Skip to main content

Methodology for the design of multi-source transmitters dedicated to perpendicular dynamic wireless power transfer: theoretical study

  • Lotfi Beghou (a1)

In this paper, a theoretical study for the design of multi-source transmitters suitable for perpendicular dynamic wireless power transfer is presented. Unlike conventional systems, the concept presented here overcomes the traditional limitation on the receiver's orientation by providing an optimal distribution of the transmitted energy obtained by using different sources. For this purpose, a theoretical study of different transmitters has been achieved by solving the inverse problem. Comparison with conventional single-source transmitters carrying the same total current as the multi-source transmitters, shows a significant enhancement of the power gain when a Genetic Algorithm is used. The obtained theoretical results show power gain levels over 7.5 dB for different path lengths at different heights. At the end, a solution for a path of an infinite length is presented.

Corresponding author
Corresponding author: L. Beghou Email:
Hide All
[1] Ryan, D.M.; LaFollette, R.M.; Salmon, L.: Microscopic batteries for micro electromechanical systems (MEMS), in Proc. of the 32 nd Intersociety Energy Conversion Engineering Conf., 1997. IECEC-97, July–August 1997, 1, 7782.
[2] Trevisan, R.; Costanzo, A.: State-of-the-art of contactless energy transfer (CET) systems: design rules and applications. Wireless Power Transf. 1 (2014), 1020.
[3] Visser, H.J.: A brief history of radiative wireless power transfer, in 11th European Conf. on Antenna and Propagation, 2017, 327330.
[4] Ettorre, M.; Alomar, W.A.; Grbic, A.: Radiative wireless power transfer system using wideband, wide-angle slot arrays. IEEE Trans. Antennas Propag., 65 (2017), 29752982.
[5] Mohamed, A.A.S.; Mari, A.A.; Mohammed, O.A.: Magnetic design considerations of bidirectional inductive wireless power transfer system for EV applications. IEEE Trans. Magn., 53 (6) (2017), 15.
[6] Ravikiran, V.; Keshri, R.K.; Santos, M.M.: Inductive characteristics of asymmetrical coils for wireless power transfer, in IEEE Int. Conf. on Industrial Technology, 2017, 538542.
[7] Dai, J.; Ludois, D.C.: A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron., 30 (2015), 60176029.
[8] Yi, K.H.: High frequency capacitive coupling wireless power transfer using glass dielectric layers, in IEEE Wireless Power Transfer Conf., 2016, 13.
[9] Waffenschmidtt, E.; Staring, T.: Limitation of inductive power transfer for consumer applications, in EPE ’09 13th European Conf. on Power Electronics and Applications, September 2009, 2009, 110.
[10] Luo, Y.; Dahmardeh, M.; Chen, X.; Takahata, K.: A resonant-heating stent for wireless endohyperthermia treatment of restenosis. Sens. Actuators A, 236 (2015), 323333.
[11] Luo, Y.; Chen, X.; Dahmardeh, M.; Takahata, K.: RF-Powered stent with integrated circuit breaker for safeguarded wireless hyperthermia treatment. J. Microelectromech. Syst., 24 (2015), 12931302.
[12] Ye, D.; Yan, G.; Wang, K.; Ma, G.: Development of a micro-robot for endoscopes based on wireless power transfer. Minim. Invasive Ther. Allied Technol., 17 (3) (2008), 181189.
[13] Lee, S.G.; Hoang, H.; Choi, Y.H.; Bien, F.: Efficiency improvement for magnetic resonance based wireless power transfer with axial-misalignment. Electron. Lett., 48 (6) (2012), 339340.
[14] Wang, J.; Ho, S.L.; Fu, W.N.; Sun, M.: Analytical design study of a Novel Witricity charger with lateral and angular misalignments for efficient wireless energy transmission. IEEE Trans. Magn., 47 (10) (2011), 26162619.
[15] Jonah, O.; Georgakopoulos, S.V.; Tentzeris, M.M.: Orientation insensitive power transfer by magnetic resonance for mobile devices, in Proc. 2013 IEEE Wireless Power Transfer, Perugia, Italy, May 2013, 59.
[16] Ng, W.M.; Zhang, C.; Lin, D.; Ron Hui, S.Y.: Two- and three-dimensional omnidirectional wireless power transfer. IEEE Trans. Power Electron., 29 (9) (2014), 44704474.
[17] Reinhold, C.; Scholz, P.; John, W.; Hilleringmann, U.: Efficient antenna design of inductive coupled RFID-systems with high power demand. J. Commun., 2 (6) (2007), 1423.
[18] Beghou, L., Costa, F.; Pichon, L.: Detection of electromagnetic radiations sources at the switching time scale using an inverse problem-based resolution method – application to power electronic circuits. IEEE Trans. Electromagn. Compat., 57 (1) (2015), 5360.
[19] Abramowitz, M.; Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series 55, National Bureau of Standards, USA, June 1964.
[20] Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd ed., Springer, New York, 1996. Revised and extended edition.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Wireless Power Transfer
  • ISSN: -
  • EISSN: 2052-8418
  • URL: /core/journals/wireless-power-transfer
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 10
Total number of PDF views: 49 *
Loading metrics...

Abstract views

Total abstract views: 318 *
Loading metrics...

* Views captured on Cambridge Core between 21st January 2018 - 19th August 2018. This data will be updated every 24 hours.