.; Dou, W.: Study of a uniplanar monopole antenna for passive chipless UWB-RFID localization system. IEEE Trans. Antennas Propag., 58 (2) (2010), 271278.Google Scholar
[5] Islam, M.A.; Yap, Y.; Karmakar, N.; Azad, A.: Compact printable orientation independent chipless RFID tag. Prog. Electromagn. Res. C, 33 (2012), 5566.Google Scholar
[6] Vena, A.; Perret, E.; Tedjini, S.: A depolarizing chipless RFID tag for robust detection and its FCC compliant UWB reading system. IEEE Trans. Microw. Theory Tech., 61 (8) (2013), 29822994.Google Scholar
[7] Lazaro, A.; Villarino, R.; Giribau, D.: A passive harmonic tag for humidity sensing. Int. J. Antennas Propag., (2014), Article ID 670345.Google Scholar
[8] Kubina, B.; Romeu, J.; Mandel, C.; Schüßler, M.; Jakoby, R.: Quasi-chipless wireless temperature sensor based on harmonic radar. Electron. Lett., 50 (2) (2014), 8688.Google Scholar
[9] Mariotti, C.; Alimenti, F.; Virili, M.; Orecchini, G.; Mezzanotte, P.; Roselli, L.: Harmonic chipless sensor exploiting wireless autonomous communication and energy transfer, in IEEE Wireless Power Transfer (WPT), 2014, May 2014, 2427.CrossRefGoogle Scholar
[10] Dionne, K.; Matbouly, H.E.; Domingue, F.; Boulon, L.: Chipless HF RFID tag with signature as a voltage sensor, ICWITS, 11–16 November 2012.CrossRefGoogle Scholar
[11] Girbau, D.; Ramos, A.; Lazaro, A.; Rima, S.; Villarino, R.: Passive wireless temperature sensor based on time-coded UWB chipless RFID tags. IEEE Trans. Microw. Theory Tech., 60 (11) (2012), 36233632.Google Scholar
[12] Subramanian, V.; Frechet, J.; Chang, P.; Huang, D.C.; Lee, J.; Molesa, S.; Murphy, A.; Redinger, D.; Volkman, S.: Progress towards development of all-printed RFID tags: materials, processes, and devices. Proc. IEEE, 93 (7) (2005), 13301338.Google Scholar
[13] Thompson, B.; Yoon, H.S.: Aerosol-printed strain sensor using PEDOT:PSS. IEEE Sens. J., 13 (11) (2013), 42564263.Google Scholar
[14] Alimenti, F.; Mezzanotte, P.; Dionigi, M.; Virili, M.; Roselli, L.: Microwave circuits in paper substrates exploiting conductive adhesive tapes. IEEE Microw. Wirel. Compon. Lett., 22 (12) (2012), 660662.Google Scholar
[15] Steckl, A.J.: Circuits on cellulose. IEEE Spectr., 50 (2) (2013), 4861.CrossRefGoogle Scholar
[16] Wenjing, S.; Cook, B.; Tentzeris, M.; Mariotti, C.; Roselli, L.: A novel inkjet-printed microfluidic tunable coplanar patch antenna, in IEEE Antennas and Propagation Society Int. Symp. (APSURSI), 2014, 6–11 July 2014.Google Scholar
[17] Mariotti, C.; Alimenti, F.; Mezzanotte, P.; Dionigi, M.; Virili, M.; Giacomucci, S.; Roselli, L.: Modeling and characterization of copper tape microstrips on paper substrate and application to 24 GHz branch-line couplers, in 43rd European Microwave Conf., Nuremberg, Germany, October 2013, 794797.Google Scholar
[18] Aumann, H.; Kus, E.; Cline, B.; Emanetoglu, N.W.: A low-cost harmonic radar for tracking very small tagged amphibians, in IEEE Int. Instrumentation and Measurement Technology (I2MTC), 6–9 May 2013.Google Scholar
[19] Vena, A.; Perret, E.; Tedjini, S.: High-capacity chipless RFID tag insensitive to the polarization. IEEE Trans. Antennas Propag., 60 (10) (2012), 45094515.Google Scholar
[20] Alimenti, F.; Roselli, L.: Theory of zero-power RFID sensors based on harmonic generation and orthogonally polarized antennas. Prog. Electromagn. Res., 134 (2013), 337357.CrossRefGoogle Scholar
[21] Palazzi, V.; Alimenti, F.; Mezzanotte, P.; Virili, M.; Mariotti, C.; Orecchini, G.; Roselli, L.: Low-power frequency doubler in cellulose-based materials for harmonic RFID applications. IEEE Microw. Wirel. Compon. Lett., 24 (12), (2014), 896898.Google Scholar
[22] Colpitts, B.G.; Boiteau, G.: Harmonic radar transceiver design: miniature tags for insect tracking. IEEE Trans. Antennas Propag., 52 (11) (2004), 28252832.Google Scholar
[23] Pozar, D.M.: Microwave Engineering, 4th ed., John Wiley & Sons, Inc., New York, 2011.Google Scholar
[24] Kalansuriya, P.; Bhattacharyya, R.; Sarma, S.; Karmakar, N.: Towards chipless RFID-based sensing for pervasive surface crack detection, in IEEE Int. Conf. on RFID – Technologies and Applications (RFID-TA), 5–7 November 2012.CrossRefGoogle Scholar
[25] Yi, X.; Cooper, J.; Wang, Y.; Tentzeris, M.M.; Leon, R.T.: Wireless crack sensing using an RFID-based folded patch antenna, in Proc. of the 6th Int. Conf. on Bridge Maintenance, Safety and Management (IABMAS 2012), Lake Como, Italy, 8–12 July 2012.Google Scholar
[26] Kalansuriya, P.; Bhattacharyya, R.; Sarma, S.: RFID tag antenna-based sensing for pervasive surface crack detection. IEEE Sens. J., 13 (5) (2013), 15641570.Google Scholar