Hostname: page-component-5d59c44645-mhl4m Total loading time: 0 Render date: 2024-03-02T08:00:03.982Z Has data issue: false hasContentIssue false

Morphometric characterization of the first blastomeres of rainbow trout (Oncorhynchus mykiss)

Published online by Cambridge University Press:  18 January 2012

Iván I. Valdebenito*
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
Rubén R. Sánchez
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
Brian R. Effer
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile. Universidad del Magdalena, Facultad de Ingeniería, Programa de Ingeniería Pesquera, Carrera 32 No. 22-08 Sector San Pedro Alejandrino, Santa Marta, Colombia.
Andrea M. Ubilla
Affiliation:
Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile.
*
All correspondence to: Iván I. Valdebenito. Universidad Católica de Temuco, Facultad de Recursos Naturales, Escuela de Acuicultura, Rudecindo Ortega 02950 Casilla 15-D, Temuco, Chile. Tel: +56 045 205510. e-mail: ivisler@uct.cl

Summary

In the following investigation the morphometric characteristics of the first two blastomeres of rainbow trout (Oncorhynchus mykiss) were determined. Embryos were incubated at 9°C and then fixed in a Stockard solution every 30 min starting from 8.5 to 12.5 h of incubation post fertilization. Embryonic discs were extracted and microphotographs were taken with Q Capture Pro 5.0 software using a stereomicroscope Olympus SZX7. The average size of the blastodiscs was 941.22 ± 160.42 μm. The first cleavage finished after approximately 12 h of incubation. The first two blastomeres were regularly symmetrical in their morphology. Blastomere 1 had an average length (L) of 942.68 ± 105.56 μm and width (W) of 467.34 ± 64.33 μm. Blastomere 2 had an average length of 887.60 ± 101.65 and width of 454.49 ± 47.25 μm (n = 91). Significant differences were found between the length and width of blastomeres 1 and 2. The proportion between the length of blastomeres 1 and 2 was 0.94 ± 0.07 (n = 91); between the width of blastomeres 1 and 2 it was 0.88 ± 0.11 (n = 91); and the width/length ratio was 0.51 ± 0.09 (n = 182). It was concluded that rainbow trout blastomeres tend to be asymmetrical in length with a higher dispersion of widths.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aegerter, S., Jalabert, B. & Bobe, J. (2005). Large scale real-time PCR analysis of mRNA abundance in rainbow trout eggs in relationship with egg quality and postovulatory ageing. Mol. Reprod. Dev. 72, 377–85.CrossRefGoogle Scholar
Akiyama, M., Tero, A. & Kobayashi, R. (2010). A mathematical model of cleavage. J. Theor. Biol. 264, 8494.CrossRefGoogle ScholarPubMed
Avery, T. & Brown, J. (2005). Investigating the relationship among abnormal patterns of cell cleavage, egg mortality and early larval condition in Limanda ferruginea. J. Fish Biol. 67, 890–6.CrossRefGoogle Scholar
Avery, T., Killen, S. & Hollinger, T. (2009). The relationship of embryonic development, mortality, hatching success, and larval quality to normal or abnormal early embryonic cleavage in Atlantic cod, Gadus morhua. Aquaculture 289, 265–73.CrossRefGoogle Scholar
Ballard, W. (1973). Normal embryonic stages for salmonid fishes, based on Salmo gairdneri Richardson and Salvelinus fontinalis (Mitchill). J. Exp. Zool. 184, 725.CrossRefGoogle Scholar
Bobe, J. & Labbé, C. (2010). Egg and sperm quality in fish. Gen. Comp. Endocrinol. 165, 535–48.CrossRefGoogle ScholarPubMed
Bustos, C. & Landaeta, M. (2005). Development of eggs and early larvae of the southern hake, Merluccius australis, reared under laboratory conditions (in Spanish). Gayana 69, 402–8.Google Scholar
Costello, D., Davidson, M., Eggers, A., Fox, M. & Henley, C. (1957). Methods for Obtaining and Handling Marine Eggs and Embryos. Marine Biological Laboratory: Woods Hole, Massachusetts p. 247.Google Scholar
Cuartas, A., Rosas, J., Velasquez, A. & Cabrera, T. (2003). Hatching induction, embryonic and larval development of grunt Haemulon bonariense Cuvier, 1830 (Pisces: Haemulidae) (In Spanish). Revista de Biología Marina Oceanografia 38, 2737.Google Scholar
Gorodilov, Y. N. (1983). Stages of embryonic development in Atlantic salmon, Salmo salar L. II Description and chronology. GosNIORKh 200, 107–26.Google Scholar
Hershberger, W. & Hostuttler, M. (2005). Variation in time to first cleavage in rainbow trout Oncorhynchus mykiss: A major factor in induction of tetraploids. J. World Aquacul. Soc. 36, 96102.CrossRefGoogle Scholar
Hershberger, W. & Hostuttler, M. (2007). Protocols for more effective induction of tetraploid rainbow trout. Aquaculture 69, 367–72.Google Scholar
Killeen, J., McClay, H. & Johnston, I. (1999). Development in Salmo trutta at different temperatures, with a quantitative scoring method for intraspecific comparisons. Journal Fish Biol. 55, 382404.CrossRefGoogle Scholar
Kjørsvik, E., Mangor-Jensen, A. & Holmefjord, I. (1990). Egg quality in fishes. Adv. Mar. Biol. 26, 71113.CrossRefGoogle Scholar
Kjørsvik, E., Hoehne, . Reitan, K. & Reitan, K. (2003). Egg and larval quality criteria as predictive measures for juvenile production in turbot (Scophthalmus maximus L.). Aquaculture 227, 920.CrossRefGoogle Scholar
Kunz, Y. (2004). Developmental biology of teleost fishes, Fish & Fisheries Series. Springer. 636 pp.Google Scholar
Lahnsteiner, F. & Patarnello, P. (2005). The shape of the lipid vesicle is a potential marker for egg quality determination in the gilthead sea bream, Spares aerate, and in the sharp snout sea bream, Diplodus puntazzo. Aquaculture 246, 423–35.CrossRefGoogle Scholar
Moran, D., Smith, C., Gara, B. & Poortenaar, C. (2007). Reproductive behaviour and early development in yellowtail kingfish (Seriola lalandi Valenciennes 1833). Aquaculture 262, 95104.CrossRefGoogle Scholar
Pavlov, D. & Emel'yanova, N. (2008). Morphological criteria of egg quality in marine fishes: Activation and cleavage of eggs of Zebrasoma scopas (Acanthuridae). J. Ichthyol. 48, 533–48.CrossRefGoogle Scholar
Pavlov, D. & Moksness, E. (1994). Production and quality of eggs obtained from wolfish (Anarhichas lupus L.) reared in captivity. Aquaculture 122, 295312.CrossRefGoogle Scholar
Pavlov, D., Dzerzhinsky, K. & Radzikhovskaya, E. (1992). Assessing the quality of roe from White Sea wolf fish (Anarhichas lupus marisalhi L.), obtained under experimental conditions. J. Ichthyol. 32, 88104.Google Scholar
Rappaport, R. (1961). Experiments concerning the cleavage stimulus in sand dollar eggs. J. Exp. Zool. 148, 81–9.CrossRefGoogle ScholarPubMed
Shields, R., Brown, N. & Bromage, N. (1997). Blastomere morphology as predictive measure of fish egg viability. Aquaculture 155, 112.CrossRefGoogle Scholar
Von Westernhagen, H. (1988). Sublethal effects of pollutants on fish. En: Fish Physiology Part A (eggs and larvae), (Hoar, W.S. & Randall, D.J., Ed.). Academic Press, Inc. London. pp. 253346.Google Scholar