Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T08:28:42.827Z Has data issue: false hasContentIssue false

Vitagenes in poultry production: Part 3. Vitagene concept development

Published online by Cambridge University Press:  19 October 2016

P.F. SURAI*
Affiliation:
Trakia University, Stara Zagora, Bulgaria Szent Istvan University, Godollo, Hungary Sumy National Agrarian University, Sumy, Ukraine Odessa National Academy of Food Technologies, Ukraine Russian Academy of Science, Moscow, Russia
V.I. FISININ
Affiliation:
Russian Academy of Science, Moscow, Russia All Russian Institute of Poultry Husbandry, Sergiev Posad, Russia
*
Corresponding author: psurai@feedfood.co.uk
Get access

Abstract

Commercial poultry production is associated with four major types of stresses, including environmental, technological, nutritional and internal stresses, affecting productive and reproductive performance of birds and their health status. It has been suggested that at the molecular level most stresses are associated with overproduction of free radicals and oxidative stress. Therefore, the development of the effective antioxidant solutions to decrease negative consequences of commercially-relevant stresses is an important task for poultry scientists. One approach is based on possibilities of modulation of vitagenes, a family of genes responsible for animal/poultry adaptation to stress. In fact, the vitagene network includes heat shock proteins (HSPs), thioredoxin system, sirtuins and superoxide dismutases (SOD) and plays a regulatory role in most important cellular processes in stress conditions. Indeed, HSPs, including haem oxygenase-1 (HO-1) and HSP70, are responsible for protein homeostasis in stress conditions, while the thioredoxin system is the major player in maintaining redox status of the cell involved in protein and DNA synthesis and repair as well as in regulation of expression of many important genes. Furthermore, sirtuins regulate the biological functions of various molecules post-translationally by removing acetyl groups from protein substrates ranging from histones to transcription factors and orchestrate cellular stress response by maintenance of genome integrity and protein stability. Finally, SOD belong to the first level of antioxidant defence preventing lipid and protein oxidation at the very early stages. All vitagenes operate in concert building a reliable system of stress detection and adequate response and are considered to be key elements in stress adaptation. Indeed, further work is required to understand molecular mechanisms of the interactions of vitagenes with various signalling pathways and transcription factors in the cell to build an effective adaptive response to minimise the detrimental consequences of commercially-relevant stresses in poultry production.

Type
Reviews
Copyright
Copyright © World's Poultry Science Association 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BAKKEN, A.F., THALER, M.M. and SCHMID, R. (1972) Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. The Journal of Clinical Investigation 51: 530-636.Google Scholar
BAUSE, A.S. and HAIGIS, M.C. (2013) SIRT3 regulation of mitochondrial oxidative stress. Experimental Gerontology 48: 634-639.Google Scholar
BLANDER, G. and GUARENTE, L. (2004) The Sir2 family of protein deacetylases. Annual Review of Biochemistry 73: 417-435.CrossRefGoogle ScholarPubMed
CALABRESE, V., BOYD-KIMBALL, D., SCAPAGNINI, G. and BUTTERFIELD, D.A. (2004) Nitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes. In Vivo 18: 245-267.Google Scholar
CALABRESE, V., GUAGLIANO, E., SAPIENZA, M., PANEBIANCO, M., CALAFATO, S., PULEO, E., PENNISI, G., MANCUSO, C., BUTTERFIELD, D.A. and STELLA, A.G. (2007) Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochemical Research 32: 757-773.CrossRefGoogle ScholarPubMed
CALABRESE, V., CORNELIUS, C., MANCUSO, C., BARONE, E., CALAFATO, S., BATES, T., RIZZARELLI, E. and KOSTOVA, A.T. (2009a) Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Frontiers in Bioscience 14: 376-397.CrossRefGoogle ScholarPubMed
CALABRESE, V., CORNELIUS, C., DINKOVA-KOSTOVA, A.T. and CALABRESE, E.J. (2009b) Vitagenes, cellular stress response and acetylcarnitine: relevance to hormesis. Biofactors 35: 146-160.CrossRefGoogle ScholarPubMed
CALABRESE, V., SCAPAGNINI, G., DAVINELLI, S., KOVERECH, G., KOVERECH, A., DE PASQUALE, C., SALINARO, A.T., SCUTO, M., CALABRESE, E.J. and GENAZZANI, A.R. (2014) Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. Journal of Cellul Communication and Signaling 8: 369-384.CrossRefGoogle ScholarPubMed
CAO, Z., HAN, Z., SHAO, Y., GENG, H., KONG, X. and LIU, S. (2011) Proteomic analysis of chicken embryonic trachea and kidney tissues after infection in ovo by avian infectious bronchitis coronavirus. Proteome Science 9: 11.Google Scholar
CENCIONI, C., SPALLOTTA, F., MAI, A., MARTELLI, F., FARSETTI, A., ZEIHER, M. and GAETANO, C. (2015) Sirtuin function in aging heart and vessels. Journal of Molecular and Cellular Cardiology 83: 55-61.Google Scholar
CHEN, B., ZANG, W., WANG, J., HUANG, Y., HE, Y., YAN, L., LIU, J. and ZHENG, W. (2015) The chemical biology of sirtuins. Chemical Society Reviews 44: 5246-5264.CrossRefGoogle ScholarPubMed
DALI-YOUCEF, N., LAGOUGE, M., FROELICH, S., KOEHL, C., SCHOONJANS, K. and AUWERX, J. (2007) Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Annals of Medicine 39: 335-345.Google Scholar
DALY, K.A., LEFEVRE, C., NICHOLAS, K., DEANE, E. and WILLIAMSON, P. (2008) Characterisation and expression of Peroxiredoxin 1 in the neonatal tammar wallaby (Macropus eugenii). Comparative Biochemistry and Physiology B Biochemistry and Molecular Biology 149: 108-119.Google Scholar
FANG, X.L., ZHU, X.T., CHEN, S.F., ZHANG, Z.Q., ZENG, Q.J., DENG, L., PENG, J.L., YU, J.J., WANG, L.N., WANG, S.B., GAO, P., JIANG, Q.Y. and SHU, G. (2014) Differential gene expression pattern in hypothalamus of chickens during fasting-induced metabolic reprogramming: functions of glucose and lipid metabolism in the feed intake of chickens. Poultry Science 93: 2841-2854.Google Scholar
FISININ, V.I. and SURAI, P.F. (2011a) Effective protection from stresses in poultry production: from vitamins to vitagenes. Part 1. Poultry and Poultry Products(Ptitza I Ptitzeproducti, Moscow) 5: 23-26.Google Scholar
FISININ, V.I. and SURAI, P.F. (2011b) Effective protection from stresses in poultry production: from vitamins to vitagenes. Part 2. Poultry and Poultry Products(Ptitza I Ptitzeproducti, Moscow) 6: 10-13.Google Scholar
GLADYSHEV, V.N., JEANG, K.T. and STADTMAN, T.C. (1996) Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proceedings of the National Academy of Sciences of the USA 93: 6146-6151.Google Scholar
GOWDY, K.M. (2004) Selenium Supplementation and Antioxidant Protection in Broiler Chickens. M. Sci. Thesis, The Graduate School, North Carolina State University, Raleigh, NC 27695, USA.Google Scholar
GOWDY, K.M., EDENS, F.W. and MAHMOUD, K.Z. (2015) Comparative Effects of Various Forms of Selenium on Thioredoxin Reductase Activity in Broiler Chickens. International Journal of Poultry Science 14: 376-382.CrossRefGoogle Scholar
GROMER, S., URIG, S. and BECKER, K. (2004) The thioredoxin system- from science to clinic. Medical Research Reviews 24: 40-89.Google Scholar
HAN, J.Y., SONG, K.D., SHIN, J.H., HAN, B.K., PARK, T.S., PARK, H.J., KIM, J.K., LILLEHOJ, H.S., LIM, J.M. and KIM, H. (2005) Identification and characterisation of the peroxiredoxin gene family in chickens. Poultry Science 84: 1432-1438.CrossRefGoogle ScholarPubMed
HAN, C., WAN, H., MA, S., LIU, D., HE, F., WANG, J., PAN, Z., LIU, H., LI, L., HE, H., XU, H., WEI, S. and XU, F. (2014) Role of mammalian sirtuin 1 (SIRT1) in lipids metabolism and cell proliferation of goose primary hepatocytes. Molecular and Cellular Endocrinology 382: 282-291.Google Scholar
HICKEY, A.J., JÜLLIG, M., AITKEN, J., LOOMES, K., HAUBER, M.E. and PHILLIPS, A.R. (2012) Birds and longevity: does flight driven aerobicity provide an oxidative sink? Ageing Research Reviews 11: 242-253.Google Scholar
HOLMGREN, A. (1977) Bovine thioredoxin system. Purification of thioredoxin reductase from calf liver and thymus and studies of its function in disulphide reduction. The Journal of Biological Chemistry 252: 4600-4606.CrossRefGoogle Scholar
HOLMGREN, A. (1989) Thioredoxin and glutaredoxin systems. The Journal of Biological Chemistry 264: 13963-13966.Google Scholar
HOLMGREN, A. (2000) Antioxidant function of thioredoxin and glutaredoxin systems. Antioxidants and Redox Signalling 2: 811-820.CrossRefGoogle ScholarPubMed
HOLMGREN, A. (2001) Selenoproteins of the thioredoxin system, in: HATFIELD, D.L. (Ed.) Selenium. Its Molecular Biology and Role in Human Health, pp. 179-188 (Kluwer Academic Publishers, Boston-Dordrecht-London).Google Scholar
HOUTKOOPER, R.H., PIRINEN, E. and AUWERX, J. (2012) Sirtuins as regulators of metabolism and health span. Nature Reviews . Molecular Cell Biology 13: 225-238.Google Scholar
HU, L., YU, W., LI, Y., LI, Y., GUO, J. and TANG, Z. (2015) Prokaryotic expression and antioxidant properties of mitochondrial thioredoxin-2 from broiler chicken. Chinese Veterinary Science 4: S831.Google Scholar
HUANG, J., RUAN, J., TANG, X., ZHANG, W., MA, H. and ZOU, S. (2011) Comparative proteomics and phosphoproteomics analyses of DHEA-induced on hepatic lipid metabolism in broiler chickens. Steroids 76: 1566-1574.Google Scholar
HUBBARD, B.P. and SINCLAIR, D.A. (2014) Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends in Pharmacological Sciences 35: 146-154.CrossRefGoogle ScholarPubMed
JONES, S.W. and LUK, K.C. (1988) Isolation of a chicken thioredoxin cDNA clone. Thioredoxin mRNA is differentially expressed in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. Journal of Biological Chemistry 263: 9607-9611.Google Scholar
KOHÁRYOVÁ, M. and KOLLÁROVÁ, M. (2015) Thioredoxin system - a novel therapeutic target. General Physiology and Biophysics 34: 221-233.CrossRefGoogle ScholarPubMed
LAVRIC, M., MAUGHAN, M.N., BLISS, T.W., DOHMS, J.E., BENCINA, D., KEELER, C.L. (Jr) and NARAT, M. (2008) Gene expression modulation in chicken macrophages exposed to Mycoplasma synoviae or Escherichia coli. Veterinary Microbiology 126: 111-121.CrossRefGoogle ScholarPubMed
LEE, S.H., LILLEHOJ, H.S., JANG, S.I., JEONG, M., KIM, D.K., XU, S., LEE, S.K., KIM, J.B., PARK, H.J., KIM, H.R. and BRAVO, D.M. (2014) Immune and anti-oxidant effects of in ovo selenium proteinate on post-hatch experimental avian necrotic enteritis. Veterinary Parasitology 206: 115-122.Google Scholar
LIN, S.L., WANG, C.W., TAN, S.R., LIANG, Y., YAO, H.D., ZHANG, Z.W. and XU, S.W. (2014) Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids. Biological Trace Element Research 161: 263-271.CrossRefGoogle ScholarPubMed
LIANG, Y., LIN, S.L., WANG, C.W., YAO, H.D., ZHANG, Z.W. and XU, S.W. (2014) Effect of selenium on selenoprotein expression in the adipose tissue of chickens. Biological Trace Element Research 160: 41-48.CrossRefGoogle ScholarPubMed
LU, J. and HOLMGREN, A. (2014) The thioredoxin antioxidant system. Free Radical Biology & Medicine 66: 75-87.Google Scholar
LUTHMAN, M. and HOLMGREN, A. (1982) Rat liver thioredoxin and thioredoxin reductase: purification and characterisation . Biochemistry 21: 6628-6633.Google Scholar
MARKLUND, S.L., HOLME, E. and HELLNER, L. (1982) Superoxide dismutase in extracellular fluids. Clinica Chimica Acta 126: 41-51.Google Scholar
MARZONI, M., CASTILLO, A., SAGONA, S., CITTI, L., ROCCHICCIOLI, S., ROMBOLI, I. and FELICIOLI, A. (2013) A proteomic approach to identify seminal plasma proteins in roosters (Gallus gallus domesticus). Animal Reproduction Science 140: 216-223.CrossRefGoogle ScholarPubMed
MERKSAMER, P.I., LIU, Y., HE, W., HIRSCHEY, M.D., CHEN, D. and VERDIN, E. (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging 5: 144-150.Google Scholar
MCCORD, J.M. and FRIDOVICH, I. (1969) Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244: 6049-6055.Google Scholar
MIAO, L. and ST CLAIR, D.K. (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radical Biology and Medicine 47: 344-356.CrossRefGoogle ScholarPubMed
MORIMOTO, R.I., HUNT, C., HUANG, S.Y., BERG, K.L. and BANERJI, S.S. (1986) Organisation, nucleotide sequence, and transcription of the chicken HSP70 gene. Journal of Biological Chemistry 261: 12692-12699.CrossRefGoogle ScholarPubMed
MORRIS, B.J. (2013) Seven sirtuins for seven deadly diseases of aging. Free Radical Biology & Medicine 56: 133-171.Google Scholar
MUSTACICH, D. and POWIS, G. (2000) Thioredoxin reductase. The Biochemical Journal 346: 1-8.Google Scholar
NOGUEIRAS, R., HABEGGER, K.M., CHAUDHARY, N., FINAN, B., BANKS, A.S., DIETRICH, M.O., HORVATH, T.L., SINCLAIR, D.A., PFLUGER, P.T. and TSCHÖP, M.H. (2012) Sirtuin 1 and sirtuin 3: physiological modulators of metabolism. Physiological Reviews 92: 1479-1514.CrossRefGoogle ScholarPubMed
PALLÀS, M., VERDAGUER, E., TAJES, M., GUTIERREZ-CUESTA, J. and CAMINS, A. (2008) Modulation of sirtuins: new targets for anti-ageing. Recent Patents on CNS Drug Discovery 3: 61-69.Google Scholar
PLACHA, I., TAKACOVA, J., RYZNER, M., COBANOVA, K., LAUKOVA, A., STROMPFOVA, V., VENGLOVSKA, K. and FAIX, S. (2014) Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. British Poultry Science 55: 105-114.CrossRefGoogle ScholarPubMed
POWIS, G., MUSTACICH, D. and COON, A. (2000) The role of the redox protein thioredoxin in cell growth and cancer. Free Radical Biology and Medicine 29: 312-322.Google Scholar
POYNTON, R.A. and HAMPTON, M.B. (2014) Peroxiredoxins as biomarkers of oxidative stress. Biochimica et Biophysica Acta 1840: 906-912.Google Scholar
RADAK, Z., KOLTAI, E., TAYLOR, A.W., HIGUCHI, M., KUMAGAI, S., OHNO, H., GOTO, S. and BOLDOGH, I. (2013) Redox-regulating sirtuins in aging, caloric restriction, and exercise. Free Radical Biology & Medicine 58: 87-97.Google Scholar
RATTAN, S.I. (1998) The nature of gerontogenes and vitagenes. Antiaging effects of repeated heat shock on human fibroblasts. Annals of the New York Academy of Science 854: 54-60.Google Scholar
RECZEK, C.R. and CHANDEL, N.S. (2015) ROS-dependent signal transduction. Current Opinion in Cell Biology 33: 8-13.CrossRefGoogle ScholarPubMed
RITOSSA, F. (1962) A new puffing pattern induced by temperature shock and DNP in drosophila. Cellular and Molecular Life Sciences 18: 571-573.Google Scholar
RYTER, S.W., ALAM, J. and CHOI, A.M. (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiological Reviews 86: 583-650.Google Scholar
SMITH, A.D., MORRIS, V.C. and LEVANDER, O.A. (2001) Rapid determination of glutathione peroxidase and thioredoxin reductase activities using a 96-well microplate format: comparison to standard cuvette-based assays. International Journal for Vitamin and Nutrition Research 71: 87-92.Google Scholar
SURAI, P.F. (2006) Selenium in Nutrition and Health. Nottingham University Press, Nottingham, UK.Google Scholar
SURAI, P.F. (2015a) Antioxidant Systems in Poultry Biology: Superoxide Dismutase. Journal of Animal Nutrition 1 (1): 8.Google Scholar
SURAI, P.F. (2015b) Antioxidant Action of Carnitine: Molecular Mechanisms and Practical Applications. EC Veterinary Science 2: 66-84.Google Scholar
SURAI, P.F. (2015c) Antioxidant systems in poultry biology: Heat Shock Proteins. Journal of Science 5: 1188-1222.Google Scholar
SURAI, P.F. (2015d) Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants 4: 204-247.Google Scholar
SURAI, P.F. and FISININ, V.I. (2012a) Innovative methods of fighting stresses in poultry production: From vitamins to sirtuins and vitagenes. Effective Poultry Production(Ukraine) 8: 8-13.Google Scholar
SURAI, P.F. and FISININ, V.I. (2012b) Modern methods of fighting stresses in poultry production: from antioxidants to vitagenes. Agricultural Biology(Selskokhozaistvennaya Biologia, Russia) 4: 3-13.Google Scholar
SURAI, P.F. and FISININ, V.I. (2015) Antioxidant-Prooxidant Balance in the Intestine: Applications in Chick Placement and Pig Weaning. Journal of Veterinary Science & Medicine 3 (1): 16.Google Scholar
SURAI, P.F. and FISININ, V.I. (2016a) Vitagenes in poultry production. Part 1. Technological and environmental stresses. World's Poultry Science Journal(In Press).Google Scholar
SURAI, P.F. and FISININ, V.I. (2016b) Vitagenes in poultry production. Part 2. Nutritional and internal stresses. World's Poultry Science Journal(In Press).Google Scholar
SURAI, P.F. and FISININ, V.I. (2016c) Antioxidant system regulation: from vitamins to vitagenes, in: WATSON, R.R. & DE MEESTER, F. (Eds) Handbook of Cholesterol, pp. 451-481 )Wageningen Academic Publishers, Wageningen).Google Scholar
TANAKA, T., HOSOI, F., YAMAGUCHI-IWAI, Y., NAKAMURA, H., MASUTANI, H., UEDA, S., NISHIYAMA, A., TAKEDA, S., WADA, H., SPYROU, G. and YODOI, J. (2002) Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO Journal 21: 1695-1703.Google Scholar
TROVATO SALINARO, A., CORNELIUS, C., KOVERECH, G., KOVERECH, A., SCUTO, M., LODATO, F., FRONTE, V., MUCCILLI, V., REIBALDI, M., LONGO, A., UVA, M.G. and CALABRESE, V. (2014) Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to Alzheimer's disease. Frontiers in Pharmacology 5: 129.Google Scholar
WANG, D., MASUTANI, H., OKA, S., TANAKA, T., YAMAGUCHI-IWAI, Y., NAKAMURA, H. and YODOI, J. (2006) Control of mitochondrial outer membrane permeabilisation and Bcl-xL levels by thioredoxin 2 in DT40 cells. Journal Biological Chemistry 281: 7384-7391.Google Scholar
WEBSTER, B.R., LU, Z., SACK, M.N. and SCOTT, I. (2012) The role of sirtuins in modulating redox stressors. Free Radical Biology & Medicine 52: 281-290.CrossRefGoogle ScholarPubMed
XIAO, R., POWER, R.F., MALLONEE, D., ROUTT, K., SPANGLER, L., PESCATORE, A.J., CANTOR, A.H., AO, T., PIERCE, J.L. and DAWSON, K.A. (2012) Effects of yeast cell wall-derived mannan-oligosaccharides on jejunal gene expression in young broiler chickens. Poultry Science 91: 1660-1669.Google Scholar
XU, J.X., ZHANG, C., CAO, C.Y., ZHU, S.Y., LI, H., SUN, Y.C. and LI, J.L. (2016) Dietary Selenium Status Regulates the Transcriptions of Selenoproteome and Activities of Selenoenzymes in Chicken Kidney at Low or Super-nutritional Levels. Biological Trace Element Research 170: 438-448.Google Scholar
YANG, K.T., LIN, C.Y., HUANG, H.L., LIOU, J.S., CHIEN, C.Y., WU, C.P., HUANG, C.W., OU, B.R., CHEN, C.F., LEE, Y.P., LIN, E.C., TANG, P.C., LEE, W.C., DING, S.T., CHENG, W.T. and HUANG, M.C. (2008) Expressed transcripts associated with high rates of egg production in chicken ovarian follicles. Molecular and Cellular Probes 22: 47-54.Google Scholar
YUAN, D., ZHAN, X.A. and WANG, Y.X. (2012) Effect of selenium sources on the expression of cellular glutathione peroxidase and cytoplasmic thioredoxin reductase in the liver and kidney of broiler breeders and their offspring. Poultry Science 91: 936-942.Google Scholar
ZHAO, X., YAO, H., FAN, R., ZHANG, Z. and XU, S. (2014) Selenium deficiency influences nitric oxide and selenoproteins in pancreas of chickens. Biological Trace Element Research 161: 341-249.CrossRefGoogle ScholarPubMed