Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T13:42:35.384Z Has data issue: false hasContentIssue false

Vitagenes in poultry production: Part 1. Technological and environmental stresses

Published online by Cambridge University Press:  19 October 2016

P.F. SURAI*
Affiliation:
Trakia University, Stara Zagora, Bulgaria Szent Istvan University, Godollo, Hungary Sumy National Agrarian University, Sumy, Ukraine Odessa National Academy of Food Technologies, Ukraine Russian Academy of Science, Moscow, Russia
V.I. FISININ
Affiliation:
Russian Academy of Science, Moscow, Russia All Russian Institute of Poultry Husbandry, Sergiev Posad, Russia
*
Corresponding author: psurai@feedfood.co.uk
Get access

Abstract

Commercial poultry production is associated with various stresses affecting productive and reproductive performance of birds and their health status. In general, there are four major types of stress in poultry industry: technological, environmental, nutritional and internal stresses. This review considered main technological stresses: chick placement, increased stocking density, chicken weighing, grading and group formation in rearing houses, as well as bird transferring to breeder houses. The following paper analysed consequences of such environmental stresses as temperature stress and high levels of dust and ammonia in poultry houses. It has been proven that most of the aforementioned stresses suppress reproductive performance of parent birds, including reduced fertility and hatchability. Furthermore, stresses are associated with impaired feed conversion, reduced average daily weight gain, immunosuppression and increased mortality in growing birds. A growing body of evidence indicates that most of stresses in poultry production at the cellular level are associated with oxidative stress due to excess of free radical production or inadequate antioxidant protection. Therefore, the development of the effective nutritional solutions to decrease negative consequences of commercially-relevant stresses is an important task for poultry scientists. One of such approaches is based on vitagene concept which will be considered in the second part of the review.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ALTAN, O., PABUÇCUOĞLU, A., ALTAN, A., KONYALIOĞLU, S. and BAYRAKTAR, H. (2003) Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. British Poultry Science 44: 545-550.CrossRefGoogle ScholarPubMed
AMARASEKERA, M., PRESCOTT, S.L. and PALMER, D.J. (2013) Nutrition in early life, immune-programming and allergies: the role of epigenetics. Asian Pacific Journal of Allergy and Immunology 31: 175-182.Google ScholarPubMed
APPLEGATE, T.J. and SELL, J.L. (1996) Effect of dietary linoleic to linolenic acid ratio and vitamin E supplementation on vitamin E status of poults. Poultry Science 75: 881-890.CrossRefGoogle ScholarPubMed
AHMAD, T. and SARWAR, M. (2006) Dietary electrolyte balance: implications in heat stressed broilers. World's Poultry Science Journal 62: 638-653.Google Scholar
BALNAVE, D. and GORMAN, I. (1993) A role for sodium bicarbonate supplements for growing broilers at high temperatures. World's Poultry Science Journal 49: 236-241.CrossRefGoogle Scholar
BIGOT, K., MIGNON-GRASTEAU, P., PICARD, M. and TESSERAUD, S. (2003) Effects of delayed feed intake on body, intestine and muscle development in neonate broilers. Poultry Science 85: 781-788.CrossRefGoogle Scholar
BLOUNT, J.D., METCALFE, N.B., ARNOLD, K.E., SURAI, P.F., DEVEVEY, G.L. and MONAGHAN, P. (2003) Neonatal nutrition, adult antioxidant defences and sexual attractiveness in the zebra finch. Proceedings of the Royal Society of London. Series B, Biological sciences 270: 1691-1696.CrossRefGoogle ScholarPubMed
BOTTJE, W.G., WANG, S., KELLY, F.J., DUNSTER, C., WILLIAMS, A. and MUDWAY, I. (1998) Antioxidant defenses in lung lining fluid of broilers: impact of poor ventilation conditions. Poultry Science 77: 516-522.CrossRefGoogle ScholarPubMed
BOTTJE, W.G. and WIDEMAN, R.F. (Jr) (1995) Potential role of free radicals in the pathogenesis of pulmonary hypertension syndrome. Poultry and Avian Biology Reviews 6: 211-231.Google Scholar
BUIJS, S., KEELING, L., RETTENBACHER, S., VAN POUCKE, E. and TUYTTENS, F.A. (2009) Stocking density effects on broiler welfare: identifying sensitive ranges for different indicators. Poultry Science 88: 1536-1543.CrossRefGoogle ScholarPubMed
BUIJS, S., VAN POUCKE, E., VAN DONGEN, S., LENS, L., BAERT, J. and TUYTTENS, F.A. (2012) The influence of stocking density on broiler chicken bone quality and fluctuating asymmetry. Poultry Science 91: 1759-1767.CrossRefGoogle ScholarPubMed
BUREAU, C., HENNEQUET-ANTIER, C., COUTY, M. and GUÉMENÉ, D. (2009) Gene array analysis of adrenal glands in broiler chickens following ACTH treatment. BMC Genomics 10: 430 CrossRefGoogle ScholarPubMed
BURKHOLDER, K.M., THOMPSON, K.L., EINSTEIN, M.E., APPLEGATE, T.J. and PATTERSON, J.A. (2008) Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella Enteritidis colonization in broilers. Poultry Science 87: 1734-1741.CrossRefGoogle ScholarPubMed
CALABRESE, V., BOYD-KIMBALL, D., SCAPAGNINI, G. and BUTTERFIELD, D.A. (2004) Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo 18: 245-267.Google ScholarPubMed
CALABRESE, V., GUAGLIANO, E., SAPIENZA, M., PANEBIANCO, M., CALAFATO, S., PULEO, E., PENNISI, G., MANCUSO, C., BUTTERFIELD, D.A. and STELLA, A.G. (2007) Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochemical Research 32: 757-773.CrossRefGoogle ScholarPubMed
CALABRESE, V., CALAFATO, S., PULEO, E., CORNELIUS, C., SAPIENZA, M., MORGANTI, P. and MANCUSO, C. (2008) Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: role of vitagenes. Clinics in Dermatology 26: 358-363.CrossRefGoogle ScholarPubMed
CALABRESE, V., CORNELIUS, C., MANCUSO, C., BARONE, E., CALAFATO, S., BATES, T., RIZZARELLI, E. and KOSTOVA, A.T. (2009) Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Frontiers in Bioscience 14: 376-397.CrossRefGoogle ScholarPubMed
CALABRESE, V., CORNELIUS, C., TROVATO, A., CAVALLARO, M., MANCUSO, C., DI RIENZO, L., CONDORELLI, D., DE LORENZO, A. and CALABRESE, E.J. (2010) The hormetic role of dietary antioxidants in free radical-related diseases. Current Pharmaceutical Design 16: 877-883.CrossRefGoogle ScholarPubMed
CALABRESE, V., CORNELIUS, C., CUZZOCREA, S., IAVICOLI, I., RIZZARELLI, E. and CALABRESE, E.J. (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Molecular Aspects of Medicine 32: 279-304.CrossRefGoogle ScholarPubMed
CALABRESE, V., CORNELIUS, C., DINKOVA-KOSTOVA, A.T., IAVICOLI, I., DI PAOLA, R., KOVERECH, A., CUZZOCREA, S., RIZZARELLI, E. and CALABRESE, E.J. (2012) Cellular stress responses, hermetic phytochemicals and vitagenes in aging and longevity. Biochimica et Biophysica Acta 1822: 753-783.CrossRefGoogle Scholar
CALABRESE, V., SCAPAGNINI, G., DAVINELLI, S., KOVERECH, G., KOVERECH, A., DE PASQUALE, C., SALINARO, A.T., SCUTO, M., CALABRESE, E.J. and GENAZZANI, A.R. (2014) Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. Journal of Cell. Communication and Signaling 8: 369-384.CrossRefGoogle ScholarPubMed
CASTEEL, E.T., WILSON, J.L., BUHR, R.J. and SANDER, J.E. (1994) The influence of extended posthatch holding time and placement density on broiler performance. Poultry Science 73: 1679-1684.CrossRefGoogle ScholarPubMed
CELIK, L.B., TEKELI, A. and OZTÜRKCAN, O. (2004) Effects of supplemental L-carnitine in drinking water on performance and egg quality of laying hens exposed to a high ambient temperature. Journal of Animal Physiology and Animal Nutrition 88: 229-233.CrossRefGoogle ScholarPubMed
CENGIZ, Ö., KÖKSAL, B.H., TATLI, O., SEVIM, Ö., AHSAN, U., ÜNER, A.G., ULUTAŞ, P.A., BEYAZ, D., BÜYÜKYÖRÜK, S., YAKAN, A. and ÖNOL, A.G. (2015) Effect of dietary probiotic and high stocking density on the performance, carcass yield, gut microflora, and stress indicators of broilers. Poultry Science 94: 2395-2403.CrossRefGoogle ScholarPubMed
CHAMPAGNE, F.A. and RISSMAN, E.F. (2011) Behavioral epigenetics: a new frontier in the study of hormones and behavior. Hormones and Behavior 59: 277-278.CrossRefGoogle Scholar
CHEN, Z., XIE, J., WANG, B. and TANG, J. (2014) Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken. Poultry Science 93: 2490-2500.CrossRefGoogle ScholarPubMed
CHEN, X.Y., LI, R., WANG, M. and GENG, Z.Y. (2014a) Identification of differentially expressed genes in hypothalamus of chicken during cold stress. Molecular Biology Reports 41: 2243-2248.CrossRefGoogle ScholarPubMed
CHEN, X.Y., LI, R. and GENG, Z.Y. (2015) Cold stress initiates the Nrf2/UGT1A1/L-FABP signaling pathway in chickens. Poultry Science 94: 2597-2603.CrossRefGoogle ScholarPubMed
CORNELIUS, C., KOVERECH, G., CRUPI, R., DI PAOLA, R., KOVERECH, A., LODATO, F., SCUTO, M., SALINARO, A.T., CUZZOCREA, S., CALABRESE, E.J. and CALABRESE, V. (2014) Osteoporosis and Alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Frontiers in Pharmacology 5: 120.CrossRefGoogle ScholarPubMed
CRAVENER, T.L., ROUSH, W.B. and MASHALY, M.M. (1992) Broiler production under varying population densities. Poultry Science 71: 427-433.CrossRefGoogle ScholarPubMed
DE ANDRADE, A., ROGLER, N., FEATHERSON, J.C. and ALLISON, W.R.C.W. (1977) Interrelationships between diet and elevated temperature (cyclic and constant) on egg production and shell quality. Poultry Science 56: 1178-1188.CrossRefGoogle Scholar
DECUYPERE, E., TONA, K., BRUGGEMAN, V. and BAMELIS, F. (2001) The day-old chick: a crucial hinge between breeders and broilers. World's Poultry Science Journal 57: 127-138.CrossRefGoogle Scholar
EBEID, T.A., SUZUKI, T. and SUGIYAMA, T. (2012) High ambient and quality temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens. Poultry Science 91: 2282-2287.CrossRefGoogle ScholarPubMed
ELIBOL, O., PEAK, S.D. and BRAKE, J. (2002) Effect of flock age, length of egg storage, and frequency of turning during storage on hatchability. Poultry Science 81: 945-950.CrossRefGoogle ScholarPubMed
ESTÉVEZ, M. (2015) Oxidative damage to poultry: from farm to fork. Poultry Science 94: 1368-1378.CrossRefGoogle ScholarPubMed
ESTEVEZ, I. (2007) Density allowances for broilers: where to set the limits? Poultry Science 86: 1265-1272.CrossRefGoogle ScholarPubMed
FASENKO, G.M. (2007) Egg storage and the embryo. Poultry Science 86: 1020-1024.CrossRefGoogle ScholarPubMed
FEDDES, J.J.R., EMMANUEL, E.J. and ZUIDHOF, M.J. (2002) Broiler performance, body weight variance, feed and water intake, carcass quality at different stocking densities. Poultry Science 81: 774-779.CrossRefGoogle ScholarPubMed
FELLENBERG, M.A. and SPEISKY, H. (2006) Antioxidants: Their effects on broiler oxidative stress and its meat oxidative stability. World's Poultry Science Journal 62: 53-70.CrossRefGoogle Scholar
FISININ, V.I., PAPAZYAN, T. and SURAI, P.F. (2009) Innovative methods of fighting stresses in poultry production. Russian Poultry Science(Ptitzevodstvo, Russia) 8: 10-14.Google Scholar
FISININ, V.I., PAPAZYAN, T. and SURAI, P.F. (2009a) Modern methods of stress prevention in poultry production. Today's Animal Production(Ukraine) 2: 56-61.Google Scholar
FISININ, V.I. and SURAI, P.F. (2011) Effective protection from stresses in poultry production: from vitamins to vitagenes. Part 1. Poultry and Poultry Products(Ptitza I Ptitzeproducti, Moscow) 5: 23-26.Google Scholar
FISININ, V.I. and SURAI, P.F. (2011a) Effective protection from stresses in poultry production: from vitamins to vitagenes. Part 2. Poultry and Poultry Products(Ptitza I Ptitzeproducti, Moscow) 6: 10-13.Google Scholar
FISININ, V.I. and SURAI, P.F. (2012) First days of chicken life: from a protection against stresses to an effective adaptation. Russian Poultry Science(Ptitsevodstvo, Russia) 2: 11-15.Google Scholar
FISININ, V.I. and SURAI, P.F. (2012a) Early chicken nutrition and muscle tissue development. Russian Poultry Science(Ptitsevodstvo, Russia) 3: 9-12.Google Scholar
FISININ, V.I. and SURAI, P.F. (2013) Immunity in modern animal and poultry production: from theory to practical aspects of immunomodulation. Russian Poultry Science(Ptitsevodstvo, Russia) 5: 4-10.Google Scholar
FISININ, V.I. and SURAI, P.F. (2013a) Gut immunity in birds: facts and thinking. Agricultural Biology(Selskokhozaistvennaya Biologia, Russia) 4: 1-25.Google Scholar
FRANCO-JIMENEZ, D.J., SCHEIDELER, S.E., KITTOK, R.J., BROWN-BRANDL, T.M., ROBESON, L.R., TAIRA, H. and BECK, M.M. (2007) Differential effects of heat stress in three strains of laying hens. The Journal of Applied Poultry Research 16: 628-634.CrossRefGoogle Scholar
GEORGIEVA, N.V., STOYANCHEV, K., BOZAKOVA, N. and JOTOVA, I. (2011) Combined effects of muscular dystrophy, ecological stress, and selenium on blood antioxidant status in broiler chickens. Biological Trace Element Research 142: 532-545.CrossRefGoogle ScholarPubMed
GEYRA, A., UNI, Z. and SKLAN, D. (2001) Enterocyte dynamics and mucosal development in the posthatch chick. Poultry Science 80: 776-782.CrossRefGoogle ScholarPubMed
GEYRA, A., UNI, Z. and SKLAN, D. (2001a) The effect of fasting at different ages on growth and tissue dynamics in the small intestine of the young chick. British Journal of Nutrition 86: 53-61.CrossRefGoogle ScholarPubMed
GOERLICH, V.C., NÄTT, D., ELFWING, M., MACDONALD, B. and JENSEN, P. (2012) Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken. Hormones and Behavior 61: 711-718.CrossRefGoogle ScholarPubMed
GUNNARSSON, S., KEELING, L.J. and SVEDBERG, J. (1999) Effect of rearing factors on the prevalence of floor eggs, cloacal cannibalism and feather pecking in commercial flocks of loose housed laying hens. British Poultry Science 40: 12-18.CrossRefGoogle ScholarPubMed
HABIBIAN, M., SADEGHI, G., GHAZI, S. and MOEINI, M.M. (2015) Selenium as a feed supplement for heat-stressed poultry: a review. B iological Trace Element Research 165: 183-193.CrossRefGoogle Scholar
HAGER, J.E. and BEANE, W.L. (1983) Posthatch incubation time and early growth of broiler chickens. Poultry Science 62: 247-254.CrossRefGoogle ScholarPubMed
HUTH, J.C. and ARCHER, G.S. (2015) Comparison of Two LED Light Bulbs to a Dimmable CFL and their Effects on Broiler Chicken Growth, Stress, and Fear. Poultry Science 94: 2027-2036.CrossRefGoogle ScholarPubMed
KARADAS, F., SURAI, P.F. and SPARKS, N.H. (2011) Changes in broiler chick tissue concentrations of lipid-soluble antioxidants immediately post-hatch. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 160: 68-71.CrossRefGoogle ScholarPubMed
LAMBERT, G.P., GISOLFI, C.V., BERG, D.J., MOSELEY, P.L., OBERLEY, L.W. and KREGEL, K.C. (2002) Selected contribution: Hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress. Journal of Applied Physiology 92: 1750-1761.CrossRefGoogle ScholarPubMed
LARA, L. and ROSTAGNO, M. (2013) Impact of heat stress on poultry production. Animals 3: 356-369.CrossRefGoogle ScholarPubMed
LIN, H., DECUYPERE, E. and BUYSE, J. (2006) Acute heat stress induces oxidative stress in broiler chickens. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 144: 11-17.CrossRefGoogle ScholarPubMed
LIN, H., MERTENS, K., KEMPS, B., GOVAERTS, T., DE KETELAERE, B., DE BAERDEMAEKER, J., DECUYPERE, E. and BUYSE, J. (2004) New approach of testing the effect of heat stress on eggshell quality: Mechanical and material properties of eggshell and membrane. British Poultry Science 45: 476-482.CrossRefGoogle ScholarPubMed
MACK, L.A., FELVER-GANT, J.N., DENNIS, R.L. and CHENG, H.W. (2013) Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poultry Science 92: 285-294.CrossRefGoogle ScholarPubMed
MARUSICH, W.L., DERITTER, E., OGRINZ, E.F., KEATING, J., MITROVIC, M. and BUNNELL, R.H. (1975) Effect of supplemental vitamin E on control of rancidity in poultry meat. Poultry Science 54: 831-844.CrossRefGoogle Scholar
MASHALY, M.M., HENDRICKS, G.L., KALAMA, M.A., GEHAD, A.E., ABBAS, A.O. and PATTERSON, P.H. (2004) Effect of heat stress on production parameters and immune responses of commercial laying hens. Poultry Science 83: 889-894.CrossRefGoogle ScholarPubMed
MEZES, M. (1994) Effect of vitamin E treatment on early postnatal changes of vitamin E status of chicken. Acta Veterinaria Hungarica 42: 477-480.Google ScholarPubMed
MEZES, M., SURAI, P.F., SALYI, G., SPEAKE, B.K., GAAL, T. and MALDJIAN, A. (1997) Nutritional metabolic diseases in poultry and disorders of the biological antioxidant defence system. Acta Veterinaria Hungarica 45: 349-360.Google ScholarPubMed
MIRFENDERESKI, E. and JAHANIAN, R. (2015) Effects of dietary organic chromium and vitamin C supplementation on performance, immune responses, blood metabolites, and stress status of laying hens subjected to high stocking density. Poultry Science 94: 281-288.CrossRefGoogle ScholarPubMed
NAJAFI, P., ZULKIFLI, I., SOLEIMANI, A.F. and KASHIANI, P. (2015) The effect of different degrees of feed restriction on heat shock protein 70, acute phase proteins, and other blood parameters in female broiler breeders. Poultry Science 94: 2322-2329.CrossRefGoogle ScholarPubMed
NIU, Z.Y., LIU, F.Z., YAN, Q.L. and and LI, W.C. (2009) Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. Poultry Science 88: 2101-2107.CrossRefGoogle ScholarPubMed
NOY, Y. and SKLAN, D. (1999) Different types of early feeding and performance in chicks and poults. The Journal of Applied Poultry Research 8: 16-24.CrossRefGoogle Scholar
NOY, Y., GYRA, A. and SKLAN, D. (2001) The effect of early feeding on growth and small intestinal development in the posthatch poult. Poultry Science 80: 912-919.CrossRefGoogle ScholarPubMed
NOY, Y. and UNI, Z. (2010) Early nutrition strategy. World's Poultry Science Journal 66: 639-646.CrossRefGoogle Scholar
PARDUE, S.L., THAXTON, J.P. and BRAKE, J. (1985) Role of ascorbic acid in chicks exposed to high environmental temperature. Journal of Applied Physiology 58: 1511-1516.CrossRefGoogle ScholarPubMed
PINCHASOV, Y. and NOY, Y. (1993) Comparison of post-hatch holding time and subsequent early performance of broiler chicks and Turkey poults. British Poultry Science 34: 111-120.CrossRefGoogle Scholar
PURON, D., SANTAMARIA, R., SEGURA, J.C. and ALAMILLA, J.L. (1995) Broiler performance at different stocking densities. The Journal of Applied Poultry Research 4: 55-60.CrossRefGoogle Scholar
QUINTEIRO-FILHO, W.M., RIBEIRO, A., FERRAZ-DE-PAULA, V., PINHEIRO, M.L., SAKAI, M., , L.R.M., FERREIRA, A.J. and PALERMO-NETO, J. (2010) Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science 89: 1905-1914.CrossRefGoogle ScholarPubMed
RAVINDRAN, V., THOMAS, D.V., THOMAS, D.G. and MOREL, P.C.H. (2006) Performance and welfare of broilers as affected by stocking density and zinc bacitracin supplementation. Animal Science Journal 77: 110-116.CrossRefGoogle Scholar
SAHIN, N., ONDERCI, M., BALCI, T.A., CIKIM, G., SAHIN, K. and KUCUK, O. (2007) The effect of soy isoflavones on egg quality and bone mineralization during the late laying period of quail. British Poultry and Science 48: 363-369.CrossRefGoogle ScholarPubMed
SAYED, M.A. and DOWNING, J. (2011) The effects of water replacement by oral rehydration fluids with or without betaine supplementation on performance, acid-base balance, and water retention of heat-stressed broiler chickens. Poultry Science 90: 157-167.CrossRefGoogle ScholarPubMed
SELL, J.L. (1996) Recent developments in vitamin E nutrition of turkeys. Animal Feed Science and Technology 60: 229-240.CrossRefGoogle Scholar
SIMITZIS, P.E., KALOGERAKI, E., GOLIOMYTIS, M., CHARISMIADOU, M.A., TRIANTAPHYLLOPOULOS, K., AYOUTANTI. A., NIFOROU. K., HAGER-THEODORIDES, A.L. and DELIGEORGIS, S.G. (2012) Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. British Poultry Science 53: 721-730.CrossRefGoogle ScholarPubMed
SIMSEK, U.G., DALKILIC, B., CIFTCI, M. and YUCE, A. (2009) The Influences of Different Stocking Densities on Some Welfare Indicators, Lipid Peroxidation (MDA) and Antioxidant Enzyme Activities (GSH, GSH-Px, CAT) in Broiler Chickens. Journal of Animal and Veterinary Advances 8: 1568-1572.Google Scholar
SKLAN, D., NOY, Y., HOYZMAN, A. and ROZENBOIM, I. (2000) Decreasing weight loss in the hatchery by feeding chicks and poults in hatching trays. The Journal of Applied Poultry Research 9: 142-148.CrossRefGoogle Scholar
SOLEIMANI, A.F., ZULKIFLI, I., OMAR, A.R. and RAHA, A.R. (2011) Physiological responses of 3 chicken breeds to acute heat stress. Poultry Science 90: 1435-1440.CrossRefGoogle ScholarPubMed
SONG, J., XIAO, K., KE, Y.L., JIAO, L.F., HU, C.H., DIAO, Q.Y., SHI, B. and ZOU, X.T. (2014) Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science 93: 581-588.CrossRefGoogle ScholarPubMed
SØRENSEN, P., SU, G. and KESTIN, S.C. (2000) Effects of age and stocking density on leg weakness in broiler chickens. Poultry Science 79: 864-870.CrossRefGoogle ScholarPubMed
SOTO-SALANOVA, M.F. (1998) Vitamin E in young turkeys: A reassessment of the requirement. Retrospective Theses and Dissertations, Digital Repository @ Iowa State University.Google Scholar
SOTO-SALANOVA, M.F. and SELL, J.L. (1995) Influence of supplemental dietary fat on changes in vitamin E concentration in livers of poults. Poultry Science 74: 201-204.CrossRefGoogle ScholarPubMed
SOTO-SALANOVA, M.F. and SELL, J.L. (1996) Efficacy of dietary and injected vitamin E for poults. Poultry Science 75: 1393-1403.CrossRefGoogle ScholarPubMed
SUN, Z.W., YAN, L., G, Y.Y., ZHAO, J.P., LIN, H. and GUO, Y.M. (2013) Increasing dietary vitamin D3 improves the walking ability and welfare status of broiler chickens reared at high stocking densities. Poultry Science 92: 3071-3079.CrossRefGoogle ScholarPubMed
SUN, X., ZHANG, H., SHEIKHAHMADI, A., WANG, Y., JIAO, H., LIN, H. and SONG, Z. (2015) Effects of heat stress on the gene expression of nutrient transporters in the jejunum of broiler chickens (Gallus gallus domesticus). International Journal of Biometeorology 59: 127-135.CrossRefGoogle ScholarPubMed
SURAI, P.F. (2002) Natural Antioxidants in Avian Nutrition and reproduction. Nottingham University Press, Nottingham, UK.Google Scholar
SURAI, P.F. (2006) Selenium in Nutrition and Health. Nottingham University Press, Nottingham, UK.Google Scholar
SURAI, P.F. (2015) Antioxidant Systems in Poultry Biology: Superoxide Dismutase. Journal of Animal Nutrition 1: 8.Google Scholar
SURAI, P.F. (2015a) Antioxidant Action of Carnitine: Molecular Mechanisms and Practical Applications. EC Veterinary Science 2: 66-84.Google Scholar
SURAI, P.F. (2015b) Antioxidant systems in poultry biology: Heat Shock Proteins. Journal of Science 5: 1188-1222.Google Scholar
SURAI, P.F. (2015c) Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants 4: 204-247.CrossRefGoogle Scholar
SURAI, P.F. and BORODAI, V.P. (2010) Stresses in poultry production: From understanding molecular mechanisms to the development of protection methods. Modern Poultry Science(Ukraine) 7-8: 31-36.Google Scholar
SURAI, P.F. and FISININ, V.I. (2012) Innovative methods of fighting stresses in poultry production: From vitamins to sirtuins and vitagenes. Effective Poultry Production(Ukraine) 8: 8-13.Google Scholar
SURAI, P.F. and FISININ, V.I. (2012a) Modern methods of fighting stresses in poultry production: from antioxidants to vitagenes. Agricultural Biology(Selskokhozaistvennaya Biologia, Russia) 4: 3-13.Google Scholar
SURAI, P.F. and FISININ, V.I. (2015) Antioxidant-Prooxidant Balance in the Intestine: Applications in Chick Placement and Pig Weaning. Journal of Veterinary Science & Medicine 3 (1): 16.Google Scholar
SURAI, P.F., FISININ, V.I. and KARADAS, F. (2016) Antioxidant Systems in Chick Embryo Development. Part 1. Vitamin E, Carotenoids and Selenium. Animal Nutrition 2: 1-11.CrossRefGoogle Scholar
SURAI, P.F. and FOTINA, T.I. (2010) Once more about stresses: from changes in gene expression to inclusion of anti-stress premix into drinking water. Effective Poultry Science(Ukraine) 8: 20-25.Google Scholar
SURAI, P.F. and FOTINA, T.I. (2013) Physiological mechanisms of the heat stress development in poultry. Today's Animal Production Science(Ukraine) 6: 54-60.Google Scholar
SURAI, P.F., IONOV, I.A., KUCHMISTOVA, E.F., NOBLE, R.C. and SPEAKE, B.K. (1998) The relationship between the levels of a-tocopherol and carotenoids in the maternal feed, yolk and neonatal tissues: comparison between the chicken, turkey, duck and goose. Journal of the Science of Food and Agriculture 76: 593-598.3.0.CO;2-R>CrossRefGoogle Scholar
SURAI, P.F., NOBLE, R.C. and SPEAKE, B.K. (1996) Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during development of the chick embryo. Biochimica et Biophysica Acta 1304: 1-10.CrossRefGoogle ScholarPubMed
SURAI, P.F., NOBLE, R. and SPEAKE, B. (1999) Relationship between vitamin E content and susceptibility to lipid peroxidation in tissues of the newly hatched chick. British Poultry Science 40: 406-410.CrossRefGoogle ScholarPubMed
SURAI, P.F., SPEAKE, B.K., NOBLE, R.C. and SPARKS, N.H. (1999a) Tissue-specific antioxidant profiles and susceptibility to lipid peroxidation of the newly hatched chick. Biological Trace Element Research 68: 63-78.CrossRefGoogle ScholarPubMed
THIAMHIRUNSOPIT, K., PHISALAPHONG, C., BOONKIRD, S. and KIJPARKORN, S. (2014) Effect of chili meal (Capsicum frutescens LINN.) on growth performance, stress index, lipid peroxidation and ileal nutrient digestibility in broilers reared under high stocking density condition. Animal Feed Science and Technology 192: 90-100.CrossRefGoogle Scholar
TONG, H.B., LU, J., ZOU, J.M., WANG, Q. and SHI, S.R. (2012) Effects of stocking density on growth performance, carcass yield, and immune status of a local chicken breed. Poultry Science 91: 667-673.CrossRefGoogle ScholarPubMed
TSIOURIS, V., GEORGOPOULOU, I., BATZIOS, C., PAPPAIOANNOU, N., DUCATELLE, R. and FORTOMARIS, P. (2015) High stocking density as a predisposing factor for necrotic enteritis in broiler chicks. Avian Pathology 44: 59-66.CrossRefGoogle ScholarPubMed
VAN DER POL, C.W., MOLENAAR, R., BUITINK, C.J., VAN ROOVERT-REIJRINK, I.A., MAATJENS, C.M., VAN DEN BRAND, H. and KEMP, B. (2015) Lighting schedule and dimming period in early life: consequences for broiler chicken leg bone development. Poultry Science 94: 2980-2988.CrossRefGoogle ScholarPubMed
VIEIRA, S.L. and MORAN, E.T. (Jr) (1999) Effects of delayed placement and used litter on broiler yields. The Journal of Applied Poultry Research 8: 75-81.CrossRefGoogle Scholar