Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T07:30:55.826Z Has data issue: false hasContentIssue false

Temperature for Broilers

Published online by Cambridge University Press:  18 September 2007

D. R. Charles
Affiliation:
ADAS Block 7, Government Buildings, Chalfont Drive, Nottingham NG8 3SN, England
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelkarim, M., Harris, G. C., Waldroup, P. W. (1985). The influence of dietary energy level on broiler performance under moderate and hot humid tropical climates. Poult. Sci. 64 1.Google Scholar
Cerniglia, G. J., Herbert, J. A., Watts, A. B. (1983). The effect of constant ambient temperature and ration on the performance of sexed broilers. Poult. Sci. 62 746754.CrossRefGoogle ScholarPubMed
Charles, D. R. (1968). Recent advances in research and practice in controlled environemnt for broilers. WPSA 3rd European Poultry Conference.Google Scholar
Charles, D. R., Groom, C. M., Bray, T. S. (1981). The effects of temperature on broilers: interactions between temperature and feeding regime. Br. Poult Sci. 22 475481.CrossRefGoogle Scholar
Charles, D. R., Wakeford, P. (1967). In panel report: Housing environment and health, Edit. Sainsbury, D. W. B.. Farm Buildings Centre.Google Scholar
Clark, J. A., Charles, D. R., Wathes, C. M., Arrow, J. (1975). Heat transfer from housed poultry, its implications for environmental control. Worlds' Poult. Sci. J. 31 (4) 312.Google Scholar
Combs, G. F. (1970). Feed ingredient composition and amino acid standards for broilers. Proc. Maryland Nutrition Conference 81–89.Google Scholar
Cowan, P. J., Michie, W. (1978). Environmental temperature and broiler performance: the use of diets containing increased amounts of protein. Br. Poult. Sci. 19 (5) 601605.CrossRefGoogle Scholar
Deaton, J. W., Reece, R. N. (1968). Telemetering the body temperature of the broiler chick and effect of induced hypothermia. Poult. Sci. 47 (3) 714719.CrossRefGoogle ScholarPubMed
Deaton, J. W., Reece, F. N., Kubena, L. F., May, J. D., Vardaman, T. H. (1973). The effect of low versus moderate rearing temperature on broiler performance. Poult. Sci. 52 (3) 11751178.CrossRefGoogle Scholar
Deaton, J. W., Reece, F. N., Lott, B. D. (1984). Effect of differing temperature cycles on broiler performance. Poult Sci. 63 613615.CrossRefGoogle ScholarPubMed
Deaton, J. W., Reece, F. N., Lott, B. D., Kubena, L. F., May, J. D. (1972). The efficiency of cooling broilers in summer as measured by growth and feed utilisation. Poult Sci. 52 6971.CrossRefGoogle Scholar
Deaton, J. W., Reece, F. N., McNally, E. H., Tarver, W. J. (1969). Liver, heart and adrenal weights of broilers reared under constant temperatures. Poult. Sci. 48 (1) 283388.CrossRefGoogle ScholarPubMed
Emmans, G. C. (1980). A growth model. In: Computers in animal production. British Society of Animal Production. Harrogate.Google Scholar
Emmans, G. C., Charles, D. R. (1977). Climatic environment and poultry feeding in practice. In Nutrition and the climatic environment. Edit. Haresign, W., Swan, H., Lewis, D. Butterworths 3150.Google Scholar
Felton, K. E. (1974). The effect of twelve different temperature schedules on broilers. International Livestock Environment Symposium, Lincoln Nebraska.Google Scholar
Felton, K., Hoffman, E. (1970). Effect of environment on broiler performance. Abs. in Poultry Digest 29 (343) 450.Google Scholar
Findlay, J. D. (1950) The effects of temperature humidity air movement and solar radiation on the behaviour and physiology of cattle and other farm animals. Bull, Hannah Dairy Res Inst 9.Google Scholar
Fisher, C., Wilson, B. J. (1974). Response to dietary energy concentration by growing chickens. In: Energy requirements of poulty. Edit. Morris, T. R., Freeman, B. M., British poultry Science Ltd. 151184.Google Scholar
Goto, I., Koga, O., Okamoto, S. (1969). The effect of forced air movements on the growth of male chickens. Abs in W P S H 25 (1) 57.Google Scholar
Griffin, J. G., Vardaman, T. H. (1970). Diurnal cyclic versus daily constant temperatures for broiler performance. Poult. Sci. 49. 487–392.CrossRefGoogle Scholar
Griffin, J. G., Vardaman, T. H. (1971). Diurnal cyclic high temperature in broiler production. effects of lowering the cool part of the temperature cycle on performance. Poult. Sci. 50 (2) 463466.CrossRefGoogle Scholar
Harris, G. C., Dodgen, W. H., Nelson, G. S. (1974). Effects of diurnal cycling growing temperatures on broiler performance. Poult. Sci. 53 22042208.CrossRefGoogle Scholar
Harris, G. C., Nelson, G. S. (1975). Performance of broilers at different humidity levels and summer temperatures. Arkansas Farm Research 24 (2) 16.Google Scholar
Harris, G. C., Nelson, G. S., Dodgen, W. H., Seay, R. L. (1975). The influence of air temperature during brooding on broiler performance. Poult. Sci. 54 (2) 571577.CrossRefGoogle ScholarPubMed
Harris, G. C., Waldroup, P. W., Seay, R. L., Nelson, G. S. (1975). The influence of humidity energy and amino acid status on the performance of broilers. Poult. Sci. 54 (5) 1933.Google Scholar
Harwood, F. W., Reece, F. N. (1974). Summer ventilation design for insulated windowless broiler houses in Southern regions of the US. Poult. Sci. 53 (6) 21482152.CrossRefGoogle Scholar
Keshavarz, K., Fuller, H. L. (1980). The influence of widely fluctuating temperatures on heat production and energetic efficiency of broilers. Poult. Sci. 59 21212158.Google Scholar
Kubena, L. F., Deaton, J. W., Reece, F. N., May, J. D., Vardaman, T. H. (1972). The influence of temperature and sex on the amino acid requirements of the broiler. P-oult. Sci. 51 (4) 13911396.Google ScholarPubMed
Kubena, L. F., Lott, B. D., Deaton, J. W., Reece, F. N., May, J. D. (1972). Body composition of chicks as influenced by environmental temperature and selected dietary factors. Poult. Sci. 51 (2) 517522.CrossRefGoogle Scholar
Kubena, L. F., May, J. D., Deaton, J. W., Reece, F. N., Lott, B. D. (1972). Effect of dietary iron and copper on mortality of chicks at 2 temperatures. Poult. Sci. 51 (4) 14701472.Google Scholar
Kubena, L. F., Reece, F. N., Deaton, J. W., May, J. D. (1972). Heat prostration of broilers as influenced by dietary energy source. Poult. Sci. 51 (5) 17441747.CrossRefGoogle ScholarPubMed
Kubena, L. F., Reece, F. N., Deaton, J. W., May, J. D. (1973). The effect of dietary fat level on heat prostration of broilers. Poult. Sci. 52 16911693.CrossRefGoogle ScholarPubMed
May, J. D., Kubena, L. F., Reece, F. N., Deaton, J. W. (1972). Environmental temperatures and dietary lysine effects on free amino acids in plasma. Poult. Sci. 51 (6) 19371940.CrossRefGoogle ScholarPubMed
McNaughton, J. L., Kubena, L. F., Deaton, J. W., Reece, F. N. (1977). Influence of dietary protein and energy on the performance of commercial egg type pullets reared under summer conditions. Poult. Sci. 56 (5) 13911398.CrossRefGoogle Scholar
Michie, W., Emmans, G. C. (1975). Unpublished data. North of Scotland Agricultural College.Google Scholar
Mickelberry, W. C., Rodger, J. C., Stadelman, W. J. (1966). The influence of dietary fat and environmental temperature upon chick growth and carcass composition. Poult. Sci. 45 313321.CrossRefGoogle ScholarPubMed
Morrison, W. D., Curtis, S. E. (1983). Observations of environmental thermoregulation by chicks. Poult. Sci. 62 19121914.Google Scholar
Olsen, D. W., Sudne, M. L., Bird, H. R. (1972). The effect of temperature on metabolisable energy determination and utilisation by the growing chick. Poult. Sci. 51 19151922.CrossRefGoogle Scholar
Payne, C. G. (1966). Development in the use of artificial heating for the control of the animal environment. Electrical Development Assoc Conference 1966 23–27.Google Scholar
Penderson, J. (1971). What is optimal heat for broilers. Poultry International April 1971 3842.Google Scholar
Reece, F. N., Deaton, J. W. (1971). Use of evaporative cooling for broiler chicken production in areas of high relative humidity. Poult. Sci. 50 (1) 100104.Google Scholar
Reece, F. N., Deaton, J. W., Kubena, L. F. (1971). Effects of high temperature and humidity on heat prostration of broiler chickens. Winter Meeting ASAE.Google Scholar
Reece, F. N., Deaton, J. W., Vardaman, T. H. (1969). The effect of temperature exposure on broiler condemnation. Poult. Sci. 48 (1) 288294.Google Scholar
Reece, F. N., McNaughton, J. L. (1982). Effects of dietary nutrient density on broiler performance at low and moderate environmental temperatures. Poult. Sci. 61 22082211.CrossRefGoogle ScholarPubMed
Sainsbury, D. W. B. (1967). In panel report: Housing environment and health. Edit Sainsbury, D. W. B., Farm Buildings Centre.Google Scholar
Sainsbury, D. W. B. (1971). Ambient temperature is the vital factor. Poultry International April 1971 3443.Google Scholar
Siegel, H. S., Drury, L. N. (1969). Broiler growth in cycling temperature environments Poult. Sci. 48 (5) 1871.Google Scholar
Siegel, H. S., Drury, L. N. (1970). Broiler growth in diurnally cycling temperature environments. Poult. Sci. f2449 (1) 238244.Google Scholar
Sinurat, A. P., Balnave, D. (1985). Effect of dietary amino acid and metabolisable energy on the performance of broilers kept at high temperatures. Br. Poult. Sci. 26 117128.Google Scholar
Sinurat, A. P., Balnave, D. (1985). High temperature studies with broilers: the effect of dietary amino acids and metabolisable energy Proc. Poultry Symposium University of Sydney.Google Scholar
Smith, W. K., Payne, C. G. (1968). The temperature nutrition interaction. Seminar to Univ of Sydney.Google Scholar
Spencer, P. G. (1977). Unpublished ADAS data.Google Scholar
Spencer, P. G., Charles, D. R. (1969). Unpublished ADAS data.Google Scholar
Stanley, L. M., Roberts, C. W. (1974). Thermal environmental influences on the early growth phase of broilers. Proc. International Livestock Environment Symposium.ASAE University of Nebraska 267–273.Google Scholar
Sutcliffe, N. A., King, A. W. M., Charles, D. R. (1985). Monitoring poultry house environment. In: computer applications in agricultural environments. 42nd Easter School in agricultural sciences. University of Nottingham.Google Scholar
Swain, S., Farrell, D. J. (1975). Effects of different temperature regimes on body composition and carry over effects on energy metabolism of growing chickens. Poult. Sci. 54 (2) 513520.CrossRefGoogle Scholar
Wathes, C. M. (1978). Sensible heat transfer from the fowl. Unpublished University of Nottingham thesis.Google Scholar
Wathes, C. M., Gill, B. D., Charles, D. R., Back, H. L. (1981). The effects of temperature on broilers: a simulation model of the responses to temperature. Br. Poult. Sci. 22 483492.CrossRefGoogle Scholar
Wathes, C. M., SpechterGh, H. Gh, H., Bray, T. S. and Charles, D. R. (1982). Brooding temperature regimes for broilers. 2nd International Livestock environment symposium.ASAE Publication 3–82. Ames. Iowa. 338–342.Google Scholar
Winn, P. N., Godfrey, E. F. (1969). The effect of humidity on growth and feed conversion of broiler chickens. Int J Biometeor 11 (1) 3943.CrossRefGoogle Scholar