Skip to main content Accessibility help
×
×
Home

Nutritional and immunological effects of nano-particles in commercial poultry birds

  • M.I. ANWAR (a1), M.M. AWAIS (a1), M. AKHTAR (a1), M.T. NAVID (a2) and F. MUHAMMAD (a3)...

Abstract

The poultry industry is mainly scared by affected by infections due to microorganisms which reduce the growth rate and cause economic losses. Currently, vaccines and antibiotics are utilised to combat these infectious microorganisms, but irresponsible use of antibiotics may pose health risks to consumers, and there is a need for drug-free alternatives. Nanotechnology could reduce such risks and can improve the wholesomeness of poultry meat. This review discusses the current status of nanotechnology as it relates to improving poultry health by using various nano-particles (NPs). Silver-NPs at a dose rate of 900 ppm have been used in poultry to improve their growth performance in terms of body weight, feed intake and feed conversion ratio. NPs are thought to boost immunity in birds against numerous diseases. Gold-NPs improved the growth performance of poultry birds as well as detecting avian influenza virus with a detection limit of 2.2 pg/ml. Similarly, Copper-loaded chitosan-NPs supplementation at dose rate of 100 mg/kg feed improved growth performance, immunity, protein synthesis and caecal microbiota in broilers. Zinc oxide-NPs improved growth performance and showed anti-oxidative properties in broilers at the dose rate of 20 mg/kg. While, montmorillonite nano-composites at a level of 3 g/kg feed decreased the toxicity of aflatoxins in poultry birds. In conclusion, nanotechnology has the potential to reduce microbial load without resulting drug residues in poultry products, thus improving performance and immune status of poultry birds.

Copyright

Corresponding author

Corresponding author: drirfananwar@hotmail.com

References

Hide All
ADAIR, B.M. (2009) Nanoparticle vaccines against respiratory viruses. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 1: 405-414.
AHMADI, F. and KURDESTANY, A.H. (2010) The impact of silver nano particles on growth performance, lymphoidorgans and oxidative stress indicators in broiler chicks. Global Veterinaria 5: 366-370.
AHMADI, J. (2009) Application of Different Levels of Silver Nanoparticles in Food on the Performance and Some Blood Parameters of Broiler Chickens. World Applied Sciences Journal 7 (1): 24-27.
ALISHAHI, A. (2014) Antibacterial effect of chitosan nanoparticle loaded with nisin for the prolonged effect. Journal of Food Safety 32 (2): 111-118.
BAKOWICZ, K. and MITURA, S. (2002) Biocompatibility of NCD. Journal of Wide Band gap Materials 9: 261-272.
BENTOLILA, L.A., EBENSTEIN, Y. and WEISS, S. (2009) Quantum dots for in vivo small-animal imaging. Journal of Nuclear Medicine 50: 493-496.
BHANJA, S.K., ANNA, H., MANISH, M., EWA, S., LANE, P., KRISHNA, P.V., NATALIA, K. and ANDRÉ, C. (2015) In Ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos. International Journal of Molecular Sciences 16: 9484-9503.
BRATZ, K., GOLZ, G., RIEDEL, C., JANCZYK, P., NOCKLER, K. and ALTER, T. (2013) Inhibitory effect of high-dosage zinc oxide dietary supplementation on Campylobacter coli excretion in weaned piglets. Journal of Applied Microbiology 115 (5): 1194-1202.
BROOM, L.J., MILLER, H.M., KERR, K.G. and TOPLIS, P. (2003) Removal of both zinc oxide and avilamycin from the post-weaning piglet diet: consequences for performance through to slaughter. Animal Science Journal 77: 79-84.
CAI, C., QU, X.Y., WEI, Y.H. and YANG, A.Q. (2013) Nano-selenium: nutritional characteristics and application in chickens. Chinese Journal of Animal Nutrition 12: 2818-2823.
CAI, S. (2012) The biology characteristics of nano-selenium and its application in livestock and poultry. China Feed Additives 10: 10-12.
CARMEN, I.M., CHITHRA, P.P., QINGRONG, H., PAUL, T., SEAN, L. and KOKINI, J.L. (2003) Nanotechnology: A New Frontier in Food Science. Food Technology 57: 24-29.
CASE, C.L. and CARLSON, M.S. (2002) Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. Journal of Animal Science 80 (7): 1917-1924.
CHEN, X. and MORAN, E.T. (1995) The withdrawal feed of broilers: Carcass responses to dietary phosphorus. The Journal of Applied Poultry Research 4: 69-82.
CHO, K.H., PARK, J.E., OSAKA, T. and PARK, S.G. (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta 15: 956-960.
DAI, C., HONG, K., WANQIU, Y., JINYAN, S., CHUNLONG, L., GUOGANG, C., GUANGYU, R., XIAOHUA, W., XIN, W., ZHENG, J. and KAI, Z. (2015) O-2’-Hydroxypropyltrimethyl ammonium chloride chitosannanoparticles for the delivery of live Newcastle disease vaccine. Carbohydrate Polymers 130: 280-289.
DE JONG, W.H. and BORM, P.J. (2008) Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine 3: 133-149.
DOBRZANSKI, Z., ZYGADILK, K., PATKOWSKA-SOKOLA, B., NOWA-KOWSKI, P., JANCZAK, M., SOBCZAK, A. and BODKOWSKI, R. (2010) The effectiveness of nanosilver and mineral sorbents in the reduction of ammonia emissions from livestock manure. Przemysl Chemiczny 4: 348-351 (in Polish).
DOYLE, M.P., BUSTA, F., CORDS, B.R., DAVIDSON, P.M., HAWKE, J., HURD, H.S., ISAACSON, R.E., MATTHEWS, K., MAURER, J. and MENG, J. (2006) Antimicrobial resistance: implications for the food system: an expert report, funded by the IFT foundation. Comprehensive Reviews in Food Science and Food Safety 5: 71-137.
DUFFY, L.L., OSMOND-MCLEOD, M.J., JUDY, J. and KING, T. (2018) Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control 92: 293-300.
ELKLOUB, K.M., MOUSTAFA, E.L., GHAZALAH, A.A. and REHAN, A.A.A. (2015) Effect of dietary nanosilver on broiler performance. International Journal of Poultry Science 14 (3): 177-182.
EMAMI, T., MADANI, R., REZAYAT, S.M., GOLCHINFAR, F. and SARKAR, S. (2012) Applying of gold nanoparticle to avoid diffusion of the conserved peptide of avian influenza nonstructural protein from membrane in Western blot. The Journal of Applied Poultry Research 21: 563-566.
ESFAHANI, M., FARHAD, A. and MOHAMMAD, A.A. (2015) The effects of different levels of Curcuma longa and zinc oxide nanoparticles on the quality traits of thigh and breast meat in broiler chickens. International Journal of Biosciences 6 (3): 296-302.
FENG, J., MA, W.Q., NIU, H.H., WU, X.M., WANG, Y. and FENG, J. (2010) Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological Trace Element Research 133 (2): 203-211.
GRODZIK, M. and SAWOSZ, E. (2006) The influence of silver nano particles on chicken embryo development and bursa of fabricius morphology. Journal of Animal and Feed Sciences 15 (1): 111-114.
GRODZIK, M., SAWOSZ, F., SAWOSZ, E., HOTOWY, A., WIERZBICKI, M., KUTWIN, M., JAWORSKI, S. and CHWALIBOG, A. (2013) Nano-nutrition of chicken embryos. The effect of in ovo administration of diamond nanoparticles and L-glutamine on molecular responses in chicken embryo pectoral muscles. International Journal of Molecular Sciences 14 (11): 23033-23044.
HAMZA, Z., EL-HASHASH, M., ALY, S., HATHOUT, A., SOTO, E., SABRY, B., OSTROFF, G. (2019) Preparation and characterization of yeast cell wall beta-glucan encapsulated humic acid nanoparticles as an enhanced aflatoxin B1 binder. Carbohydrate polymers 203: 185-192.
ILLUM, L. (1998) Chitosan and its use as a pharmaceutical excipient. Pharmaceutical Research 15 (9): 1326-1331.
JAN, S.S., DENG-CHENG, L., XIAO-YING, D., YONG-MING, H. and JIN-DING, C. (2012) Effects of chitosan and its derivative added to water on immunological enhancement and disease control. Immunotherapy 4 (7): 697-701.
JAROCKA, U., RÓŻA, S., ANNA, G.S., AGNIESZKA, S., WŁODZIMIERZ, Z.O., JERZY, R. and HANNA, R. (2014) An immunosensor based on antibody binding fragments attached to gold nanoparticles for the detection of peptides derived from avian influenza hemagglutinin H5. Sensors 14: 15714-15728.
KARIMI, A., SADEGHI, G. and VAZIRI, A. (2011) The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. The Journal of Applied Poultry Research 20: 203-209.
KHALILI, I., RAHIM, G., SAEED, S.E., MOHSEN, F.N., MOHAMMAD, M.E., NASER, G., YOUSEF, S.H. and MOHAMMAD, T.K. (2015) Evaluation of immune response against inactivated avian influenza (H9N2) vaccine, by using chitosan nanoparticles. Jundishapur Journal of Microbiology 8 (12): e27035.
KIETZMANN, M. and BRAUN, M. (2006) Effects of the zinc oxide and cod liver oil containing ointment zincojecol in an animal model of wound healing. Deutsche Tierärztliche Wochenschrift 113 (9): 331-334.
KIM, H.J., KIM, S.H., LEE, J.K., CHOI, C.U., LEE, H.S., KANG, H.G. and CHA, S.H. (2012) A novel mycotoxin purification system using magnetic nanoparticles for the recovery of aflatoxin B1 and zearalenone from feed. Journal of Veterinary Science 13 (4): 363-369.
LAURENT, S., FORGE, D., PORT, M., ROCH, A., ROBIC, C., VANDER ELST, L. and MULLER, R.N. (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews 108 (6): 2064-2110.
LEENAARS, P.P., HENDRIKSEN, C.F., KOEDAM, M.A., CLAASSEN, I. and CLAASSEN, E. (1995) Comparison of adjuvants for immune potentiating properties and side effects in mice. Veterinary Immunology and Immunopathology 48 (1-2): 123-138.
LEESON, S. (2009) Copper metabolism and dietary needs. World's Poultry Science Journal 65: 353-366.
LIU, Z.H., LU, L., LI, S.F., ZHANG, L.Y., XI, L., ZHANG, K.Y. and LUO, X.G. (2011) Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Poultry Science 90 (8): 1782-1790.
LUCAS, J.M. (2010) Microarrays: Molecular allergology and nanotechnology for personalised medicine (II). Allergologia Immunopathologia (Madr) 38 (4): 217-223.
MAHLER, G.J., MANDY, B.E., ELAD, T., TERESA, L.S., SHIVAUN, D.A., RAYMOND, P.G. and MICHAEL, L.S. (2012) Oral exposure to polystyrene nanoparticles affects iron absorption. Nature Nanotechnology 7: 264-271.
MATSUMURA, Y., YOSHIKATA, K., KUNISAKI, S. and TSUCHIDO, T. (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology 69: 4278-4281.
MIROSHNIKOV, S.A., ELENA, V.Y., ELENA, A.S., ELENA, P.M. and VLADIMIR, I.L. (2015) Comparative assessment of effect of copper nano- and microparticles in chicken. Oriental Journal of Chemistry 31 (4): 2327-2336.
MOHAMMADI, F., AHMADI, F. and AMIRI, A.M. (2015) Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. International Journal of Biosciences 6 (2): 389-394.
MROCZEK-SOSNOWSKA, N., ŁUKASIEWICZ, M., ADAMEK, D., KAMASZEWSKI, M., NIEMIEC, J., WNUK-GNICH, A., SCOTT, A., CHWALIBOG, A. and SAWOSZ, E. (2017) Effect of copper nanoparticles administered in ovo on the activity of proliferating cells and on the resistance of femoral bones in broiler chickens. Archives of Animal Nutrition 71 (4): 327-332.
MROCZEK-SOSNOWSKA, N., ŁUKASIEWICZ, M., WNUK, A., SAWOSZ, E. and NIEMIEC, J. (2014) Effect of copper nanoparticles and copper sulfate administered in ovo on copper content in breast muscle, liver and spleen of broiler chickens. Annals of Warsaw University of Life Sciences - SGGW. Animal Science 53: 135-142.
MROCZEK‐SOSNOWSKA, N., ŁUKASIEWICZ, M., WNUK, A., SAWOSZ, E., NIEMIEC, J., SKOT, A., JAWORSKI, S. and CHWALIBOG, A. (2016) In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. Journal of the Science of Food and Agriculture 96 (9): 3058-3062.
MROCZEK-SOSNOWSKA, N., SAWOSZ, E., VADALASETTY, K.P., ŁUKASIEWICZ, M., NIEMIEC, J., WIERZBICKI, M., KUTWIN, M., JAWORSKI, S. and CHWALIBOG, A. (2015) Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. International Journal of Molecular Sciences 16 (3): 4838-4849.
NYGAARD, U.C., HANSEN, J.S., SAMUELSEN, M., ALBERG, T., MARIOARA, C.D. and LØVIK, M. (2009) Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicological Sciences 109 (1): 113-123.
OHIMAIN, E.I. and OFONGO, R.T.S. (2012) The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: A review. International Journal of Animal and Veterinary Advances 4: 135-143.
PANGESTIKA, R. and ERNAWATI, R. (2017) Antiviral Activity Effect of Silver Nanoparticles (Agnps) Solution Against the Growth of Infectious Bursal Disease Virus on Embryonated Chicken Eggs with Elisa Test. KnE Life Sciences 3 (6): 536-548.
PARK, E.J., YI, J., KIM, Y., CHOI, K. and PARK, K. (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro 24 (3): 872-878.
PERCIVAL, S.L., BOWLER, P.G. and DOLMAN, J. (2007) Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model. International Wound Journal 4: 186-191.
PINEDA, L., CHWALIBOG, A., SAWOSZ, E., LAURIDSEN, C., ENGBERG, R., ELNIF, J., HOTOWY, A., SAWOSZ, F., GAO, Y., ALI, A. and MOGHADDAM, H.S. (2012) Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of Animal Nutrition 66 (5): 416-429.
PINEDA, L., SAWOSZ, E., VADALASETTY, K.P. and CHWALIBOG, A. (2013) Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Animal Feed Science and Technology 186: 125-129.
POULSEN, H.D. (1995) Zinc oxide for weanling piglets. Acta Agriculturae Scandinavica, Section A - Animal Science 45 (3): 159-167.
SAKI, A.A. and SALARY, J. (2015) The impact of in ovo injection of silver nanoparticles, thyme and savory extracts in broiler breeder eggs on growth performance, lymphoid-organ weights, and blood and immune parameters of broiler chicks. Poultry Science Journal 3 (2): 165-172.
SAWOSZ, E., GRODZIK, M., ZIELIŃSKA, M., NIEMIEC, T., OLSZAŃSKA, B. and CHWALIBOG, A. (2009) Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Archiv für Geflügelkunde 73 (3): 208-213.
SAWOSZ, E., ŁUKASIEWICZ, M., ŁOZICKI, A., SOSNOWSKA, M., JAWORSKI, S., NIEMIEC, J., SCOTT, A., JANKOWSKI, J., JÓZEFIAK, D. and CHWALIBOG, A. (2018) Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Archives of Animal Nutrition 72 (5): 396-406.
SCHEERLINCK, J.P., GLOSTER, S., GAMVRELLIS, A., MOTTRAM, P.L. and PLEBANSKI, M. (2006) Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine 24 (8): 1124-1131.
SCHRAND, A.M., HUANGM, H., CARLSON, C., SCHLAGER, J.J., OMACR, S.E., HUSSAIN, S.M. and DAI, L. (2007) Are diamond nanoparticles cytotoxic? Journal of Physical Chemistry 111: 2-7.
SCOTT, N.R. (2005) Nanotechnology and animal health. Revue Scientifique et Technique 24 (1): 425-432.
SELIM, N.A., REFAIE, A.M., ABEER, R.K. and ABD EL-HAKIM, A.S. (2014) Effect of sources and inclusion levels of zinc in broiler diets containing different vegetable oils during summer season conditions on meat quality. International Journal of Poultry Science 13 (11): 619-626.
SENTHIL, K.C.K., SUGAPRIYA, S., MANIVANNAN, N. and CHANDAR, S.B. (2015) Effect on the growth performance of broiler chickens by selenium nanoparticles supplementation. Nano Vision 5 (4-6): 161-168.
SHI, Y.H., XU, Z.R., FENG, J.L. and WANG, C.Z. (2006) Efficacy of modified montmorillonite nanocomposite to reduce the toxicity of aflatoxin in broiler chicks. Animal Feed Science and Technology 129: 138-148.
SINHA, R., KIM, G.J., NIE, S. and SHIN, D.M. (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Molecular Cancer Therapeutics 5 (8): 1909-1917.
SUNDARESAN, N.R., ANISH, D., SASTRY, K.V.H., SAXENA, V.K., NAGARAJAN, K., SUBRAMANI, J., LEO, M.D.M., SHIT, N., MOHAN, J., SAXENA, M. and AHMED, K.A. (2008) High doses of dietary zinc induce cytokines, chemokines, and apoptosis in reproductive tissues during regression. Cell and Tissue Research 332 (3): 543-554.
TAN, M.J., ZHONG, S., LI, J., CHEN, Z. and CHEN, W. (2013) Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer. ACS Applied Materials & Interfaces 5 (11): 4696-4701.
TSUZUKI, T., HE, R., WANG, J., SUN, L. and WANG, X. (2012) Reduction of the photocatalytic activity of ZnO nanoparticles for UV protection applications. International Journal of Nanotechnology 9 (10-12SI): 1017-1029.
VIJAYAKUMAR, M.P. and BALAKRISHNAN, V. (2014) Effect of Calcium Phosphate Nanoparticles Supplementation on Growth Performance of Broiler Chicken. Indian Journal of Science and Technology 7 (8): 1149-1154.
WANG, C., WANG, M.Q., YE, S.S., TAO, W.J. and DU, Y.J. (2011) Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers. Poultry Science 90: 2223-2228.
WRIGHT, J.B., LAM, K., BURET, A.G., OLSON, M.E. and BURRELL, R.E. (2002) Early healing events in a porcine model of contaminated wounds: effects of nanocristalline silver on matrix metalloproteinases, cell apoptosis and healing. Wound Repair Regeneration 10: 141.
XU, Y., TANG, H., LIU, J.H., WANG, H. and LIU, Y. (2013) Evaluation of the adjuvant effect of silver nanoparticles both in vitro and in vivo. Toxicology letters 219 (1): 42-48.
YANG, T., GAN, Y.N., SONG, Z.F., ZHAO, T.T. and GONG, Y.S. (2014) Effects of different sources and levels of Vitamin D3 on performance, eggshell quality and tibial quality of laying hens. Chinese Journal of Animal Nutrition 3: 659-666.
ZHANG, X.Y., YIN, J.L., KANG, C., LI, J., ZHU, Y., LI, W., HUANG, Q. and ZHU, Z. (2010) Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicology Letters 198: 237-243.
ZHAO, C.Y., SHU-XIAN, T., XI-YU, X., XIAN-SHUAI, Q., JIA-QIANG, P. and ZHAO-XIN, T. (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological Trace Element Research 160: 361-367.
ZHU, Y., LI, J., LI, W., ZHANG, Y., YANG, X., CHEN, N., SUN, Y., ZHAO, Y., FAN, C. and HUANG, Q. (2012) The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2: 302-312.
ZIELIŃSKA, M.K., SAWOSZ, E., CHWALIBOG, A., OSTASZEWSKA, T., KAMASZEWSKI, M., GRODZIK, M. and SKOMIA, J. (2010) Nano-nutrition of chicken embryos. Effect of gold and taurine nanoparticles on muscle development. Journal of Animal and Feed Sciences 19: 277-285.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

World's Poultry Science Journal
  • ISSN: 0043-9339
  • EISSN: 1743-4777
  • URL: /core/journals/world-s-poultry-science-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed