Skip to main content Accessibility help
Hostname: page-component-5d6d958fb5-c6lpx Total loading time: 0.33 Render date: 2022-11-26T12:15:01.439Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Investigation of possible genetic background of early embryonic mortality in poultry

Published online by Cambridge University Press:  18 September 2007

K. Liptói*
Institute for Small Animal Research, Gödöllö, P.O. Box 417, H-2100, Hungary
A. Hidas
Institute for Small Animal Research, Gödöllö, P.O. Box 417, H-2100, Hungary
*Corresponding author:
Get access


Embryonic loss occurring in the first week of the incubation is termed early embryonic mortality. Environmental, technological and genetic factors can be responsible forits appearance. The examination of genetic background of embryonic death is justified when the breeding and hatching technological parameters are optimal. Disposition of early embryonic mortality can be inherited and it can accumulate in a stock, which will finally deteriorate its fertility indices. Although the heritability value of reproductiveness is poor, h2=0.1−0.2, even so, during the selection still should be considered. This paper offers a short review on the special features of early embryonic development in poultry and examination methods forpossible genetic background of early embryonic abnormalities and mortality. The application of cytogenetical and embryological methods may be of major relevance in the improvement of the reproduction traits of poultry species.

Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abbot, U.K. and Yee, G.W. (1975) Avian Genetics. In: Handbook of Genetics. V.4. King, R.C., Ed. Plenum Publ Corp. NY. 151200.CrossRefGoogle Scholar
Atkin, N.B., Mattison, G., Becak, W. and Ohno, S. (1965) The comparative DNA content of 19 species of placental mammals, reptiles, and birds. Chromosoma 71: 110.Google Scholar
Bachmann, K., Harrington, B.A. and Craig, J.P. (1972) Genome size in birds. Chromosoma 37: 405416.Google Scholar
Bakst, M.R., Gupta, S.K. and Akuffo, V. (1997) Comparative development of the turkey and chicken embryo from cleavage through hypoblast formation. Poultry Science 76: 8390.CrossRefGoogle ScholarPubMed
Balzak, W.F. and Fechheimer, N.S. (1979) Gonosome-autosome translocation in fowl: Chromosome complements of gametes and viability of embryos derived from singly and doubly heterozygous cockerels. Journal Heredity 70: 407412.Google Scholar
Baumgartner, J. and Konceková, Z. (1984) Karyological study of Japanese quail (Coturnix cot. japonica). Hydinárstvo 21: 3745.Google Scholar
Beaumont, C., Millet, N., Le Bihan-Duval, E., Kipi, A. and Dupuy, V. (1997) Genetic parameters of survival to the different stages of embryonic death in laying hens. Poultry Science 76: 11931196.CrossRefGoogle ScholarPubMed
Bednarczyk, M. and Rosinski, A. (1999) Comparison of egg hatchability and in vitro survival of goose embryos of various origins. Poultry Science 78: 579585.CrossRefGoogle ScholarPubMed
Bernier, P.E. and Arscott, G.H. (1972) Fifteen years of observations on the dwarf gene in domestic fowl. Annales de Genetique et de Selection Animale 4: 183215.CrossRefGoogle ScholarPubMed
Bhatnagar, M.K. (1968) Mitotic chromosomes of white Chinese geese. Journal Heredity 59(3): 191195.CrossRefGoogle ScholarPubMed
Bloom, S.E. (1969) Chromosome abnormalities in early chicken (Gallus domesticus) embryos. Chromosoma (Berl.) 28: 357369.CrossRefGoogle ScholarPubMed
Bloom, S.E. (1970) Haploid chicken embryos: Evidence for diploid and triploid cell populations. Journal Heredity 61: 147150.CrossRefGoogle ScholarPubMed
Bloom, S.E. (1972) Chromosome abnormalities in the chicken (Gallus domesticus) embryos: Types, frequencies and phenotypic effects. Chromosoma (Berl.) 37: 309326.CrossRefGoogle ScholarPubMed
Bloom, S.E. (1978) Chick embryos for detecting environmental mutagens. Chemical Mutagens-Principles and Methods for their Detection 5: 203232.Google Scholar
Bloom, S.E. and Buss, E.G. (1966) Triploid-diploid mosaic chicken embryo. Science 153: 759760.CrossRefGoogle ScholarPubMed
Bloom, S.E., Muscarella, D.E., Lee, M.Y. and Rachlinski, M. (1998) Cell death in the avian blastoderm: resistance to stress-induced apoptosis and expression of anti-apoptotic genes. Cell Death and Differentiation 5(6): 529538.CrossRefGoogle ScholarPubMed
Bogenfürst, F. (1992) Handbook for goose breeders. (in Hungarian) Új Nap Lap- és Könyvkiadó, Budapest.Google Scholar
Brah, G.S., Sandhu, J.S. and Chaudhary, M.L. (1991) Heritability estimates of components of incubation mortality in White Leghorns. British Poultry Science 32: 871874.CrossRefGoogle ScholarPubMed
Byerly, T.C. (1931) Time of occurrence and probable causes of mortality in chick embryos. Proceedings 4th World's Poultry CongressLondon: 178–186.Google Scholar
Cassar, G., Mohammed, M., John, T.M., Gazdzinski, P. and Etches, R.J. (1998) Differentiating between parthenogenetic and “positive development” embryos in turkeys by molecular sexing. Poultry Science 77: 14631468.CrossRefGoogle ScholarPubMed
Christidis, L. (1986) Chromosomal evolution within the Estrildidae (Aves) I. The Poephilae. Genetica 71: 8197.CrossRefGoogle Scholar
Christidis, L. (1989) Karyotypic Analyses in Birds. In: Halnan, R.E.: Cytogenetics of Animals (1989). C.A.B. International. Page 125149.Google Scholar
Cock, A.G. (1964) Dosage compensation and sex chromatin in nonmammals. Genetics Research 5: 354365.CrossRefGoogle Scholar
Coleman, M.A. (1983) Extra 25 chicks per hen with “embryo watch”. Broiler Industry, May: 3234.Google Scholar
De Boer, L.E.M., De Groen, T.A.G., Frankenhuis, M.T., Zonneveld, A.J., Sallevelt, J. and Belterman, R.H.R. (1984) Triploidy in Gallus domesticus embryos, hatchlings and adult intersex chickens. Genetica 65: 8387.CrossRefGoogle Scholar
Deeming, D.C. and Van Middelkoop, J.H. (1999) Effect of strain and flock age on fertility and early embryonic mortality of broiler breeder eggs. British Poultry Science 40: S22S23.CrossRefGoogle ScholarPubMed
Delany, M.E., Muscarella, D.E. and Bloom, S.E. (1994) Effects of rRNA gene copy number and nucleolar variation on early development: inhibition of gastrulation in rDNA-deficient chick embryos. Journal Heredity 85: 211217.CrossRefGoogle ScholarPubMed
Duber, M.M., Mong, S.J., Fechheimer, N.S. and Jaap, R.G. (1973) Chromosome abnormalities in embryos from divergent lines and their crosses. Poultry Science 52: 20232024. (Abstract).Google Scholar
Dunn, L.C. (1923) A lethal gene in fowls. American Naturalis 57: 345349.CrossRefGoogle Scholar
Dupuy, V., Neressian, B. and Bakst, M.R. (2002) Embryonic development from first cleavage through seventy-two hours incubation in two strains of Pekin duck (Anas platyrhynchos) Poultry Science 81: 860868.CrossRefGoogle Scholar
Eyal-Giladi, H. and Kochav, S. (1976) From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. Developmental Biology 19: 321337.CrossRefGoogle Scholar
Fábián, GY. and Nagy, M. (1973) Newer data to the recognition of karyotype of the Japanese quail (Coturnix coturnix japonica). Aquila 80–81: 3340.Google Scholar
Fechheimer, N.S. (1977) Frequency and source of chromosome abnormalities in chicken embryos. Annales de Genetique et de Selection Animale 9: 541. (Abstract)CrossRefGoogle Scholar
Fechheimer, N.S. (1981) Origins of heteroploidy in chicken embryos. Poultry Science 60: 13651371.CrossRefGoogle ScholarPubMed
Fechheimer, N.S. (1990) Chromosomes of chickens. In: Advances in Veterinary Science and Comparative Medicine. Domestic Animal Cytogenetics Ed. McFeely, R.A. 34: 169207.CrossRefGoogle Scholar
Fechheimer, N.S., Isakova, G.K. and Belyaev, D.K. (1983) Mechanisms involved in the spontaneous occurrence of diploid-triploid chimerism in the mink (Mustela vision) and chicken (Gallus domesticus). Cytogenetics and Cell Genetics 35: 238243.CrossRefGoogle Scholar
Fechheimer, N.S. and Jaap, R.G. (1980) Origins of euploid chimerism in embryos of Gallus domesticus. Genetica 52/53: 6972.CrossRefGoogle Scholar
Fechheimer, N.S., Lodge, J.R. and Miller, R.C. (1970) Sex proportion of domestic chicken at 16 hours of incubation. Journal of Reproduction and Fertility 23: 365367.CrossRefGoogle ScholarPubMed
Foulkes, A.G. (1990) The unincubated avian blastoderm; its characterization and an investigation of developmental quiescence. Ph.D. Dissertation. Dep. of Biology, Fac. of Science, Univ. of Southampton, UK.Google Scholar
Graves, J.A.M. (2003) Sex and death in birds: A model of dosage compensation that predicts lethality of sex chromosome aneuploids. Cytogenetic and Genome Research 101: 278282.CrossRefGoogle ScholarPubMed
Gupta, S.K. and Bakst, M.R. (1993) Turkey embryo staging from cleavage through hypoblast formation. Journal Morphology 217: 313325.CrossRefGoogle Scholar
Hamburger, V. and Hamilton, H.L. (1951) A series of normal stages in the development of the chick embryo. Journal Morphology 8: 4992.CrossRefGoogle Scholar
Hammar, B. (1966) The karyotypes of nine birds. Hereditas 55: 367385.CrossRefGoogle Scholar
Hare, W.C.D. and Singh, E.L. (1979) Cytogenetics in Animal Reproduction. Commonwealth Agricultural Bureaux, Farnham Royal, Slough, England.Google Scholar
Hidas, A. and Szalay, I. (1987) Chromosomes studies in the domestic goose (Anser anser domesticus). Proceedings 1st National Conference of Hungarian GeneticsBudapest.Google Scholar
Hidas, A., Szalay, I., Liptói, K. and Várkonyi, E. (1996) Cytogenetic analysis of early dead embryos in chicken breeding stocks. Archivos de Zootecnia 45: 221224.Google Scholar
Hidas, A., Várkonyi, E., Liptói, K., Sayahzadeh, H., Lennert, L. and Szalay, I. (1999) Recurrent trisomies in chicken embryos. 13th European Colloquium on Cytogenetics of Domestic Animals, Budapest, Hungary, 2–5 June, 1998. In: Állattenyésztés és TakarmÁnyozÁs, 1999. 48(1): 8082.Google Scholar
Hu, Y.H., Rouvier, R., Poivey, J.P., Brun, J.M. and Sellier, N. (1997) Fertility and early embryonic viability in the intergeneric cross-breeding between muscovy drake and common duck females. Proceedings of 11th European Symposium on WaterfowlNantes, France. 382–391.Google Scholar
Imreh, S.I. (1986) The Chromosome. (in Hungarian) Kriterion Könyvkiadó, Bukarest. p. 25–32.Google Scholar
Jaap, R.G. and Fechheimer, N.S. (1974) Normal and abnormal avian chromosomes. Proceedings XV World Poultry CongressNew Orleans 313–315.Google Scholar
Jassim, E.W., Grossman, M., Koops, W.J. and Luykx, R.A.J. (1996) Multiphasic Analysis of Embryonic Mortality in Chickens. Poultry Science 75: 464471.CrossRefGoogle ScholarPubMed
Jaszczak, K., Sadowska, G. and Pawluczuk, B. (1985) Chromosomal abnormalities in quails selected for a high and low body weight. Genetica Polonica 25: 417425.Google Scholar
Khan, A.G. and Prasad, J. (1981) Incubation mortality of developing chick embryos having diversified genetic origin. Indian Journal Poultry Science 16: 280282.Google Scholar
Klein, S. and Saar, W. (1992) Differences in egg phenotype in short term incubated goose eggs and their relationship to chromosome aberrations. Proceedings 10th European Colloq. Cytogen. Domest. Anim.Utrecht Univ.Netherlands. 116–121.Google Scholar
Kovács, A. and Hidas, A. (2004) Cytogenetics. (in Hungarian) In: Szabó,F.: Zootechny. Mezögazda Kiadó. 2004.Google Scholar
Kozikova, L.V. (1984) Identification of sex chromosomes of the guinea fowl. (In Russian) Citologia i Genetika 18: 231232.Google Scholar
Krishan, A. and Shoffner, R.N. (1966) Sex chromosomes in the domestic fowl (Gallus domesticus), turkey (Meleagris gallopavo), and the Chinese pheasant (Phasianus colchicus). Cytogenetics 5: 5363.CrossRefGoogle Scholar
Krueger, K.K. (1990) Fertility in female turkeys: How manage it? In: Control of Fertility in Domestic Birds. No. 54. Les Colloques de l'INRA, Nouzilly, France. p. 205–212.Google Scholar
Kuurman, W.W., Bailey, B.A., Koops, W.J. and Grossman, M. (2002) Influence of storage days on the distribution for time of embryonic mortality during incubation. Poultry Science 81: 18.CrossRefGoogle ScholarPubMed
Landauer, W. (1932) Studies on the creeper fowl. III. The early development and lethal expression of homozygous creeper embryos. Journal Genetics 25: 367394.CrossRefGoogle Scholar
Landauer, W. (1951) The hatchability of chicken eggs as influenced by environment and heredity. Bulletin 262, revised. Storrs Agricult. Exp. Station, Univ. Connecticut, Storrs, CT.Google Scholar
Landauer, W. and Dunn, N.C. (1930) Studies on the creeper fowl: 1. Genetics. Journal Genetics 23: 3753.CrossRefGoogle Scholar
Liptói, K. and Hidas, A. (1997) Investigation of chromosomal abnormalities in goose breeding stocks. Proceedings of International Symposum Current Problems in Avian Reproduction.Wroclaw (Poland) 205–206.Google Scholar
Liptói, K. and Hidas, A. (1998) Investigation of early dead embryos in goose populations. Cytogenetics and Cell Genetics 81:138. (Abstr.)Google Scholar
Liptói, K. and Hidas, A. (2000) Inheritance of Early Embryonic Abnormalities in Goose Breeding Stocks. Proceedings of XXI World's Poultry Congress in MontrealCanadaAugust 20–24, 2000.Google Scholar
Liptói, K., Hidas, A. and Szalay, I. (1999) Investigation of chromosomal and embryonic abnormalities in early dead embryos. 13th European Colloquium on Cytogenetics of Domestic Animals, Budapest, Hungary, 2–5 June, 1998. In: Állattenyésztés és TakarmÁnyozÁs, 1999. 48 (1) 8285.Google Scholar
Lodge, J.R., Fechheimer, N.S. and Miller, R.C. (1973) Deletion, monosomy and multiple monosomy-trisomy in chicken embryos. Poultry Science 52: 397399.CrossRefGoogle ScholarPubMed
Makino, S. (1951) An atlas of the chromosome numbers in animals. 2nd Ed. The Iowa State College Press, Ames.CrossRefGoogle Scholar
Masabanda, J.S., Burt, D.W., O'biren, P.C.M., Vignal, A., Fillon, V., Walsh, P.S., Cox, H., Tempest, H.G., Smith, J., Habermann, F., Schmid, M., Matsuda, Y., Ferguson-Smith, M.A., Crooijmans, R.P.M.A., Groenen, M.A.M. and Griffin, D.K. (2004) Molecular cytogenetic definition of the chicken genome: The first complete avian karyotype. Genetics 166: 13671373.CrossRefGoogle ScholarPubMed
Migliore, L., Tesoro, M. and Romboli, I. (1986) Chromosome complement and C-banding pattern in the muscovy duck (Cairina moschata domestica L.). Proceedings 7th European Poultry Conference, Paris, Vol. 1., 99–103.Google Scholar
Miller, R.C., Fechheimer, N.S. and Jaap, R.G. (1971) Chromosome abnormalities in 16–18 hour chick embryos. Cytogenetics 10: 121136.CrossRefGoogle Scholar
Mong, S.J., Snyder, M.D., Fechheimer, N.S. and Jaap, R.G. (1974) The origin of triploidy in chick (Gallus domesticus) embryos. Canadian Journal Genetetics Cytolology 16: 317322.CrossRefGoogle ScholarPubMed
Muravská, J. and Baumgartner, J. (1983) Karyological study of the domestic duck (Anas platyrhynchos domestica). Proceedings 5th International Symposium Actual Problems of Avian GeneticsPiestany 185–187.Google Scholar
Muscarella, D.E., Rachlinski, M.K. and Bloom, S.E. (1998) Expression of cell death regulatory genes and limited apoptosis induction in avian blastodermal cells. Molecular Reproduction and Development 51(2): 130142.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Owen, J.J.T. (1965) Karyotype studies on Gallus domesticus. Chromosoma (Berl.) 16: 601608.CrossRefGoogle ScholarPubMed
Perry, M.M. (1987) Nuclear events from fertilization to the early cleavage stages in the domestic fowl (Gallus domesticus). Journal of Anatomy 150: 99109.Google Scholar
Pollock, D.L. and Fechheimer, N.S. (1976) The chromosome number of Gallus domesticus. British Poultry Science 17: 3942.CrossRefGoogle ScholarPubMed
Pollock, D.L. and Fechheimer, N.S. (1981) Variable C-banding pattern and a prospered C-band karyotype in Gallus domesticus. Genetica (The Hague) 54: 273279.CrossRefGoogle Scholar
Reddy, P.R.K. and Siegel, P.B. (1977) Chromosomal abnormalities in chickens selected for high and low body weight. Journal of Heredity 68: 253256.CrossRefGoogle Scholar
Rol'nik, V.V. (1970) Bird Embryology. Keter Press, Jerusalem, Israel.Google Scholar
Romanoff, A.L. (1949) Critical periods and causes of death in avian embryonic development. The Auk 66: 264270.CrossRefGoogle Scholar
Rosinski, A. and Bednarczyk, M. (1997) Influence of genotype on goose egg hatchability. Archiv für Geflügelkunde 61(1): 3339.Google Scholar
Saefudin, W., Saar, M., Schmutz, M., Preisinger, R. and Schüler, L. (2002) The influence of the age of hen on early embryonic mortality, frequency and types of chromosomal aberrations in laying hens. Abstract in: Archiv fÜr GeflÜgelkunde 66 Spec. Issue II, 81, P2.2.15.Google Scholar
Savage, T.F., Defrank, M.P. and Brean, S.E. (1988) Blood ring: An early embryonic lethal condition in chicken. Journal Heredity 79(2): 124128.CrossRefGoogle Scholar
Savage, T.F. and Harper, J.A. (1985) Ring lethal: an early embryonic failure in Medium White turkeys. Journal Heredity 76: 474476.CrossRefGoogle ScholarPubMed
Savage, T.F., Mirosh, L.W., Jones, J.L. and Schneiderman, E.T. (1992) Blastoderm degeneration, an early embryonic failure in dwarf single comb white leghorn chickens. Journal Heredity 83: 249254.CrossRefGoogle ScholarPubMed
Schmid, W. (1962) DNA replication patterns of the heterochromosomes in Gallus domesticus. Cytogenetics 1: 344352.CrossRefGoogle ScholarPubMed
Sheridan, A.K. (1964) A sex-linked mutation causing low hatchability in broiler chicken. In: Proceedings Australian Poultry Science ConventionSurfers Paradise 87–90.Google Scholar
Sheridan, A.K. (1979) Further studies with a sex-linked lethal gene in the fowl. British Poultry Science 20: 571573.CrossRefGoogle ScholarPubMed
Shook, J.G., Stephenson, A.B. and Biellier, H.V. (1971) Heritability estimates of differences in arbitrary embryonic mortality traits in turkeys. Poultry Science 50(5): 12551260.CrossRefGoogle ScholarPubMed
Snyder, N.D., Fechheimer, N.S. and Jaap, R.G. (1975) Incidence and origin of heteroploidy, especially haploidy in chick embryos from intraline and interline matings. Cytogenetics and Cell Genetics 14: 6375.CrossRefGoogle ScholarPubMed
Somes, R.G. and Smyth, J.R. (1967) Prenatal, a sex-linked lethal mutation of the fowl. Journal Heredity 58: 2529.CrossRefGoogle ScholarPubMed
Stenius, C., Chrisitian, L.C. and Ohno, S. (1963) Comparative cytological study of Phasianus colchicus, Meleagris gallopavo and Gallus domesticus. Chromosoma (Berl.) 13: 515520.CrossRefGoogle ScholarPubMed
Stock, A.D. and Bunch, T.D. (1982) The evolutionary implications of chromosome banding pattern homologies in the bird order Galliformes Cytogenetics and Cell Genetics 34: 136148.CrossRefGoogle ScholarPubMed
Szalay, I., Hidas, A. and Vas, E. (1988) Study on the frequency of chromosomally abnormal embryos in broiler chicken grandparent stocks. (in Hungarian) Baromfitenyésztés és feldolgozÁs 35: 149155.Google Scholar
Szalay, I. (1989) Cytogenetic aspects of early embryonic development in meat type poultry. PhD Thesis, Hungarian Academy of Sciences, BudapestGoogle Scholar
Szalay, I., Hidas, A., Liptói, K., Do Thi Dong, X. and Barna, J. (1999) Effect of chromosome aberrations on early embryonic mortality in goose and duck. Proceedings 1st World waterfowl ConferenceThichung, TaiwanROC1–4 Dec. 1999.Google Scholar
Talluri, M.V. and Vegni, L. (1965) Fine resolution of the karyogram of the quail Coturnix coturnix japonica. Chromosoma (Berl.) 17: 264272.CrossRefGoogle ScholarPubMed
Telloni, R.V., Jaap, R.G. and Fechheimer, N.S. (1976) Cytogenetic and phenotypic effects of chromosome rearrangement involving the Z-chromosome and microchromosome. Poultry Science 56: 193201.CrossRefGoogle Scholar
Thomas, F., Savage, T.F. and Mirosh, L.W. (1992) Inheritance of blood ring, an early embryonic failure in the turkey. Poultry Science 71: 585589.Google Scholar
Thorne, M.H., Collins, R.K. and Sheldon, B.L. (1987) Live haploid-diploid and other unusual mosaic chickens (Gallus domesticus). Cytogenetics and Cell Genetics 45: 2125.CrossRefGoogle Scholar
Thorne, M.H. and Sheldon, B.L. (1991) Cytological evidence of maternal meiotic errors in a line of chickens with a high incidence of triploidy. Cytogenetics and Cell Genetics 57: 206210.CrossRefGoogle Scholar
Vagt, A., Saar, W., Pingel, H. and Schneider, K.H. (1988) Vergleich zur Haufigkeit cromosomaler Aberrationen Während der frÜhembryonalen Entwicklung bei Pekingenten (Anas platyrhynchos f. dom.) einer leichten und schweren Linie. Wiss. Z. Karl-Marx-Univ. Leipzig, Math-Naturwiss. R. 37: 276–281.Google Scholar
Wolowodiuk, V.D., Fechheimer, N.S., Nestor, K.E. and Bacon, W.L. (1985) Chromosome abnormalities in embryos from lines of Japanese quail divergently selected for body weight. Genetics Selection Evolution 17: 183190.CrossRefGoogle ScholarPubMed
Zartman, D.L. and Smith, A.L. (1975) The effect of five different chromosome mutations on embryonic survival studied in chicken. Genetics 80: 8788.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Investigation of possible genetic background of early embryonic mortality in poultry
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Investigation of possible genetic background of early embryonic mortality in poultry
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Investigation of possible genetic background of early embryonic mortality in poultry
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *