Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-ssw5r Total loading time: 0.321 Render date: 2022-08-17T02:21:13.733Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A century of poultry genetics

Published online by Cambridge University Press:  29 May 2012

M. TIXIER-BOICHARD
Affiliation:
INRA, AgroParisTech, UMR1313, Animal Genetics and Integrative Biology, 78350 Jouy-en-Josas, France
F. LEENSTRA
Affiliation:
Wageningen UR Livestock Research, POB 65, 8200 AB, Lelystad, The Netherlands
D.K FLOCK
Affiliation:
Lohmann Tierzucht GmbH, 27454 Cuxhaven, Germany
P.M. HOCKING
Affiliation:
The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland
S. WEIGEND*
Affiliation:
Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany
*
Corresponding author: steffen.weigend@fli.bund.de
Get access

Abstract

The 20th Century saw an astonishing advance in our understanding of genetics and the scientific basis of the genetic improvement of farm animals. The application of genetic principles to chickens in the 1950s and 1960s led to a rapid change in the productivity and efficiency of laying hens and broiler chickens, turkeys and ducks. Subsequently, the application of increasingly powerful computers and sophisticated mathematical algorithms has increased the range of traits that could be successfully incorporated into breeding programs. Random sample tests of the performance of laying hens enjoyed a period of popularity and more recently the few remaining tests included husbandry systems in addition to strain evaluation. Characterisation of avian blood groups has led to the identification of the B21 haplotype that confers resistance to Marek's disease and to selection for this locus in commercial lines. The decade following the millennium saw the publication of the genome sequence of the chicken and the identification of millions of single nucleotide polymorphisms that, coupled with technological advances, made the application of whole genome selection practical in poultry. In parallel, the molecular basis for some Mendelian traits described a century ago is now being deciphered. Similar technologies have been applied to study genetic diversity in chickens and have provided insights into the evolution and domestication of chicken breeds. Finally, in this review, the recent development of the European Poultry Genetics Symposia coordinated by Working Group 3 ‘Genetics and Breeding’ that was based on combining the British Poultry Breeders Round Table and AVIAGEN from West and Eastern Europe, is discussed.

Type
Centenary Papers
Copyright
Copyright © World's Poultry Science Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BAKER, C.M.A. (1968) Molecular genetics of avian proteins. IX. Interspecific and intra-specific variation of egg white protein of the genus Gallus. Genetics 58: 211-226.Google Scholar
BAKER, C.M.A. and MANWELL, C. (1962) Molecular genetics of avian proteins. I – The egg white proteins of the domestic fowl. British Poultry Science 3: 161-174.CrossRefGoogle Scholar
BATESON, W. and SAUNDERS, E.R. (1902) Experimental studies on the physiology of heredity. Experiments with poultry. Reports to the Evolution Committee of the Royal Society 1: 87-124.Google Scholar
BELL, A.E. (1972) More on reciprocal recurrent selection. Proceedings National Breeders’ Roundtable, Kansas City.Google Scholar
BENKEL, B.F. (1998) Locus-specific diagnostic tests for endogenous avian leukosis-type viral loci in chickens. Poultry Science 77: 1027-1035.CrossRefGoogle ScholarPubMed
BERTHOULY, C., BED'HOM, B., TIXIER-BOICHARD, M., CHEN, C.F., LEE, Y.P., LALOË, D., LEGROS, H., VERRIER, E. and ROGNON, X. (2008) Using molecular markers and multivariate methods to study the genetic diversity of local European and Asian chicken breeds. Animal Genetics 39: 121-129.CrossRefGoogle Scholar
BESBES, B. and DUCROCQ, V. (2003) Use of Mixed Model Methodology in Breeding Strategies for Layers, in: MUIR W.M. & AGGREY S.E. (Eds) Poultry Genetics, Breeding and Biotechnology, pp. 127-146 (Abingdon, CABI Publishing).Google Scholar
BLESBOIS, E., SEIGNEURIN, F., GRASSEAU, I., LIMOUZIN, C., BESNARD, J., GOURICHON, D., COQUERELLE, G., RAULT, P. and TIXIER-BOICHARD, M. (2007) Semen cryopreservation for ex-situ management of genetic diversity in chickens: creation of the French Avian Cryobank. Poultry Science 86: 555-564.CrossRefGoogle ScholarPubMed
BITGOOD, J.J., SHOFFNER, R.N., OTIS, J.S. and BRILES, W.E. (1980) Mapping of the genes for pea comb, blue egg, barring, silver, and blood groups A, E, H and P in the domestic fowl. Poultry Science 59: 1686-1693.CrossRefGoogle Scholar
BITGOOD, J.J. and SOMES, R.G. (1990) Linkage relationships and gene mapping, in CRAWFORD, R.D. (Ed.) Poultry breeding and genetics, pp. 401-428 (Amsterdam, Elsevier).Google Scholar
BREATHNACH, R., BENOIST, C., O'HARE, K., GANNON, F. and CHAMBON, P. (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proceedings of the National Academy of Science USA 75: 4853-4857.CrossRefGoogle ScholarPubMed
BRILES, R.W., STONE, H.A. and COLE, R.K. (1977) Marek's disease: effects of B histocompatibility alloalleles in resistant and susceptible chicken lines. Science 195: 193-195.CrossRefGoogle ScholarPubMed
BRILES, W.E. (1984) Early chicken blood group investigations. Immunogenetics 20: 217-226.CrossRefGoogle ScholarPubMed
BRILES, W.E. and BRILES, R.W. (1982) Identification of haplotypes of the chicken major histocompatibility complex (B). Immunogenetics 15: 440-459.Google Scholar
BRILES, W.E., McGIBBON, W.H. and IRWIN, M.R. (1950) On multiple alleles effecting cellular antigens in the chicken. Genetics 35: 633-652.Google ScholarPubMed
BRILES, W.E., GOTO, R.M., AUFFRAY, C. and MILLER, M.M. (1993) A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 37: 408-414.CrossRefGoogle ScholarPubMed
BUMSTEAD, N. and PALYGA, J. (1992) A preliminary linkage map of the chicken genome. Genomics 13: 690-697.CrossRefGoogle ScholarPubMed
BURNSIDE, J., LIOU, S.S and COGBURN, L.A. (1991) Molecular cloning of the chicken growth hormone receptor complementary deoxyribonucleic acid: mutation of the gene in sex-linked dwarf chickens. Endocrinology 128: 3183-3192.CrossRefGoogle ScholarPubMed
BURT, D.W. (2006) The chicken genome. Genome Dynamics2: 123-137.CrossRefGoogle ScholarPubMed
CHENG, H.H., LEVIN, I., VALLEJO, R.L., KHATIB, H., DODGSON, J.B., CRITTENDEN, L.B. and HILLEL, J. (1995) Development of a genetic-map of the chicken with markers of high utility. Poultry Science 74: 1855-1874.CrossRefGoogle ScholarPubMed
COLE, F. and HUTT, F.B. (1973) Selection and heterosis in Cornell White Leghorns: A review, with special consideration of interstrain hybrids. Animal Breeding Abstracts 41: 103-118.Google Scholar
COMSTOCK, R.E., ROBINSON, H.F. and HARVEY, P.H. (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. Agronomy Journal 41: 360-367.CrossRefGoogle Scholar
CRITTENDEN, L.B. (1991) Retroviral elements in the genome of the chicken: implications for poultry genetics and breeding. Critical Reviews of Poultry Biology 3: 73-109.Google Scholar
DICKERSON, G.E. and HAZEL, L.N. (1944) Effectiveness of selection on progeny performance as a supplement to earlier culling in livestock. Journal of Agricultural Research 69: 459-476.Google Scholar
ELLEN, E.D., MUIR, W.M., TEUSCHER, F. and BIJMA, P. (2007) Genetic improvement of traits affected by interactions among individuals: Sib selection schemes. Genetics 176: 489-499.CrossRefGoogle ScholarPubMed
ELLEN, E.D., DUCROCQ, V., DUCRO, B.J., VEERKAMP, R.F. and BIJMA, P. (2010) Genetic parameters for social effects on survival in cannibalistic layers: Combining survival analysis and a linear animal model. Genetics Selection Evolution 42(1): 27. doi: 10.1186/1297-9686-42-27.CrossRefGoogle Scholar
ERIKSSON, J., LARSON, G., GUNNARSSON, U., BED'HOM, B., TIXIER-BOICHARD, M., STRÖMSTEDT, L., WRIGHT, D., JUNGERIUS, A., VEREIJKEN, A., RANDI, E., JENSEN, P. and ANDERSSON, L. (2008) Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. PLoS Genetics 4: e1000010.CrossRefGoogle ScholarPubMed
FALCONER, D.S. and MACKAY, T.F.C. (1996) Introduction to quantitative genetics, 4th edition. (Harlow, Pearson Prentice Hall).Google Scholar
FILLON, V., ZOOROB, R., YERLE, M., AUFFRAY, C. and VIGNAL, A. (1996) Mapping of the genetically independent chicken major histocompatibility complexes B @ and RFP-Y @ to the same microchromosome by two-color fluorescent in situ hybridization. Cytogenetics and Cell Genetics 75: 7-9.CrossRefGoogle ScholarPubMed
FISHER, R.A. (1918) The correlation between relatives on the supposition of mendelian inheritance. Transactions of the Royal Society Edinburgh 52: 399-433.CrossRefGoogle Scholar
FLOCK, D.K. (1998) Genetic-economic aspects of feed efficiency in laying hens. World's Poultry Science Journal 54: 225-239.CrossRefGoogle Scholar
FLOCK, D.K. and HEIL, G. (2002) Eine Langzeitanalyse der Leistungsentwicklung weißer und brauner Legehybriden anhand von Ergebnissen der amtlichen deutschen Legeleistungsprüfungen von 1974/75 bis 1997/99. Archiv für Geflügelkunde 66: 1-20.Google Scholar
FLOCK, D.K. and PREISINGER, R. (2002) Breeding plans for poultry with emphasis on sustainability. Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpellier, 273-280.Google Scholar
FORSYTHE, R.H. and FOSTER, J.F. (1950) Egg white proteins. I Electrophoretic studies on whole white. Journal of Biological Chemistry 184: 377-383.Google ScholarPubMed
FULTON, J.E., JUUL-MADSEN, H.R., ASHWELL, C.M., McCARRON, A.M., ARTHUR, J.A., O'SULLIVAN, N.P. and TAYLOR, R.L. (2006) Molecular genotype identification of the Gallus gallus major histocompatibility complex. Immunogenetics 58: 407-421.CrossRefGoogle ScholarPubMed
GAUTRON, J., MURAYAMA, E., VIGNAL, A., MORISSON, M., MCKEE, M.D., RÉHAULT, S., LABAS, V., BELGHAZI, M., VIDAL, M.L., NYS, Y. and HINCKE, M.T. (2007) Cloning of ovocalyxin-36, a novel chicken eggshell protein related to lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins, and PLUNC family proteins. Journal of Biological Chemistry 282: 5273-5286.CrossRefGoogle ScholarPubMed
GILMOUR, D.G. (1959) Segregation of genes determining red cell antigens at high levels of inbreeding in chickens. Genetics 44: 14-33.Google ScholarPubMed
GORDY, J.F. (1974) Broilers, in: SKINNER, J.L. (Ed.) American Poultry History 1823-1973. American Printing and Publishing Inc., Madison, WIS.Google Scholar
GRANEVITZE, Z., HILLEL, J., CHEN, G.H., CUC, N.T.K., FELDMAN, M., EDING, H. and WEIGEND, S. (2007) Genetic diversity within chicken populations from different continents and management histories. Animal Genetics 38: 576-583.CrossRefGoogle ScholarPubMed
GROENEN, M.A., CHENG, H.H., BUMSTEAD, N., BENKEL, B.F., BRILES, W.E., BURKE, T., BURT, D.W., CRITTENDEN, L.B., DODGSON, J., HILLEL, J., LAMONT, S., PONCE DE LEON, F.A., SOLLER, M., TAKAHASHI, H. and VIGNAL, A. (2000) A consensus linkage map of the chicken genome. Genome Research 10: 137-147.Google ScholarPubMed
GROENEN, M.A., WAHLBERG, P., FOGLIO, M., CHENG, H.H., MEGENS, H.J., CROOIJMANS, R.P., BESNIER, F., LATHROP, M., MUIR, W.M., WONG, G.K., GUT, I. and ANDERSSON, L. (2009) A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Research 19: 510-519.CrossRefGoogle ScholarPubMed
GROENEVELD, L.F., LENSTRA, J.A., EDING, H., TORO, M.A., SCHERF, B., PILLING, D., NEGRINI, R., FINLAY, E.K., JIANLIN, H., GROENEVELD, E., WEIGEND, S. and GLOBALDIV CONSORTIUM, (2010) Genetic diversity in farm animals - a review. Animal Genetics 41(Suppl 1): 6-3.CrossRefGoogle ScholarPubMed
GUILLEMOT, F., BILLAULT, A., POURQUIE, O., BEHAR, G., CHAUSSE, A-M., ZOOROB, R., KREIBICH, G. and AUFFRAY, C. (1988) A molecular map of the chicken major histocompatibility complex: the class IIβ genes are closely linked to the class I genes and the nucleolar organiser. EMBO Journal 7: 2775-2785.Google Scholar
HALDANE, J.B.S. (1919) The combination of linkage values and the correlation of distances between the loci of linked factors. Journal of Genetics 8: 299-309.Google Scholar
HARDY, G.H. (1908) Mendelian proportions in a mixed population. Science 28: 49-50.CrossRefGoogle Scholar
HAZEL, L.N. (1943) The genetic basis of constructing selection indexes. Genetics 28: 476-490.Google ScholarPubMed
HAZEL, L.N. and LUSH, J.L. (1942) The efficiency of three methods of selection. Journal of Heredity 33: 393-399.CrossRefGoogle Scholar
HEIL, G. and HARTMANN, W. (1997) Combined Summaries of European Random Sample Tests Completed in 1995 and 1996. World's Poultry Science Journal 53: 291-293.Google Scholar
HEISDORF, A. (1969) Twenty years experience with reciprocal recurrent selection. Proc. National Breeders’ Roundtable, Kansas City, 112-119.Google Scholar
HILLEL, J., GROENEN, M.A.M., TIXIER-BOICHARD, M., KOROL, A.B., DAVID, L., KIRZHNER, V.M., BURKE, T., DIRIE, A.B., CROOIJMANS, R., ELO, K., FELDMAN, M., FREIDLIN, P.J., MAKI-TANILA, A., OORTWIJN, M., THOMSON, P., VIGNAL, A., WIMMERS, K. and WEIGEND, S. (2003) Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genetics Selection Evolution35: 533-557.CrossRefGoogle ScholarPubMed
HILLIER, L.W. AND THE INTERNATIONAL CHICKEN GENOME SEQUENCING CONSORTIUM (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432: 695-716.CrossRefGoogle Scholar
HOCKING, P.M. (2005) Review of QTL mapping results in chickens. World's Poultry Science Journal 61: 215-223.CrossRefGoogle Scholar
HOSOMICHI, K., MILLER, M.M., GOTO, R.M., WANG, Y., SUZUKI, S., KULSKI, J.K., NISHIBORI, M., INOKO, H., HANZAWA, K. and SHIINA, T. (2008) Contribution of mutation recombination, and gene conversion to chicken MHC-B haplotype diversity. Journal of Immunology. 181: 3393-3399.CrossRefGoogle ScholarPubMed
HUMPHRIES, P., COCHET, M., KRUST, M.A., GERLINGER, P., KOURILSKY, P. and CHAMBON, P. (1977) Molecular cloning of extensive sequences of the in vitro synthesized chicken ovalbumin structural gene. Nucleic Acids Research 4: 2389-2406.CrossRefGoogle ScholarPubMed
HUTT, F.B. (1949) Genetics of the Fowl. (New York: McGraw Hill Book Company Inc.).Google Scholar
JULL, M.R. (1932) Poultry Breeding (London: Chapman&Hall).Google Scholar
KAUFMAN, J., MILNE, S., GÖBEL, T.W., WALKER, B.A., JACOB, J.P., AUFFRAY, C., ZOOROB, R. and BECK, S. (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 28: 923-925.CrossRefGoogle Scholar
LADJALI-MOHAMMED, I.K., BITGOOD, J.J., TIXIER-BOICHARD, M. and PONCE DE LEON, F.A. (1999) International system for standardized avian karyotypes (ISSAK): standardized banded karyotypes of the domestic fowl (Gallus domesticus). Cytogenetics and Cell Genetics 86: 271-276.CrossRefGoogle Scholar
LANDSTEINER, K. and MILLER, C.P. (1924) On individual differences in the blood of chickens and ducks. Proceedings of the Society for Experimental Biology and Medicine 22: 100-102.CrossRefGoogle Scholar
LAUGHLIN, K. (2007) Poultry Genetics – anticipating the industry requirements. Lohmann Information 42(2): 10-13.Google Scholar
LERNER, I. (1958) The genetic basis of selection. (New York: John Wiley).Google Scholar
LONGSWORTH, L.G., CANNAN, R.K. and McINNES, D.A. (1940) An electrophoretic study of the proteins of egg white. Journal of the American Chemical Society 62: 2580-2590.CrossRefGoogle Scholar
LUSH, J.L. (1937) Animal Breeding Plans. (Ames, Iowa State College Press).Google Scholar
LUSH, J.L. (1947a) Family merit and individual merit as a basis for selection.1. American Naturalist 81: 241-261.CrossRefGoogle Scholar
LUSH, J.L. (1947b) Family merit and individual merit as a basis for selection. American Naturalist 81: 362-379.CrossRefGoogle Scholar
MASABANDA, J.S., BURT, D.W., O'BRIEN, P.C.M., VIGNAL, A., FILLON, V., WALSH, P.S., COX, H., TEMPEST, H.G., SMITH, J., HABERMANN, F., SCHMID, M., MATSUDA, Y., FERGUSON-SMITH, M.A., CROOIJMANS, R.P.M.A., GROENEN, M.A.M. and GRIFFIN, D.K. (2004) Molecular cytogenetic definition of the chicken genome: The first complete avian karyotype. Genetics 166: 1367-1373.CrossRefGoogle ScholarPubMed
MILLER, M.M., GOTO, R.M., TAYLOR, R.L., ZOOROB, R., AUFFRAY, C., BRILES, R.W., BRILES, W.E. and BLOOM, S. (1996) Assignment of RFP-Y to the chicken B microchromosome and evidence of high frequency recombination associated with the nucleolar organizer region. Proceedings National Academy Science USA 93: 3958-3962.CrossRefGoogle ScholarPubMed
MUCHADEYI, F.C., EDING, H., WOLLNY, C.B.A., GROENEVELD, E., MAKUSA, S.M., SHAMSELDIN, R., SIMIANER, H. and WEIGEND, S. (2007) Absence of population structuring in Zimbabwe chicken ecotypes inferred using microsatellite analysis. Animal Genetics 38: 332-339.CrossRefGoogle Scholar
MUIR, W.M. (1996) Group selection for adaptation to multi-hen cages: selection program and direct responses. Poultry Science 75: 447-458.CrossRefGoogle ScholarPubMed
MUIR, W.M., WONG, G.K., ZHANG, Y., WANG, J., GROENEN, M.A.M., CROOIJMANS, R.P.M.A., MEGENS, H., ZHANG, H., OKIMOTO, R., VEREIJKEN, A., JUNGERIUS, A., ALBERS, G.A.A., LAWLEY, C.T., DELANY, M.E., MACEACHERN, S. and CHENG, H.H. (2008) Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proceedings National Academy Sciences USA 105: 17312-17317.CrossRefGoogle ScholarPubMed
MWACHARO, J.M., NOMURA, K., HANADA, H., JIANLI, H., HANOTTE, O. and AMANO, T. (2007) Genetic relationships among Kenyan and other East African indigeneous chickens. Animal Genetics 38: 485-490.CrossRefGoogle Scholar
OKADA, I. (1992) The B complex in the chicken- Development from a blood group system into the major histocompatibility complex-. Journal of the Faculty of Applied Biological Science, Hiroshima University, 31: 1-28.Google Scholar
PISENTI, J.M., DELANY, M.E., TAYLOR, R.L., ABBOTT, U.K., ABPLANALP, H., ARTHUR, J.A., BAKST, M.R., BAXTER-JONES, C., BITGOOD, J.J., BRADLEY, F., CHENG, K.M., DIETERT, R.R., DODGSON, J.B., DONOGHUE, A., EMSLEY, A., ETCHES, R., FRAHM, R.R., GRUNDER, A.A., GERRITS, R.J., GOETINCK, P.F., LAMONT, S.J., MARTIN, G.R., MCGUIRE, P.E., MOBERG, G.P., PIERRO, L.J., QUALSET, C.O., QURESHI, M., SCHULTZ, F. and WILSON, B.W. (2001) . Avian genetic resources at risk: An assessment and proposal for conservation of genetics stocks in the USA and Canada . Avian Poultry Biology Reviews 12: 1-102.Google Scholar
PUNNETT, R.C. and BAILEY, R.G. (1914) On inheritance of weight in poultry. Journal of Genetics 4: 23-39.CrossRefGoogle Scholar
RUBIN, C.-J., ZODY, M.C., ERIKSSON, J., MEADOWS, J.R.S., SHERWOOD, E., WEBSTER, M.T., JIANG, L., INGMAN, M., SHARP, T., KA, S., HALLBÖÖK, F., BESNIER, F., CARLBORG, , Ö., , BED'HOM, B., TIXIER-BOICHARD, M., JENSEN, P., SIEGEL, P., LINDBLAD-TOH, K. and ANDERSSON, L. (2010) Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464: 587-591.CrossRefGoogle ScholarPubMed
SCHIERMAN, L.W. and NORDSKOG, A.W. (1961) Relationship of blood type to histocompatibility in chickens. Science 134: 1008-1009.CrossRefGoogle ScholarPubMed
SHULTZ, F.T. and BRILES, W.E. (1953) The adaptive value of blood group genes in chickens. Genetics 38: 34-50.Google ScholarPubMed
SOLLER, M., WEIGEND, S., ROMANOV, M.N., DEKKERS, J.C.M. and LAMONT, S.J. (2006) Strategies to assess structural variation in the chicken genome and its associations with biodiversity and biological performance. Poultry Science 85: 2061-2078.CrossRefGoogle ScholarPubMed
SOMES, R.G. (1988) International Registry of Poultry Genetic Stocks. Storrs Agricultural Experiment Station Bulletin No. 476 (Storrs, The University of Connecticut).Google Scholar
STURTEVANT, A.H. (1913) . The linear arrangement of six sex-linked factorsa in drosophila, as shown by their mode of association. Journal of Experimental Zoology 14: 43-59.CrossRefGoogle Scholar
THOMSEN, O. (1934) Untersuchungen über erbliche Blutgruppenantigene bei Hühnern. Hereditas 19: 243-258.CrossRefGoogle Scholar
TIXIER-BOICHARD, M. and BORDAS A., ROGNON X. (2009) Characterization and Monitoring of Poultry Genetic Resources. World's Poultry Science Journal 65: 272-285.CrossRefGoogle Scholar
WEIGEND, S. and ROMANOV, M.N. (2001) Current strategies for the assessment and evaluation of genetic diversity in chicken resources. World's Poultry Science Journal 57: 275-287.CrossRefGoogle Scholar
WEINBERG, W. (1908) Über den Nachweis der Vererbung beim Menschen. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 64: 369-382.Google Scholar
WHITEHOUSE, H.L.K. (1969) Towards an understanding of the mechanism of heredity, 2nd edition. (London, Edward Arnold).Google Scholar
WONG, G.K. and THE INTERNATIONAL CHICKEN POLYMORPHISM MAP CONSORTIUM, (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432: 717-722.CrossRefGoogle ScholarPubMed
WRIGHT, D., BOIJE, H., MEADOWS, J.R.S., BED'HOM, B., GOURICHON, D., VIEAUD, A., TIXIER-BOICHARD, M., RUBIN, C.J., IMSLAND, F., HALLBÖÖK, F. and ANDERSSON, L. (2009) Transient ectopic expression of SOX5 during embryonic development causes the Peacomb phenotype in chickens. PLoS Genetics 5: e1000512. doi: 10.1371/journal.pgen.1000512.Google Scholar
WRIGHT, S. (1921) Systems of mating. Genetics 6: 111-178.Google Scholar
WRIGHT, S. (1922) Coefficients of inbreeding and relationship. American Naturalist 56:CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A century of poultry genetics
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A century of poultry genetics
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A century of poultry genetics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *