Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T03:43:15.476Z Has data issue: false hasContentIssue false

Detrimental effects of electromagnetic radiation emitted from cell phone on embryo morphokinetics and blastocyst viability in mice

Published online by Cambridge University Press:  22 February 2024

Mohammad Seify
Affiliation:
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Mohammad Ali Khalili*
Affiliation:
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Fatemeh Anbari
Affiliation:
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
Yeganeh Koohestanidehaghi
Affiliation:
Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran Department of Reproductive Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
*
Corresponding author: Mohammad Ali Khalili; Email: Khalili59@hotmail.com

Summary

Electromagnetic radiation (EMR) has deleterious effects on sperm motility and viability, as well as oocyte membrane and organelle structure. The aim was to assess the effects of cell phone radiation on preimplantation embryo morphokinetics and blastocyst viability in mice. For superovulation, 20 female mice were treated with intraperitoneal (IP) injections of 10 IU pregnant mare’s serum gonadotropin (Folligon® PMSG), followed by 10 IU of human chorionic gonadotropin (hCG) after 48 h. The zygotes (n = 150) from the control group were incubated for 4 days. The experimental zygotes (n = 150) were exposed to a cell phone emitting EMR with a frequency range 900–1800 MHz for 30 min on day 1. Then, all embryos were cultured in the time-lapse system and annotated based on time points from the 2-cell stage (t2) to hatched blastocyst (tHDyz), as well as abnormal cleavage patterns. Blastocyst viability was assessed using Hoechst and propidium iodide staining. Significant increases (P < 0.05) were observed in the cleavage division time points of t2, t8, t10, and t12 of the experimental group compared with the controls. In terms of blastocyst formation parameters, a delay in embryo development was observed in the experimental group compared with the controls. Data analysis of the time intervals between the two groups showed a significant difference in the s3 time interval (P < 0.05). Also, the rates of fragmentation, reverse cleavage, vacuole formation, and embryo arrest were significantly higher in the experimental group (P < 0.05). Furthermore, the cell survival rate in the experimental group was lower than the control group (P < 0.05). Exposure to EMR has detrimental consequences for preimplantation embryo development in mice. These effects can manifest as defects in the cleavage stage and impaired blastocyst formation, leading to lower cell viability.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altun, G., Deniz, Ö. G., Yurt, K. K., Davis, D. and Kaplan, S. (2018). Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. Environmental Research, 167, 700707. doi: 10.1016/j.envres.2018.02.031 CrossRefGoogle ScholarPubMed
Anbari, F., Khalili, M. A., Sultan Ahamed, A. M., Mangoli, E., Nabi, A., Dehghanpour, F. and Sabour, M. (2021). Microfluidic sperm selection yields higher sperm quality compared to conventional method in ICSI program: A pilot study. Systems Biology in Reproductive Medicine, 67(2), 137143. doi: 10.1080/19396368.2020.1837994 CrossRefGoogle ScholarPubMed
Augustianath, T., Evans, D. A. and Anisha, G. S. (2023). Teratogenic effects of radiofrequency electromagnetic radiation on the embryonic development of chick: A study on morphology and hatchability. Research in Veterinary Science, 159, 93100. doi: 10.1016/j.rvsc.2023.04.015 CrossRefGoogle Scholar
Chatroudi, M. H., Khalili, M. A., Ashourzadeh, S., Anbari, F., Shahedi, A. and Safari, S. (2019). Growth differentiation factor 9 and cumulus cell supplementation in in vitro maturation culture media enhances the viability of human blastocysts. Clinical and Experimental Reproductive Medicine, 46(4), 166172. doi: 10.5653/cerm.2019.00402 CrossRefGoogle ScholarPubMed
Chen, J. S., Tsai, L. K., Yeh, T. Y., Li, T. S., Li, C. H., Wei, Z. H., Lo, N. W. and Ju, J. C. (2021). Effects of electromagnetic waves on oocyte maturation and embryonic development in pigs. The Journal of Reproduction and Development, 67(6), 392401. doi: 10.1262/jrd.2021-074 CrossRefGoogle ScholarPubMed
Gupta, S., Sharma, R. S. and Singh, R. (2022). Non-ionizing radiation as possible carcinogen. International Journal of Environmental Health Research, 32(4), 916940. doi: 10.1080/09603123.2020.1806212 CrossRefGoogle ScholarPubMed
Jaffar, F. H. F., Osman, K., Ismail, N. H., Chin, K. Y. and Ibrahim, S. F. (2019). Adverse effects of wi-fi radiation on male reproductive system: A systematic review. The Tohoku Journal of Experimental Medicine, 248(3), 169179. doi: 10.1620/tjem.248.169 CrossRefGoogle ScholarPubMed
Jagetia, G. C. (2022). Genotoxic effects of electromagnetic field radiations from mobile phones. Environmental Research, 212(D), 113321. doi: 10.1016/j.envres.2022.113321 CrossRefGoogle ScholarPubMed
Kim, S. M. and Kim, J. S. (2017). A review of mechanisms of implantation. Development and Reproduction, 21(4), 351359. doi: 10.12717/DR.2017.21.4.351 CrossRefGoogle ScholarPubMed
Koohestanidehaghi, Y., Khalili, M. A., Fesahat, F., Seify, M., Mangoli, E., Kalantar, S. M., Annarita Nottola, S., Macchiarelli, G. and Grazia Palmerini, M. (2023). Detrimental effects of radiofrequency electromagnetic waves emitted by mobile phones on morphokinetics, oxidative stress, and apoptosis in mouse preimplantation embryos. Environmental Pollution, 336, 122411. doi: 10.1016/j.envpol.2023.122411 CrossRefGoogle ScholarPubMed
Lundin, K. and Park, H. (2020). Time-lapse technology for embryo culture and selection. Upsala Journal of Medical Sciences, 125(2), 7784. doi: 10.1080/03009734.2020.1728444 CrossRefGoogle ScholarPubMed
Maalouf, J., Pelletier, A., Corona, A., Gay-Quéheillard, J., Bach, V., de Seze, R. and Selmaoui, B. (2023). Dose- and time-dependent effects of radiofrequency electromagnetic field on adipose tissue: Implications of thermoregulation and mitochondrial signaling. International Journal of Molecular Sciences, 24(13), 10628. doi: 10.3390/ijms241310628 CrossRefGoogle ScholarPubMed
Mahaldashtian, M., Khalili, M. A., Anbari, F., Seify, M. and Belli, M. (2022). Challenges on the effect of cell phone radiation on mammalian embryos and fetuses: A review of the literature. Zygote, 30(2), 176182. doi: 10.1017/S0967199421000691 CrossRefGoogle Scholar
Safian, F., Khalili, M. A., Khoradmehr, A., Anbari, F., Soltani, S. and Halvaei, I. (2016). Survival assessment of mouse preimplantation embryos after exposure to cell phone radiation. Journal of Reproduction and Infertility, 17(3), 138143.Google ScholarPubMed
Santini, S. J., Cordone, V., Falone, S., Mijit, M., Tatone, C., Amicarelli, F. and Di Emidio, G. (2018). Role of mitochondria in the oxidative stress induced by electromagnetic fields: Focus on reproductive systems. Oxidative Medicine and Cellular Longevity, 2018, 5076271. doi: 10.1155/2018/5076271 CrossRefGoogle ScholarPubMed
Soto-Heras, S. and Paramio, M. T. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 132, 342350. doi: 10.1016/j.rvsc.2020.07.013 CrossRefGoogle ScholarPubMed
Szekeres-Bartho, J. (2016). Successful implantation from the embryonic aspect. American Journal of Reproductive Immunology, 75(3), 382387. doi: 10.1111/aji.12448 CrossRefGoogle ScholarPubMed
Üstündağ, Ü. V., Özen, M. S., Ünal, İ., Ateş, P. S., Alturfan, A. A., Akalın, M., Sancak, E. and Emekli-Alturfan, E. (2020). Oxidative stress and apoptosis in electromagnetic waves exposed zebrafish embryos and protective effects of conductive nonwoven fabric. Cellular and Molecular Biology, 66(1), 7075. doi: 10.14715/cmb/2019.66.1.12 CrossRefGoogle ScholarPubMed
Yahyazadeh, A., Deniz, Ö. G., Kaplan, A. A., Altun, G., Yurt, K. K. and Davis, D. (2018). The genomic effects of cell phone exposure on the reproductive system. Environmental Research, 167, 684693. doi: 10.1016/j.envres.2018.05.017 CrossRefGoogle ScholarPubMed
Yenilmez, F. (2022). Effect of in ovo vitamin C injection against mobile phone radiation on post-hatch performance of broiler chicks. Veterinary Sciences, 9(11), 613. doi: 10.3390/vetsci9110613 CrossRefGoogle ScholarPubMed