Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T02:17:04.479Z Has data issue: false hasContentIssue false

Metal particles as trace-element sources: current state and future prospects

Published online by Cambridge University Press:  17 July 2018

V.I. FISININ
Affiliation:
Federal Scientific Center ‘All-Russian Research and Technology Institute of Poultry’ the Russian Academy of Sciences, Sergeev Posad, Russia
S.А. MIROSHNIKOV
Affiliation:
Orenburg State University, Orenburg, Russia All-Russian Research Institute of Beef Cattle Breeding, Orenburg, Russia
Е.А. SIZOVA*
Affiliation:
Orenburg State University, Orenburg, Russia All-Russian Research Institute of Beef Cattle Breeding, Orenburg, Russia
А.S. USHAKOV
Affiliation:
Federal Scientific Center ‘All-Russian Research and Technology Institute of Poultry’ the Russian Academy of Sciences, Sergeev Posad, Russia
Е.P. MIROSHNIKOVA
Affiliation:
Orenburg State University, Orenburg, Russia
*
Corresponding author: Sizova.L78@yandex.ru
Get access

Abstract

Birds have evolved in direct contact with natural nanoparticles (NPs) that are identical to artificial trace-element NPs. This relationship, the high action potential and their ability to reduce environmental pollution make NPs a promising component of bird diets. However, from available published studies there is no unity in justifying the applied dosages of NPs and their calculations. NPs are used in the studies in various doses, for example: Cu 0.5-50 mg/kg, Ag 10-1000 mg/kg, Se 0.2-5 mg/kg, Cr 500-1500 ppb. Therefore, universal approaches and criteria of NP investigations are necessary for the establishment of their use in feed.

The mechanisms of action of the trace elements in artificial NPs in birds vary from the those of ionic forms of trace elements, which determine the differences in the productive effect. According to data from different authors, chickens receiving NPs in feed have higher chickens body weight by 13-24%. Such benefits have increased interest in sources of trace-element NPs significantly over the past two decades. The design of trace-element NPs has led to promising developments in the safe use of NPs for poultry nutrition, such as coating NPs with inert substances and adjusting their size. However, constraining circumstances determined by the difficulty of predicting the toxic properties of nanostructures exist, even though artificial trace-element NPs are a relatively safe class of nanostructures due to their production requirements, and metal NPs are already used in human food and medicine. The following review discusses the benefits and potential hazardous effects of NPs and the possibility of using them as feed supplements for poultry.

Type
Review
Copyright
Copyright © World's Poultry Science Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AHMADI, F. and KURDESTANY, A.H. (2010) The impact of silver nano particles on growth performance, lymphoid organs and oxidative stress indicators in broiler chicks. Global Veterinaria 5 (6): 366-370.Google Scholar
AHRARI, F., ESLAMI, N., RAJABI, O., GHAZVINI, K. and BARATI, S. (2015) The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes. Dental Research Journal 12 (1): 44.Google Scholar
ANNAMALAI, T., PINA-MIMBELA, R., KUMAR, A., BINJAWADAGI, B., LIU, Z., RENUKARADHYA, G.J. and RAJASHEKARA, G. (2013) Evaluation of nanoparticle-encapsulated outer membrane proteins for the control of Campylobacter jejuni colonization in chickens. Poultry Science 92 (8): 2201-2211.Google Scholar
ANTUNOVIĆ, B., BARLOW, S., CHESSON, A., FLYNN, A., HARDY, A., JANY, K-D., JEGER, M- J., KNAAP, A., KUIPER, H., LARSEN, J-C., LOVELL, D., NOERRUNG, B., SCHLATTER, J., SILANO, V., SMULDERS, S. and VANNIER, P. (2011) Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA Journal 9: 2140.Google Scholar
ASHARANI, P.V., LIAN WU, Y., GONG, Z. and VALIYAVEETTIL, S. (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnol 19 (25): 255102-255110. doi: 10.1088/0957-4484/19/25/255102.Google Scholar
ASLAM, M.F., FRAZER, D.M., FARIA, N., BRUGGRABER, S.F., WILKINS, S.J., MIRCIOV, C., POWELL, J.J., ANDERSON, G.J. and PEREIRA, D.I. (2014) Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. The FASEB Journal 28 (8): 3671-3678.Google Scholar
AUGUSTIN, M.A. and HEMAR, Y. (2009) Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews 38 (4): 902-912.Google Scholar
BAEK, M., CHUNG, H.E., YU, J., LEE, J.A., KIM, T.H., OH, J.M., LEE, W.J., PAEK, S.M., LEE, J.K., JEONG, J., CHOY, J.H. and CHOI, S.J. (2012) Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. International Journal of Nanomedicine 7: 3081-3097.Google Scholar
BAKYARAJ, S., BHANJA, S.K., MAJUMDAR, S. and DASH, B. (2012) Modulation of post-hatch growth and immunity through in ovo supplemented nutrients in broiler chickens. Journal of the Science of Food and Agriculture 92: 313-320.Google Scholar
BARBU, E., MOLNAR, E., TSIBOUKLIS, J. and GORECKI, D.C. (2009) The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opinion on Drug Delivery 6 (6): 553-565.Google Scholar
BECK, I., HOTOWY, A., SAWOSZ, E., GRODZIK, M., WIERZBICKI, M., KUTWIN, M., JAWORSKI, S. and CHWALIBOG, A. (2015) Effect of silver nanoparticles and hydroxyproline, administered in ovo, on the development of blood vessels and cartilage collagen structure in chicken embryos. Archives of Animal Nutrition 69 (1): 57-68.Google Scholar
BELLUCO, S., GALLOCCHIO, F., LOSASSO, C. and RICCI, A.. (2016) State of art of nanotechnology applications in the meat chain: A qualitative synthesis. Critical Reviews in Food Science and Nutrition 13: 1-13.Google Scholar
BHANJA, S.K., HOTOWY, A., MEHRA, M., SAWOSZ, E., PINEDA, L., VADALASETTY, K.P., KURANTOWICZ, N. and CHWALIBOG, A. (2015) In ovo Administration of Silver Nanoparticles and/or Amino Acids Influence Metabolism and Immune Gene Expression in Chicken Embryos. International Journal of Molecular Sciences 16 (5): 9484-9503.Google Scholar
BONDARENKO, O., JUGANSON, K., IVASK, A., KASEMETS, K., MORTIMER, M. and KAHRU, A. (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of toxicology 87 (7): 1181-1200.Google Scholar
CHAUDHRY, Q., SCOTTER, M., BLACKBURN, J., ROSS, B., BOXALL, A., CASTLE, L., AITKEN, R. and WATKINS, R. (2008) Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants 25 (3): 241-258.Google Scholar
CHENG, J., WEN, S., WANG, S., HAO, P., CHENG, Z., LIU, Y., ZHAO, P. and LIU, J. (2017) gp85 protein vaccine adjuvanted with silica nanoparticles against ALV-J in chickens. Vaccine 35 (2): 293-298.Google Scholar
CHOI, S.J. and CHOY, J.H. (2014) Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction. International Journal of Nanomedicine 9: 261.Google Scholar
DLASKA, M. and WEISS, G. (1999) Central role of transcription factor NF-IL6 for cytokine and iron-mediated regulation of murine inducible nitric oxide synthase expression. The Journal of Immunology 162 (10): 6171-6177.Google Scholar
DOMINGUEZ, A., SUAREZ-MERINO, B. and GONI-DE-CERIO, F. (2014) Nanoparticles and blood-brain barrier: the key to central nervous system diseases. Journal of Nanoscience and Nanotechnology 14 (1): 766-779Google Scholar
EMAMI, T., MADANI, R., REZAYAT, S.M., GOLCHINFAR, F. and SARKAR, S. (2012) Applying of gold nanoparticle to avoid diffusion of the conserved peptide of avian influenza nonstructural protein from membrane in Western blot. Journal of Applied Poultry Research 21 (3): 563-566.Google Scholar
EUROPEAN COMMISSION (2013) Second regulatory review on nanomaterials. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee. Brussels, COM (2012) 572 final.Google Scholar
FADDAH, L.M., ABDEL BAKY, N.A., AL-RASHEED, N.M., AL-RASHEED, N.M., FATANI, A.J. and ATTEYA, M. (2012) Role of quercetin and arginine in ameliorating nano zinc oxide-induced nephrotoxicity in rats. BMC Complementary and Alternative Medicine 12 (1): 1062.Google Scholar
FAO and IFIF (2010) Good practices for the feed industry - Implementing the Codex Alimentarius Code of Practice on Good Animal Feeding. FAO Animal Production and Health Manual 9.Google Scholar
FLYNN, N.E., MEININGER, C.J., HAYNES, T.E. and WU, G. (2002) The metabolic basis of arginine nutrition and pharmacotherapy. Biomedicine & Pharmacotherapy 56 (9): 427-438.Google Scholar
FONDEVILA, M., HERRER, R., CASALLAS, M.C., ABECIA, L. and DUCHA, J.J. (2009) Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Animal Feed Science and Technology 150: 259-269.Google Scholar
FOUAD, A.M., EL-SENOUSEY, H.K., YANG, X.J. and YAO, J.H. (2013) Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal 7 (8): 1239-1245.Google Scholar
FRITSCHE, G., DLASKA, M., BARTON, H., THEURL, I., GARIMORTH, K. and WEISS, G. (2003) Nramp1 functionality increases inducible nitric oxide synthase transcription via stimulation of IFN regulatory factor 1 expression. The Journal of Immunology 171 (4): 1994-1998.Google Scholar
GHOLAMI-AHANGARAN, M. and ZIA-JAHROMI, N. (2013) Nanosilver effects on growth parameters in experimental aflatoxicosis in broiler chickens. Toxicology and Industrial Health 29 (2): 121-125.Google Scholar
GHOLAMI-AHANGARAN, M. and ZIA-JAHROMI, N. (2014) Effect of nanosilver on blood parameters in chickens having aflatoxicosis. Toxicology and Industrial Health 30 (2): 192-196.Google Scholar
GOEL, A., BHANJA, S.K., MEHRA, M., MAJUMDAR, S. and MANDAL, A. (2017) In ovo silver nanoparticle supplementation for improving the post-hatch immunity status of broiler chickens. Archives of Animal Nutrition 71 (5): 384-394.Google Scholar
GRODZIK, M., SAWOSZ, F., SAWOSZ, E., HOTOWY, A., WIERZBICKI, M., KUTWIN, M., JAWORSKI, S. and CHWALIBOG, A. (2013) Nano-nutrition of chicken embryos. The effect of in ovo administration of diamond nanoparticles and L-glutamine on molecular responses in chicken embryo pectoral muscles. International Journal of Molecular Sciences 14 (11): 23033-23044.Google Scholar
HAJIALIZADEH, F., GHAHRI, H. and TALEBI, A. (2017) Effects of supplemental chromium picolinate and chromium nanoparticles on performance and antibody titers of infectious bronchitis and avian influenza of broiler chickens under heat stress condition. Veterinary Research Forum 8 (3): 259-264.Google Scholar
HAMRAHI-MICHAK, M., SADEGHI, S.A., HAGHIGHI, H., GHANBARI-KAKAVANDI, Y., RAZAVI-SHESHDEH, S.A., NOUGHABI, M.T. and NEGAHDARY, M. (2012) The toxicity effect of cerium oxide nanoparticles on blood cells of male Rat. Annals of Biological Research 3 (6): 2859-2866.Google Scholar
HARRISON, P.M. and AROSIO, P. (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1275 (3): 161-203.Google Scholar
HILL, E.K. and LI, J. (2017) Current and future prospects for nanotechnology in animal production. Journal of animal science and biotechnology 8 (1): 26.Google Scholar
HOTOWY, A., SAWOSZ, E., PINEDA, L., SAWOSZ, F., GRODZIK, M. and CHWALIBOG, A. (2012) Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart. Nanoscale Research Letters 7 (1): 418.Google Scholar
HUANG, C.C., TSAI, S.C. and LIN, W.T. (2008) Potential ergogenic effects of L-Arginine against oxidative and inflammatory stress induced by acute exercise in aging rats. Experimental gerontology 43 (6): 571-577.Google Scholar
HUANG, S., CHEN, J.C., HSU, C.W. and CHANG, W.H. (2009) Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model. Nanotechnology 20: 375102.Google Scholar
HURRELL, R.F. (2011) Safety and efficacy of iron supplements in malaria-endemic areas. Annals of Nutrition and Metabolism 59 (1): 64-66.Google Scholar
JAIN, T.K., REDDY, M.K., MORALES, M.A., LESLIE-PELECKY, D.L. and LABHASETWAR, V. (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Molecular Pharmaceutics 5 (2): 316-327.Google Scholar
JENKINS, M.C., STEVENS, L., O'BRIEN, C., PARKER, C., MISKA, K. and KONJUFCA, V. (2018) Incorporation of a recombinant Eimeria maxima IMP1 antigen into nanoparticles confers protective immunity against E. Maxima challenge infection. Vaccine 36 (8): 1126-1131.Google Scholar
JIN, X., LIU, C.P., TENG, X.H. and FU, J. (2016) Effects of Dietary Selenium Against Lead Toxicity Are Related to the Ion Profile in Chicken Muscle. Biological Trace Element Research 172 (2): 496-503.Google Scholar
JOHNSTON, J.H., GRINDROD, J.E., DODDS, M. and SCHIMITSCHEK, K. (2008) Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging. Current Applied Physics 8 (3): 508-511.Google Scholar
JOSHUA, P.P., VALLI, C. and BALAKRISHNAN, V. (2016) Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken. Veterinary World 9 (3): 287.Google Scholar
KAIKABO, A.A., ABDULKARIM, S.M. and ABAS, F. (2017) Evaluation of the efficacy of chitosan nanoparticles loaded ΦKAZ14 bacteriophage in the biological control of colibacillosis in chickens. Poultry Science 96 (2): 295-302.Google Scholar
KIM, H.J., KIM, S.H., LEE, J.K., CHOI, C.U., LEE, H.S., KANG, H.G. and CHA, S.H. (2012) A novel mycotoxin purification system using magnetic nanoparticles for the recovery of aflatoxin B1 and zearalenone from feed. Journal of Veterinary Science 13 (4): 363-369.Google Scholar
KOWALCZYK, M., BANACH, M. and RYSZ, J. (2011) Ferumoxytol: a new era of iron deficiency anemia treatment for patients with chronic kidney disease. Journal of Nephrology 24 (6): 717.Google Scholar
KRAVCHYSHYN, M.D. (2010) Materiales composition agueum suspension Northern Dvina aestuario (albus mare) dum vernum aestus. Oceanology 5: 396-416.Google Scholar
KUPPUSAMY, P., YUSOFF, M.M., MANIAM, G.P. and GOVINDAN, N. (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharmaceutical Journal 24 (4): 473-484.Google Scholar
LATUNDE-DADA, G.O., PEREIRA, D.I., TEMPEST, B., ILYAS, H., FLYNN, A.C., ASLAM, M.F., SIMPSON, R.J. and POWELL, J.J. (2014) A nanoparticulate ferritin-core mimetic is well taken up by HuTu 80 duodenal cells and its absorption in mice is regulated by body iron. The Journal of Nutrition 144 (12): 1896-1902.Google Scholar
LEBEDEV, S., YAUSHEVA, E., GALAKTIONOVA, L. and SIZOVA, E. (2016) Impact of molybdenum nanoparticles on survival, activity of enzymes, and chemical elements in Eisenia fetida using test on artificial substrata. Environmental Science and Pollution Research International 23 (18): 18099-18110. doi: 10.1007/s11356-016-6916-6. Epub 2016 Jun 3.Google Scholar
LI, P., YIN, Y.L., LI, D., KIM, S.W. and WU, G. (2007) Amino acids and immune function. British Journal of Nutrition 98 (2): 237-252.Google Scholar
LINSINGER, T.P., CHAUDHRY, Q., DEHALU, V., DELAHAUT, P., DUDKIEWICZ, A., GROMBE, R., VON DER KAMMER, F., LARSEN, E.H., LEGROS, S., LOESCHNER, K., PETERS, R., RAMSCH, R., ROEBBEN, G., TIEDE, K. and WEIGEL, S. (2013) Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chemistry 138 (2): 1959-1966.Google Scholar
LIU, D.F., QIAN, C., AN, Y.L., CHANG, D., JU, S.H. and TENG, G.J. (2014) Magnetic resonance imaging of post-ischemic blood-brain barrier damage with PEGylated iron oxide nanoparticles. Nanoscale 6 (24): 15161-15167.Google Scholar
LIU, X. and THEIL, E.C. (2005) Ferritin as an iron concentrator and chelator target. Annals of the New York Academy of Sciences 1054 (1): 136-140.Google Scholar
LOMER, M.C., COOK, W.B., JAN-MOHAMED, H.J., HUTCHINSON, C., LIU, D.Y., HIDER, R.C. and POWELL, J.J. (2012) Iron requirements based upon iron absorption tests are poorly predicted by haematological indices in patients with inactive inflammatory bowel disease. British Journal of Nutrition 107 (12): 1806-1811.Google Scholar
LU, S., ZHANG, W., ZHANG, R., LIU, P., WANG, Q., SHANG, Y., WU, M., DONALDSON, K. and WANG, Q. (2015) Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Particle and Fibre Toxicology 12: 5. doi: 10.1186/s12989-015-0082-8.Google Scholar
MAKAROV, D.V. (2014) Forecast for the development of the world market of nanopowders. Bulletin KRAUNTS. Physics and mathematics 1 (8): 97-102.Google Scholar
MANKE, A., WANG, L. and ROJANASAKUL, Y. (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Research International 2013: 942916. doi: 10.1155/2013/942916. Epub 2013 Aug 20.Google Scholar
MCKNIGHT, J.R., SATTERFIELD, M.C., JOBGEN, W.S., SMITH, S.B., SPENCER, T.E., MEININGER, C.J., MCNEAL, C.J. and WU, G. (2010) Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39 (2): 349-357.Google Scholar
MIROSHNIKOV, S., YAUSHEVA, E., SIZOVA, Е. and MIROSHNIKOVA, E. (2015) Comparative assessment of effect of cooper nano and microparticles in chicken. Oriental Journal of Chemistry 31 (4): 2327-2336, http://dx.doi.org/10.13005/ojc/310461.Google Scholar
MOHAMMADI, V., GHAZANFARI, S., MOHAMMADI-SANGCHESHMEH, A. and NAZARAN, M.H. (2015) Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. British Poultry Science 56 (4):486-493.Google Scholar
MØLLER, P., JACOBSEN, N.R., FOLKMANN, J.K., DANIELSEN, P.H., MIKKELSEN, L., HEMMINGSEN, J.G., VESTERDAL, L.K., FORCHHAMMER, L., WALLIN, H. and LOFT, S. (2010) Role of oxidative damage in toxicity of particulates. Free Radical Research 44 (1): 1-46.Google Scholar
MOSTAFAVI-POUR, Z., ZAL, F., MONABATI, A. and VESSAL, M. (2008) Protective effects of a combination of quercetin and vitamin E against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Hepatology Research 38 (4): 385-392.Google Scholar
MROCZEK-SOSNOWSKA, N., ŁUKASIEWICZ, M., ADAMEK, D., KAMASZEWSKI, M., NIEMIEC, J., WNUK-GNICH, A., SCOTT, A., CHWALIBOG, A. and SAWOSZ, E. (2017) Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Archives of Animal Nutrition 71 (4): 327-332.Google Scholar
MROCZEK-SOSNOWSKA, N., ŁUKASIEWICZ, M., WNUK, A., SAWOSZ, E., NIEMIEC, J., SKOT, A., JAWORSKI, S. and CHWALIBOG, A. (2016) In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. Journal of the Science of Food and Agriculture 96 (9): 3058-3062.Google Scholar
NAIRZ, M., SCHLEICHER, U., SCHROLL, A., SONNWEBER, T., THEURL, I., LUDWICZEK, S., TALASZ, H., BRANDACHER, G., MOSER, P.L., MUCKENTHALER, M.U., FANG, F.C., BOGDAN, C. and WEISS, G.J. (2013) Nitric oxide-mediated regulation of ferroportin-1 controls macrophage iron homeostasis and immune function in Salmonella infection. Journal of Experimental Medicine 210 (5): 855-873.Google Scholar
NAZAKTABAR, A., LASHKENARI, M.S., ARAGHI, A., GHORBANI, M. and GOLSHAHI, H. (2017) In vivo evaluation of toxicity and antiviral activity of polyrhodanine nanoparticles by using the chicken embryo model. International Journal of Biological Macromolecules 103: 379-384Google Scholar
NEUBERT, J., WAGNER, S., KIWIT, J., BRÄUER, A.U. and GLUMM, J. (2015) New findings about iron oxide nanoparticles and their different effects on murine primary brain cells. International Journal of Nanomedicine 10: 2033.Google Scholar
NIKONOV, I.N., LAPTEV, G.Y., FOLMANIS, Y.G., FOLMANIS, G.E., KOVALENKA, L.V., LAPTEV, G.Y., EGOROV, I.A., FISININ, V.I. and TANANAEV, G. (2011) Iron nanoparticles as a food additive for poultry. Doklady of Biological Sciences 1: 328-331.Google Scholar
OBERDÖRSTER, G., MAYNARD, A., DONALDSON, K., CASTRANOVA, V., FITZPATRICK, J., AUSMAN, K., CARTER, J., KARN, B., KREYLING, W., LAI, D., OLIN, S., MONTEIRO-RIVIERE, N., WARHEIT, D. and YANG, H. (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology 2 (1): 8.Google Scholar
OGNIK, K., SEMBRATOWICZ, I., CHOLEWIŃSKA, E., JANKOWSKI, J., KOZŁOWSKI, K., JUŚKIEWICZ, J. and ZDUŃCZYK, Z. (2017) The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Animal Science Journal 89 (3): 579-588.Google Scholar
OGNIK, K., STĘPNIOWSKA, A., CHOLEWIŃSKA, E. and KOZŁOWSKI, K. (2016) The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poultry Science 95 (9): 2045-2051.Google Scholar
PAN, D., CARUTHERS, S.D., SENPAN, A., YALAZ, C., STACY, A.J., HU, G., MARSH, J.N., GAFFNEY, P.J., WICKLINE, S.A. and LANZA, G.M. (2011) Synthesis of NanoQ, a copper-based contrast agent for high-resolution magnetic resonance imaging characterization of human thrombus. Journal of the American Chemical Society 133 (24): 9168-9171.Google Scholar
PARK, E.J., YI, J., KIM, Y., CHOI, K. and PARK, K. (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro 24 (3): 872-878. doi: 10.1016/j.tiv.2009.12.001.Google Scholar
PEREIRA, D.I., ASLAM, M.F., FRAZER, D.M., SCHMIDT, A., WALTON, G.E., MCCARTNEY, A.L., GIBSON, G.R., ANDERSON, G.J. and POWELL, J.J. (2015) Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral Nano Fe(III). Microbiology Open 4 (1): 12-27.Google Scholar
PEREIRA, D.I., MERGLER, B.I., FARIA, N., BRUGGRABER, S.F., ASLAM, M.F., POOTS, L.K., PRASSMAYER, L., LONNERDAL, B., BROWN, A.P. and POWELL, J.J. (2013) Caco-2 cell acquisition of dietary iron (III) invokes a nanoparticle at endocytic pathway. PLoS One 8 (11): e81250.Google Scholar
PINEDA, L., CHWALIBOG, A., SAWOSZ, E., LAURIDSEN, C., ENGBERG, R., ELNIF, J., HOTOWY, A., SAWOSZ, F., GAO, Y., ALI, A. and MOGHADDAM, H.S. (2012a) Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of Animal Nutrition 66 (5): 416-429.Google Scholar
PINEDA, L., SAWOSZ, E., HOTOWY, A., ELNIF, J., SAWOSZ, F., ALI, A. and CHWALIBOG, A. (2012b) Effect of nanoparticles of silver and gold on metabolic rate and development of broiler and layer embryos. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 161 (3): 315-319.Google Scholar
PINEDA, L., SAWOSZ, E., LAURIDSEN, C., ENGBERG, R.M., ELNIF, J., HOTOWY, A., SAWOSZ, F. and CHWALIBOG, A. (2012c) Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Access Animal Physiology 4: 1-8Google Scholar
RAGLAND, M., BRIAT, J.F., GAGNON, J., LAULHERE, J.P., MASSENET, O. and THEIL, E.C. (1990) Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. Journal of Biological Chemistry 265: 18339-18344.Google Scholar
RAIESZADEH, H., NOAMAN, V. and YADEGARI, M. (2013) Echocardiographic assessment of cardiac structural and functional indices in broiler chickens treated with silver nanoparticles. Scientific World Journal: Article ID 931432.Google Scholar
RAMALINGAM, B., PARANDHAMAN, T. and DAS, S.K. (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nano-mechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces 8 (7): 4963-4976.Google Scholar
RASPOPOV, R.V., TRUSHINA, É.N., GMOSHINSKIĬ, I.V. and KHOTIMCHENKO, S.A. (2011) Bioavailability of nanoparticles of ferric oxide when used in nutrition. Experimental results in rats. Voprosy Pitaniya 80 (3): 25-30.Google Scholar
REIN, M.J., RENOUF, M., CRUZ-HERNANDEZ, C., ACTIS-GORETTA, L., THAKKAR, S.K. and DA SILVA PINTO, M. (2013) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. British Journal of Clinical Pharmacology 75 (3): 588-602.Google Scholar
ROCO, M.M (2011) The long view of nanotechnology development: the national Nanotechnology Initiative at 10 years. Journal of Nanoparticle Research 13: 427-447.Google Scholar
SAFA, S., MOGHADDAM, G., JOZANI, R.J., DAGHIGH, K.H. and JAN MOHAMMADI, H. (2016) Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen. Animal Reproduction Science 174: 100-106.Google Scholar
SAWOSZ, F., PINEDA, L., HOTOWY, A., HYTTEL, P., SAWOSZ, E., SZMIDT, M., NIEMIEC, T. and CHWALIBOG, A. (2012) Nano-nutrition of chicken embryos. Effect of silver nanoparticles and glutamine on molecular responses and morphology of pectoral muscle. Baltic Journal of Comparative & Clinical Systems Biology 2: 29-45Google Scholar
SAWOSZ, F., PINEDA, L., HOTOWY, A., JAWORSKI, S., PRASEK, M., SAWOSZ, E. and CHWALIBOG, A. (2013) Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis. Archives of Animal Nutrition 67 (5): 347-355.Google Scholar
SCOTT, A., VADALASETTY, K.P., ŁUKASIEWICZ, M., JAWORSKI, S., WIERZBICKI, M., CHWALIBOG, A. and SAWOSZ, E. (2018) Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken. Journal of Animal Physiology and Animal Nutrition: doi: 10.1111/jpn.12754.Google Scholar
SEKHON, B.S. (2014) Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications 7: 31.Google Scholar
SHIRSAT, S., KADAM, A., MANE, R.S., JADHAV, V.V., ZATE, M.K., NAUSHAD, M. and KIM, K.H. (2016) Protective role of biogenic selenium nanoparticles in immunological and oxidative stress generated by enrofloxacin in broiler chicken. Dalton Transactions7: 45 (21): 8845-8853.Google Scholar
SIDDIQI, K.S., UR RAHMAN, A. and HUSEN, A. (2016) Biogenic fabrication of iron/iron oxide nanoparticles and their application. Nanoscale Research Letters 11 (1): 498.Google Scholar
SIZOVA, E., MIROSHNIKOV, S., YAUSHEVA, E. and POLYAKOVA, V. (2015) Assessment of morphological and functional changes in organs of rats after intramuscular introduction of iron nanoparticles and their agglomerates. BioMed Research International: Article ID 243173, 7 pages. doi:10.1155/2015/243173.Google Scholar
SIZOVA, E.A., KOROLEV, V.L., MAKAEV, S.A., MIROSHNIKOVA, E.P. and SHAKHOV, V.A. (2016a) Morphological and biochemical blood parameters in broilers at correction with dietary copper salts and nanoparticles. Sel'skokhozyaistvennaya Biologiya (Agricultural Biology) 51 (6): 903-911, doi: 10.15389/agrobiology.2016.6.903eng.Google Scholar
SIZOVA, E.A., MIROSHNIKOV, S.A., POLYAKOVA, V.S., LEBEDEV, S.V. and GLUSHHENKO, N.N. (2013) Copper Nanoparticles as Modulators of Apoptosis and Structural Changes in Tissues. Morfologija 144 (4): 047-052.Google Scholar
SIZOVA, Е.А., MIROSHNIKOV, S.A. and KALASHNIKOV, V.V. (2016b) Morphological and biochemical parameters in Wistar rats influenced by molybdenum and its oxide nanoparticles. Sel'skokhozyaistvennaya Biologiya (Agricultural Biology) 51 (6): 929-936, doi: 10.15389/agrobiology.2016.6.929eng.Google Scholar
SONG, Z., LV, J., SHEIKHAHMADI, A., UERLINGS, J. and EVERAERT, N. (2017) Attenuating Effect of Zinc and Vitamin E on the Intestinal Oxidative Stress Induced by Silver Nanoparticles in Broiler Chickens. Biological Trace Element Research 180 (2): 306-313.Google Scholar
STANLEY, S. (2014) Biological nanoparticles and their influence on organisms. Current Opinion in Biotechnology 28: 69-74.Google Scholar
SUCHNER, U., HEYLAND, D.K. and PETER, K. (2002) Immune-modulatory actions of arginine in the critically ill. British Journal of Nutrition 87 (1): 121-132.Google Scholar
SZAKAL, C., ROBERTS, S., WESTERHOFF, P., BARTHOLOMAEUS, A., BUCK, N., ILLUMINATO, I. and ROGERS, M. (2014a) Measurement of nanomaterials in foods: integrative consideration of challenges and future prospects. ACS NANO 8 (4): 3128-3135.Google Scholar
SZAKAL, C., TSYTSIKOVA, L., CARLANDER, D. and DUNCAN, T.V. (2014b) Measurement methods for the oral uptake of engineered nanomaterials from human dietary sources: summary and outlook. Comprehensive Reviews in Food Science and Food Safety 13 (4): 669-678.Google Scholar
TANG, H.Q., XU, M., RONG, Q., JIN, R.W., LIU, Q.J. and LI, Y.L. (2016) The effect of ZnO nanoparticles on liver function in rats. International Journal of Nanomedicine 11: 4275-4285.Google Scholar
UNI, Z. and and FERKET, P.R. (2003) U.S. Patent No. 6,592,878. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
US DEPARTMENT OF HEALTH AND HUMAN SERVICES (2011) Guidance for Industry Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology. Biotechnology Law Report 30 (5): 613-616.Google Scholar
VADALASETTY, K.P., LAURIDSEN, C., ENGBERG, R.M., VADALASETTY, R., KUTWIN, M., CHWALIBOG, A. and SAWOSZ, E. (2018) Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Veterinary Research 14 (1): 1. doi: 10.1186/s12917-017-1323-x.Google Scholar
VERMA, A.K., SINGH, V.P. and VIKAS, P. (2012) Application of nanotechnology as a tool in animal products processing and marketing: an overview. American Journal of Food Technology 7 (8): 445-451.Google Scholar
WAHAJUDDIN and ARORA S. (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine 7: 3445.Google Scholar
WANG, C., WANG, M.Q., YE, S.S., TAO, W.J. and DU, Y.J. (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry Science 90 (10): 2223-2228.Google Scholar
WANG, H., ZHANG, J. and YU, H. (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology and Medicine 42 (10): 1524-1533.Google Scholar
WANG, L., HU, C. and SHAO, L. (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine 14 (12): 1227-1249.Google Scholar
WANG, M.Q. and XU, Z.R. (2004) Effect of chromium nanoparticle on growth performance, carcass characteristics, pork quality and tissue chromium in finishing pigs. Asian Australasian Journal of Animal Sciences 17 (8): 1118-1122.Google Scholar
WANG, M.Q., WANG, C., DU, Y.J., LI, H., TAO, W.J., YE, S.S., HE, Y.D. and CHEN, S.Y. (2014) Effects of chromium-loaded chitosan nanoparticles on growth, carcass characteristics, pork quality, and lipid metabolism in finishing pigs. Livestock Science 161: 123-129.Google Scholar
WANG, M.Q., WANG, C., LI, H., DU, Y.J., TAO, W.J., YE, S.S. and HE, Y.D. (2012) Effects of chromium-loaded chitosan nanoparticles on growth, blood metabolites, immune traits and tissue chromium in finishing pigs. Biological Trace Element Research 149 (2): 197-203.Google Scholar
WANG, Y. (2009) Differential effects of sodium selenite and nano-Se on growth performance, tissue se distribution, and glutathione peroxidase activity of avian broiler. Biological Trace Element Research 128 (2): 184-190.Google Scholar
WEIGEL, S., PETERS, R., LOESCHNER, K., GROMBE, R. and LINSINGER, T.P. (2017) Results of an interlaboratory method performance study for the size determination and quantification of silver nanoparticles in chicken meat by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS). Analytical and Bioanalytical Chemistry 409: 4839-4848.Google Scholar
WEINSTEIN, J.S., VARALLYAY, C.G., DOSA, E., GAHRAMANOV, S., HAMILTON, B., ROONEY, W.D., BRONWYN, H., ROONEY, W.D, MULDOON, L.L. and NEUWELT, E.A. (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. Journal of Cerebral Blood Flow & Metabolism 30 (1): 15-35.Google Scholar
WEISS, G., WERNER-FELMAYER, G., WERNER, E.R., GRÜNEWALD, K., WACHTER, H. and HENTZE, M.W. (1994) Iron regulates nitric oxide synthase activity by controlling nuclear transcription. Journal of Experimental Medicine 180 (3): 969-976.Google Scholar
WU, G., KNABE, D.A. and KIM, S.W. (2004) Arginine nutrition in neonatal pigs. The Journal of Nutrition 134 (10): 2783-2790.Google Scholar
YANG, L., KUANG, H., ZHANG, W., AGUILAR, Z.P., XIONG, Y., LAI, W., XU, H. and WEI, H. (2015) Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale 7 (2): 625-636.Google Scholar
YAUSHEVA, E., MIROSHNIKOV, S., SIZOVA, Е., MIROSHNIKOVA, E. and LEVAHIN, V.I. (2015) Comparative assessment of effect of cooper nano and microparticles in chicken. Oriental Journal of Chemistry 31 (4): 2327-2336.Google Scholar
YAUSHEVA, E.V., MIROSHNIKOV, S.A., KOSYAN, D.B. and SIZOVA, E.A. (2016) Nanoparticles in combination with amino acids change productive and immunological indicators of broiler chicken. Agricultural Biology 51 (6): 912-920.Google Scholar
YU, S.S., LAU, C.M., THOMAS, S.N., JEROME, W.G., MARON, D.J., DICKERSON, J.H., HUBELL, J.A. and GIORGIO, T.D. (2012) Size-and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. International Journal of Nanomedicine 7: 799-813.Google Scholar
YUSHKIN, N.P. (2007) Mineralis mundi et biosphere: mineralis organiz-mobioz, biomineral interaction coevolution. IV International seminar «Mineralogy et vitam: Origin de biosphere et co-evolution of mineralis et biologicum mundos biomineralogiya», Syrtyvkar, pp. 5-7.Google Scholar
ZHA, L.Y., ZENG, J.W., CHU, X.W., MAO, L.M. and LUO, H.J. (2009) Efficacy of trivalent chromium on growth performance, carcass characteristics and tissue chromium in heat-stressed broiler chicks. Journal of the Science of Food and Agriculture 89 (10): 1782-1786.Google Scholar
ZHANG, J. (2009) Biological properties of red elemental selenium at nano size (Nano-Se) in vitro and in vivo, in: SAHU, S.C. & CASCIANO, D. (Eds) Nanotoxicity: From In Vivo and In Vitro Model To Health Risks, pp. 97-114 (West Sussex, UK: John Wiley and Sons).Google Scholar
ZHANG, J. and SPALLHOLZ, J. (2011) Toxicity of selenium compounds and nano- selenium particles, in: SAHU, S.C. & CASCIANO, D. (Eds) Handbook of Systems Toxicology (West Sussex, UK: John Wiley and Sons).Google Scholar
ZHANG, J., WANG, H., PENG, D. and TAYLOR, E.W. (2008a) Further insight into the impact of sodium selenite on selenoenzymes: high-dose selenite enhances hepatic thioredoxin reductase 1 activity as a consequence of liver injury. Toxicology Letters 176 (3): 223-229.Google Scholar
ZHANG, J., WANG, X. and XU, T. (2008b) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicology Science 101: 22-31.Google Scholar
ZHAO, Y., LI, L., ZHANG, P.F., LIU, X.Q., ZHANG, WEI. D., DING, Z.P., WANG, S.W., SHEN, W., MIN, L.J. and HAO, Z.H. (2016) Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles. Poultry Science 95 (4): 920-933.Google Scholar
ZHOU, X. and WANG, Y. (2011) Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poultry Science 90 (3): 680-686.Google Scholar