Skip to main content
×
×
Home

Nutritional significance and health benefits of designer eggs

  • M. ALAGAWANY (a1), M.R. FARAG (a2), K. DHAMA (a3) and A. PATRA (a4)
Abstract

Designer foods of animal origin are produced either by feeding specific diets, or using new techniques like genetic engineering, cross-breeding. Designer eggs are an important type of functional foods. With the advancement of poultry industry, there is a rising interest in poultry biotechnology for altering the egg composition by genetic and nutritional manipulations for human health. This can be done by modifying cholesterol concentration and its fractions, lipid profile, fatty acids, amino acids and minerals or through adding therapeutic pharmaceutical molecules. Designer eggs provide vegetarian, safe, immune powered, specialty or organic foodstuffs which can have improved vitamins, minerals, balanced ratio of omega-6 to omega-3 fatty acids, lowered total cholesterol, additional boost of antibodies and essential pigments such as carotenoids. From the relevant scientific literature, functional eggs can be considered as human designer food. This review describes the concepts of designer eggs and their health benefits and nutritional values.

Copyright
Corresponding author
Corresponding author: mmalagwany@zu.edu.eg
References
Hide All
AHMAD, S., AHSAN-UL-HAQ, YOUSAF, M., SABRI, M.A. and KAMRAN, Z. (2012) Response of laying hens to omega-3 fatty acids for performance and egg quality. Avian Biology Research 5: 1-10.
AKDEMIR, F., ORHAN, C., SAHIN, N., SAHIN, K. and HAYIRLI, A. (2012) Tomato powder in laying hen diets: Effects on concentrations of yolk carotenoids and lipid peroxidation. British Poultry Science 53: 675- 680.
ALAGAWANY, M. and MAHROSE, KH.M. (2014) Influence of different levels of certain essential amino acids on the performance, egg quality criteria and economics of Lohmann brown laying hens. Asian Journal of Poultry Science 8: 82-96.
ALAGAWANY, M., ABD EL-HACK, M.E., LAUDADIO, V. and TUFARELLI, V. (2014) Effect of low-protein diets with crystalline amino acid supplementation on egg production, blood parameters and nitrogen balance in laying Japanese quail. Avian Biology Research 7: 235-243.
ALAGAWANY, M. (2012) Protein and total sulphur amino acids relationship in feeding laying hens. Ph.D. Thesis. Zagazig University.
ALAGAWANY, M., ABD EL-HACK, M.E., FARAG, M.R., TIWARI, R., SACHAN, S., KARTHIK, K. and DHAMA, K. (2016) Positive and negative impacts of dietary protein levels in laying hens. Asian Journal of Animal Sciences 10: 165-174.
ALAGAWANY, M., EL-HINDAWY, M.M., ATTIA, A.I., FARAG, M.R. and ABD EL-HACK, M.E. (2015) Influence of dietary choline levels on growth performance and carcass characteristics of growing Japanese quail. Advances in Animal and Veterinary Sciences 3: 109-115.
ALAGAWANY, M., EL-HINDAWY, M.M., ALI, A.A. and SOLIMAN, M.M. (2011) Protein and total sulfur amino acids relationship effect on performance and some blood parameters of laying hens. Egyptian Journal of Nutrition and Feeds 14: 477-487.
AMERICAN EGG BOARD (2017) Nutrient composition tables. http://www.aeb.org/food-manufacturers/research-resources/nutrient-composition-tables.
AYERZA, R. and COATES, W. (2001) Omega-3 enriched eggs: the influence of dietary alpha-linolenic fatty acid source on egg production and composition. Canadian Journal of Animal Science 81: 355-362.
BOVET, P., FAEH, D., MADELEINE, G., VISWANATHAN, B. and PACCAUD, F. (2007) Decrease in blood triglycerides associated with the consumption of eggs of hens fed with food supplemented with fish oil. Nutrition, Metabolism, and Cardiovascular Diseases 17: 280-287.
BURKE, J.D., CURRAN-CELENTANO, J. and WENZEL, A.J. (2005) Diet and serum carotenoid concentrations affect macular pigment optical density in adults 45 years and older. Journal Nutrition 135: 1208-1214.
CHERIAN, G. (2009) Eggs and health: nutrient sources and supplement carriers. Complementary and Alternative Therapies and the Aging Population, pp. 333-346.
CUCCO, M., GUASCO, B., MALACARNE, G. and OTTONELLI, R. (2007) Effects of β-carotene on adult immune condition and antibacterial activity in the eggs of the Grey Partridge (Perdix perdix). Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 147: 1038-1046.
DENIZ, G., GENCOGLU, H., GEZEN, S.S., TURKMEN, I.I., ORMAN, A. and KARA, C. (2013) Effects of feeding corn distiller's dried grains with solubles with and without enzyme cocktail supplementation to laying hens on performance, egg quality, selected manure parameters, and feed cost. Livestock Science 152: 174-181.
DHAMA, K., BASARADDI, M.S., TIWARI, R. and ANANTHAKRSHNA, L.R. (2011) Egg yolk antibodies (EYA): Applications in poultry. Poultry Technology 6: 20-24.
DJOUSSE, L. and GAZIANO, J.M. (2008) Egg consumption in relation to cardiovascular disease and mortality: The Physicians' Health Study. American Journal of Clinical Nutrition 87: 964-969.
EBEID, T., EID, Y., SALEH, A. and ABD EL-HAMID, H. (2008) Ovarian follicular development, lipid peroxidation, antioxidative status and immune response in laying hens fed fish oil-supplemented diets to produce n-3-enriched eggs. Animal 2: 84-91.
EHR, I.J., PERSIA, M.E. and BOBECK, E.A. (2017) Comparative omega-3 fatty acid enrichment of egg yolks from first-cycle laying hens fed flaxseed oil or ground flaxseed. Poultry Science 96 (6): 1791-1799, doi: 10.3382/ps/pew462.
EILAT-ADAR, S., SINAI, T., YOSEFY, C. and HENKIN, Y. (2013) Nutritional recommendations for cardiovascular disease prevention. Nutrients 5: 3646-3683.
ELKIN, R.G. (2006) Reducing shell egg cholesterol content. I. Overview, genetic approaches, and nutritional strategies. World's Poultry Science Journal 62: 665-687.
ELKIN, R.G., YING, Y. and HARVATINE, K.J. (2015) Feeding laying hens stearidonic acid-enriched soybean oil, as compared to flaxseed oil, more efficiently enriches eggs with very long-chain n-3 polyunsaturated fatty acids. Journal of Agriculture and Food Chemistry 63: 2789-97.
FISININ, V.I., PAPAZYAN, T.T. and SURAI, P.F. (2009) Producing selenium-enriched eggs and meat to improve the selenium status of the general population. Critical Review of Biotechnology 29: 18-28.
FRAEYE, I., BRUNEEL, C., LEMAHIEU, C., BUYSE, J., MUYLAERT, K. and FOUBERT, I. (2012) Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Research International 48: 961-969.
FREDRIKSSON, S., ELWINGER, K. and PICKOVA, J. (2006) Fatty acid and carotenoids composition of egg yolk as an effect of microalgae addition to feed formula for laying hens. Food Chemistry 99: 530-537.
GALOBART, J., BARROETA, A.C., BAUCELLS, M.D. and GUARDIOLA, F. (2001) Lipid oxidation in fresh and spray-dried eggs enriched with omega-3 and omega-6 polyunsaturated fatty acids during storage as affected by dietary vitamin E and canthaxanthin supplementation. Poultry Science 80: 327-337.
HAMMERSHØJ, M., KIDMOSE, U. and STEENFELDT, S. (2010) Deposition of carotenoids in egg yolk by short-term supplement of coloured carrot (Daucus carota) varieties as forage material for egg-laying hens. Journal of the Science of Food Agriculture 90: 1163-1171.
HAMOSH, M. (2008) Fatty acids and growth and development, in: CHOW, Ch.K. (Ed) Fatty acids in foods and their implications pp. 899-933 (Boca Raton, FL).
HERZALLAH, S. (2013) Enrichment of conjugated linoleic acid (CLA) in hen eggs and broiler chickens meat by lactic acid bacteria. British Poultry Science 54: 747-752.
HORROCKS, L. and YEO, Y. (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacological Research 40: 211-225.
HUR, S.J., KANG, G.H., JEONG, J.Y., YANG, H.S., HA, Y.L., PARK, G.B. and JOO, S.T. (2003) Effect of dietary conjugated linoleic acid on lipid characteristics of egg yolk. Asian-Australasian Journal of Animal Science 16: 1165-1170.
KARADAS, F., GRAMMENIDIS, E., SURAI, P.F., ACAMOVIC, T. and SPARKS, N.H.C. (2006) Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. British Poultry Science 47: 561-566.
KASSIS, N.M., GIGLIOTTI, J.C., BEAMER, S.K., TOU, J.C. and JACZYNSKI, J. (2012) Characterisation of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils. Journal of the Science of Food and Agriculture 92: 66-73.
KONING, A.J. and MOL, T.H. (1989) Lipid determination in fish meal: An investigation of three standard methods applied to stabilized and non-stabilized anchovy meals at increasing stages of maturity. Journal of the Science of Food and Agriculture 46: 259-266.
KOSTOGRYS, R.B., FILIPIAK-FLORKIEWICZ, A., DEREŃ, K., DRAHUN, A., CZYŻYŃSKA-CICHOŃ, I., CIEŚLIK, E., SZYMCZYK, B. and FRANCZYK-ŻARÓW, M. (2017) Effect of dietary pomegranate seed oil on laying hen performance and physicochemical properties of eggs. Food Chemistry 221: 1096-1103.
KUHNLE, G.G., DELL'AQUILA, C., ASPINALL, S.M., RUNSWICK, S.A., MULLIGAN, A.A. and BINGHAM, S.A. (2008) Phytoestrogen content of beverages, nuts, seeds, and oils. Journal of Agricultural and Food Chemistry 56: 7311-7315.
LACHANCE, P.A. (1996) Future vitamin and antioxidant RDAs for health promotion. Preventive Medicine 25: 46-47.
LAUDADIO, V., CECI, E., LASTELLA, N.M.B., INTRONA, M. and TUFARELLI, V. (2014) Low-fiber alfalfa (Medicago sativa L.) meal in the laying hen diet: Effects on productive traits and egg quality. Poultry Science 93: 1868-1874.
LAWLOR, J.B., GAUDETTE, N., DICKSON, T. and HOUSE, J.D. (2010) Fatty acid profile and sensory characteristics of table eggs from laying hens fed diets containing microencapsulated fish oil. Animal Feed Science and Technology 156: 97-103.
LEE, S.B., MINE, Y. and STEVENSON, M.W. (2000) Effects of hen egg yolk immunoglobulin in passive protection of rainbow trout against Yersinia ruckeri. Journal of Agricultural and Food Chemistry 48: 110-115.
LEMAHIEU, C., BRUNEEL, C., RYCKEBOSCH, E., MUYLAERT, K., BUYSE, J. and FOUBERT, I. (2015) Impact of different omega-3 polyunsaturated fatty acid (n-3 PUFA) sources (flaxseed, Isochrysis galbana, fish oil and DHA Gold) on n-3 LC-PUFA enrichment (efficiency) in the egg yolk. Journal of Functional Foods 19: 821-827.
LEMAHIEU, C., BRUNEEL, C., TERMOTE-VERHALLE, R., MUYLAERT, K., BUYSE, J. and FOUBERT, I. (2014) Effect of different microalgal n-3 PUFA supplementation doses on yolk colour and n-3 LC-PUFA enrichment in the egg. Algal Research 6: 119-123.
LI, Y., ZHOU, C., ZHOU, X. and LI, L. (2013) Egg consumption and risk cardiovascular diseases and diabetes: A meta-analysis. Atherosclerosis 229: 524-530.
LOCK, A.L. and BAUMAN, D.E. (2004) Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 39: 1197-1206.
LOETSCHER, Y., KREUZER, M. and MESSIKOMMER, R.E. (2013) Utility of nettle (Urtica dioica) in layer diets as a natural yellow colorant for egg yolk. Animal Feed Science and Technology 186: 158-168.
LOKHANDE, A., INGALE, S.L., LEE, S.H., SEN, S., KHONG, C., CHAE, B.J. and KWON, I.K. (2014) Effects of dietary supplementation with Gynura procumbens (Merr.) on egg yolk cholesterol, excreta microflora and laying hen performance, British Poultry Science 55: 524-531.
LUMPKINS, B.S., BATAL, A. and DALE, N. (2005) Use of distillers dried grains plus solubles in laying hen diets. Journal of Applied Poultry Research 14: 25-31.
MAHIMA, , VERMA, A.K., KUMAR, A., KUMAR, V. and RAHAL, A. (2012) Designer eggs: a future prospective. Asian Journal of Poultry Science 6: 97-100.
MANDAL, G.P., GHOSH, T.K. and PATRA, A.K. (2014) Effect of different dietary n-6 to n-3 fatty acid ratios on the performance and fatty acid composition in muscles of broiler chickens. Asian-Australasian Journal of Animal Sciences 27: 1608-1614.
MARSHALL, A.C., KUBENA, K.S., HINTON, K.R., HARGIS, P.S. and VAN ELSWYK, M.E. (1994) N-3 fatty acid enriched table eggs: A survey of consumer acceptability. Poultry Science 73: 1334-1340.
MATTIOLI, S., DAL BOSCO, A., MARTINO, M., RUGGERI, S., MARCONI, O., SILEONI, V., FALCINELLI, B., CASTELLINI, C. and BENINCASA, P. (2016) Alfalfa and flax sprouts supplementation enriches the content of bioactive compounds and lowers the cholesterol in hen egg. Journal of Functional Foods 22: 454-462.
MELUZZI, A., SIRRI, F., MANFREDA, G., TALLARICO, N. and FRANCHINI, A. (2000) Effects of dietary vitamin E on the quality of table eggs enriched with n-3 long chain fatty acids. Poultry Science 79: 539- 545.
MIGUEL, M. and ALEIXANDRE, A. (2006) Antihypertensive peptides derived from egg proteins. Journal of Nutrition 136: 1457-1460.
MINE, Y. and KOVACS-NOLAN, J. (2002) Chicken egg yolk antibodies as therapeutics in enteric infectious disease: a review. Journal of Medicinal Food 5: 159-169.
MINE, Y. and ROY, M.K. (2011) 4.46 - Egg components for heart health: promise and progress for cardiovascular protective functional food ingredient. Comprehensive Biotechnology 2: 553-565.
MIRANDA, J.M., ANTON, X., REDONDO-VALBUENA, C., ROCA-SAAVEDRA, P., RODRIGUEZ, J.A., LAMAS, A., FRANCO, C.M. and CEPEDA, A. (2015) Egg and egg-derived foods: effects on human health and use as functional foods. Nutrients 7: 706-729.
MOURAO, J.L., PONTE, P.I.P., PRATES, J.A.M., CENTENO, M.S.J., FERREIRA, L.M.A., SOARES, M.A.C. and FONTES, C.M.G.A. (2006) Use of β-glucanases and β-1, 4-xylanases to supplement diets containing alfalfa and rye for laying hens: Effects on bird performance and egg quality. Journal of Applied Poultry Research 15: 256-265.
NEIJAT, M., SUH, M., NEUFELD, J. and HOUSE, J.D. (2016) Hempseed products fed to hens effectively increased n3 polyunsaturated fatty acids in total lipids, triacylglycerol and phospholipid of egg yolk. Lipids 51: 601-614.
OTTEN, J.J., HELLWIG, J.P. and MEYERS, L.D. (2006) Dietary reference intakes: the essential guide to nutrient requirements. Washington, DC: Institute of Medicine, 2006.
PARK, J.H., UPADHAYA, S.D. and KIM, I.H. (2015) Effect of dietary marine microalgae (schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian-Australasian Journal of Animal Science 28: 391-397.
PARK, N., LEE, T.K., NGUYEN, T.T.H., AN, E.B., KIM, N.M., YOU, Y.H., PARK, T.S. and KIM, D. (2017) The effect of fermented buckwheat on producing l-carnitine- and γ-aminobutyric acid (GABA)-enriched designer eggs. Journal of the Science of Food and Agriculture 97: 2891-2897.
PESTI, G.M. (2009) Impact of dietary amino acid and crude protein levels in broiler feeds on biological performance. Journal of Applied Poultry Research 18: 477-486.
PRYOR, W. (2000) Vitamin E and heart disease: basic science to clinical intervention trials. Free Radical Biology & Medicine 28: 141-164.
QI, X., WU, S., ZHANG, H., YUE, H., XU, S., JI, F. and QI, G. (2011) Effects of dietary conjugated linoleic acids on lipid metabolism and antioxidant capacity in laying hens. Archives of Animal Nutrition 65: 354-65.
RAGHUVEER, C. and TANDON, R.V. (2009) Consumption of functional food and our health concerns. Pakistan Journal of Physiology 5: 76-83.
RIBAYA-MERCADO, J.D. and BLUMBERG, J.B. (2004) Lutein and zeaxanthin and their potential roles in disease prevention. The Journal of the American College of Nutrition 23: 567S-587S.
ROBERSON, K.D., KALBFLEISCH, J.L., PAN, W. and CHARBENEAU, R.A. (2005) Effect of corn distiller's dried grains with solubles at various levels on performance of laying hens and yolk colour. International Journal of Poultry Science 4: 44-51.
ROBERTS, S.A., XIN, H., KERR, B.J., RUSSELL, J.R. and BREGENDAH, K. (2007) Effects of Dietary Fiber and Reduced Crude Protein on Nitrogen Balance and Egg Production in Laying Hens. Poultry Science 86: 1716-1725.
ŞAHIN, K., KÜÇK, O., ŞAHIN, N. and OZBEY, O. (2001) Effects of dietary chromium picolinate supplementation on egg production, egg quality and serum concentrations of insulin, corticosterone, and some metabolites of Japanese quails. Nutrition Research 21: 1315-1321.
SAHIN, N., AKDEMIR, F., TUZCU, M., HAYIRLI, A., SMITH, M.O. and SAHIN, K. (2010) Effects of supplemental chromium sources and levels on performance, lipid peroxidation and proinflammatory markers in heat-stressed quails. Animal Feed Science and Technology 159: 143-149.
SAHOO, A. and JENA, B. (2014) Designer egg and meat through nutrient manipulation. Journal of Poultry Science and Technology 2: 38-47.
SCHADE, R., CALZADO, E.G., SARMIENTO, R., CHACANA, P.A., PORANKIEWICZ-ASPLUND, J. and TERZOLO, H.R. (2005) Chicken egg yolk antibodies (IgY-technology): A review of progress in production and use in research and human and veterinary medicine. ATLA 33: 129-154.
SCHEIDELER, S.E. and FRONING, G.W. (1996) The combined influence of dietary flax seed variety, level, form and storage conditions on egg production and composition among vitamin E supplemented hens. Poultry Science 75: 1221-1226.
SCHREINER, M., HULAN, H.W., RAZZAZI-FAZELI, E., BOHM, J. and IBEN, C. (2004) Feeding laying hens seal blubber oil: Effects on egg yolk incorporation, stereospecific distribution of omega-3 fatty acids, and sensory aspects. Poultry Science 83: 462- 473.
SETCHELL, K.D. (2003) Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. The Journal of Nutrition 133: 1027-1035.
SHAHID, S., CHAND, N., KHAN, R.U., SUHAIL, S.M. and KHAN, N.A. (2015) Alternations in cholesterol and fatty acids composition in egg yolk of Rhode Island Red x Fyoumi Hens fed with hemp seeds (Cannabis sativa L.). Journal of Chemistry 2015: Article ID 362936, http://dx.doi.org/10.1155/2015/362936.
SHALASH, S.M.M., ABOU EL-WAFA, S., HASSAN, R.A., RAMADAN, N.A., MOHAMED, M.S. and EL-GABRY, H.E. (2010) Evaluation of distillers dried grains with solubles as feed ingredient in laying hen diets. International Journal of Poultry Science 9: 537-545.
SIM, J.S. (1998) Designer eggs and their nutritional and functional significance. World Rev. Nutrition & Dietetics 83: 89-101.
SIMOPOULOS, A. (2000) Human requirement for N-3 polyunsaturated fatty acids. Poultry Science 79: 961-970.
SIRRI, F., TALLARICO, N., MELUZZI, A. and FRANCHINI, A. (2003) Fatty acid composition and productive traits of broiler fed diets containing conjugated linoleic acid. Poultry Science 82: 1356-1361.
SMITH, D.J., KING, W.F. and GODISKA, R. (2001) Passive transfer of immunoglobulin Y antibody to Streptococcus mutans glucan binding protein B can confer protection against experimental dental caries. Infection and Immunity 69: 3135-3142.
SONG, W.O. and KERVER, J.M. (2000) Nutritional contribution of eggs to American diets. Journal of the American College of Nutrition 19: 556S-562S.
STADELMAN, W.J. (1999) The incredibly functional egg. Poultry Science 78: 807-811.
SUJATHA, T. and NARAHARI, D. (2011) Effect of designer diets on egg yolk composition of ‘White Leghorn’ hens. Journal of Food Science and Technology 48: 494-497.
SUN, S., MO, W., JI, Y. and LIU, S. (2001) Preparation and mass spectrometric study of egg yolk antibody (IgY) against rabies virus. Rapid Communications in Mass Spectrometry 15: 708-712.
SUNWOO, H.H., LEE, E.N., MENNINEN, K., SURESH, M. and RAND SIM, J.S. (2002) Growth inhibitory effect of chicken egg yolk antibody (IgY) on Escherichia coli 0157:H7. Journal of Food Science 67: 1486-1494.
SURAI, P.F. (2000a) Organic Selenium: Benefits to Animals and Humans, a Biochemist's View, in: LYONS, T.P. & JACQUES, K.A. (Eds) Biotechnology in the Feed Industry, pp. 205-260 (Nottingham University Press, Nottingham, UK).
SURAI, P.F. (2000b) Effect of selenium and vitamin e content of the maternal diet on the antioxidant system of the yolk and the developing chicks. British Poultry Science 41: 235-243
SURAI, P.F. and SPARKS, N.H.C. (2001) Designer eggs: from improvement of egg composition to functional food. Trends in Food Science & Technology 12: 7-16.
SURAI, P.F., YAROSHENKO, F.A., DVORSKA, J.E. and SPARKS, N.H.C. (2003) Selenium enriched eggs can improve human diet. Feed Mix 11: 32-34.
SUZUKI, H., NOMURA, S., MASAOKA, T., GOSHIMA, H., KAMATA, N., KODAMA, Y., ISHII, H., KITAJIMA, M., NOMOTO, K. and HIBI, T. (2004) Effect of dietary anti-Helicobacter pylori-urease immunoglobulin Y on Helicobacter pylori infection. Alimentary Pharmacology & Therapeutics 1: 185-192.
THALLEY, B.S. and CARROLL, S.B. (1990) Rattle snake and scorpion antivenoms from the egg yolks of immunized hens. Biotechnology 8: 934-938.
TRINDADE-NETO, M.A., PACHECO, B.C., ALBUQUERQUE, R. and SCHAMMASS, E.A. (2011) Lys and zinc chelate in diets for brown laying hens: effects on egg production and composition1. Revista Brasileira de Zootecnia 40: 377-384.
US DEPARTMENT OF HEALTH AND HUMAN SERVICES (2015) Dietary Guidelines for Americans 2015-2020. 8th ed. http://health.gov/dietaryguide lines/2015/guidelines. Accessed May 5, 2016.
VAN ELSWYK, M.E. (1997) Comparison of n-3 fatty acid sources in laying hen rations for improvement of whole egg nutritional quality: a review. British Journal of Nutrition 78: S61-S69.
VINCENT, A. and FITZPATRICK, L.A. (2000) Soy isoflavones: Are they useful in menopause? Mayo Clinic Proceedings 75: 1174-1184.
WEBER, C.W., GENTRY, H.S., KOHLHEPP, E.A. and MCCROHAN, P.R. (1991) The nutritional and chemical evaluation of Chia seeds. Ecology of Food and Nutrition 26: 119-125.
WEGGEMANS, R.M., ZOCK, P.L. and KATAN, M.B. (2001) Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans: a meta-analysis. American Journal of Clinical Nutrition 73: 885-891.
WIJENDRAN, V. and HAYES, K.C. (2004) Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annual Review of Nutrition 24: 597-615.
YALCIN, H. and UNAL, M.K. (2010) The Enrichment of Hen Eggs with x-3 Fatty Acids. Journal of Medicinal Food 13: 610-614.
YU, Q.S., WANG, G.P., WANG, W., QIN, Y. and HUANG, S. (2004) Anti-King cobra egg yolk antibody from the egg yolks of immunized hens and its primary application. Chinese Journal of Microbiology and Immunology 24: 695-698.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

World's Poultry Science Journal
  • ISSN: 0043-9339
  • EISSN: 1743-4777
  • URL: /core/journals/world-s-poultry-science-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 185 *
Loading metrics...

* Views captured on Cambridge Core between 27th February 2018 - 22nd April 2018. This data will be updated every 24 hours.