Skip to main content

Autophagy and ubiquitin-mediated proteolysis may not be involved in the degradation of spermatozoon mitochondria in mouse and porcine early embryos

  • Yong-Xun Jin (a1), Zhong Zheng (a2), Xian-Feng Yu (a3), Jia-Bao Zhang (a3), Suk Namgoong (a1), Xiang-Shun Cui (a1), Sang-Hwan Hyun (a2) and Nam-Hyung Kim (a4)...

The mitochondrial genome is maternally inherited in animals, despite the fact that paternal mitochondria enter oocytes during fertilization. Autophagy and ubiquitin-mediated degradation are responsible for the elimination of paternal mitochondria in Caenorhabditis elegans; however, the involvement of these two processes in the degradation of paternal mitochondria in mammals is not well understood. We investigated the localization patterns of light chain 3 (LC3) and ubiquitin in mouse and porcine embryos during preimplantation development. We found that LC3 and ubiquitin localized to the spermatozoon midpiece at 3 h post-fertilization, and that both proteins were colocalized with paternal mitochondria and removed upon fertilization during the 4-cell stage in mouse and the zygote stage in porcine embryos. Sporadic paternal mitochondria were present beyond the morula stage in the mouse, and paternal mitochondria were restricted to one blastomere of 4-cell embryos. An autophagy inhibitor, 3-methyladenine (3-MA), did not affect the distribution of paternal mitochondria compared with the positive control, while an autophagy inducer, rapamycin, accelerated the removal of paternal mitochondria compared with the control. After the intracytoplasmic injection of intact spermatozoon into mouse oocytes, LC3 and ubiquitin localized to the spermatozoon midpiece, but remnants of undegraded paternal mitochondria were retained until the blastocyst stage. Our results show that paternal mitochondria colocalize with autophagy receptors and ubiquitin and are removed after in vitro fertilization, but some remnants of sperm mitochondrial sheath may persist up to morula stage after intracytoplasmic spermatozoon injection (ICSI).

Corresponding author
All correspondence to: Nam-Hyung Kim. Chungbuk National University, Department of Animal Science, Cheongju, Chungbuk, South Korea. e-mail:
Hide All
Aitken, R.J. (1995). Free radicals, lipid peroxidation and spermatozoon function. Reprod. Fertil. Dev. 7, 659–68.
Al Rawi, S., Louvet-Vallee, S., Djeddi, A., Sachse, M., Culetto, E., Hajjar, C., Boyd, L., Legouis, R. & Galy, V. (2011). Postfertilization autophagy of spermatozoon organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–7.
Ankel-Simons, F. & Cummins, J.M. (1996). Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc. Natl. Acad. Sci. USA 93, 13859–63.
Birky, C.W., Jr. (2001). The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu. Rev. Genet. 35, 125–48.
Blommaart, E.F., Luiken, J.J., Blommaart, P.J., van Woerkom, G.M. & Meijer, A.J. (1995). Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J. Biol. Chem., 270, 2320–6.
Cummins, J.M., Wakayama, T. & Yanagimachi, R. (1997). Fate of microinjected spermatozoon components in the mouse oocyte and embryo. Zygote 5, 301–8.
Gyllensten, U., Wharton, D., Josefsson, A. & Wilson, A.C. (1991). Paternal inheritance of mitochondrial DNA in mice. Nature 352, 255–7.
Hecht, N.B., Liem, H., Kleene, K.C., Distel, R.J. & Ho, S.M. (1984). Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA. Dev. Biol. 102, 452–61.
Hiraoka, J. & Hirao, Y. (1988). Fate of spermatozoon tail components after incorporation into the hamster egg. Gamete Res. 19, 369–80.
Houshmand, M., Holme, E., Hanson, C., Wennerholm, U.B. & Hamberger, L. (1997). Is paternal mitochondrial DNA transferred to the offspring following intracytoplasmic spermatozoon injection. J. Assist. Reprod. Genet. 14, 223–7.
Jansen, R.P. & de Boer, K. (1998). The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol. Cell. Endocrinol. 145, 81–8.
Jin, Y.X., Cui, X.S., Yu, X.F., Lee, S.H., Wang, Q.L., Gao, W.W., Xu, Y.N., Sun, S.C., Kong, I.K. & Kim, N.H. (2012). Cat fertilization by mouse spermatozoon injection. Zygote 20, 371–8.
Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M. & Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507–13.
Kaneda, H., Hayashi, J., Takahama, S., Taya, C., Lindahl, K.F. & Yonekawa, H. (1995). Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc. Natl. Acad. Sci. USA 92, 4542–6.
Kraft, C., Peter, M. & Hofmann, K. (2010). Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell. Biol. 12, 836–41.
Luo, S.M. & Sun, Q.Y. (2013). Autophagy is not involved in the degradation of spermatozoon mitochondria after fertilization in mice. Autophagy 9, 2156–7.
Luo, S.M., Ge, Z.J., Wang, Z.W., Jiang, Z.Z., Wang, Z.B., Ouyang, Y.C., Hou, Y., Schatten, H. & Sun, Q.Y. (2013). Unique insights into maternal mitochondrial inheritance in mice. Proc. Natl. Acad. Sci. USA 110, 13038–43.
Nishida, Y., Arakara, T., Fujitani, K., Yamaguchi, H., Mizuta, H., Kanaseki, T., Komatsu, M., Otsu, K., Tsujimoto, Y. & Shimizu, S. (2009). Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–8.
Nishimura, Y., Yoshinari, T., Naruse, K., Yamada, T., Sumi, K., Mitani, H., Higashiyama, T. & Kuroiwa, T. (2006). Active digestion of spermatozoon mitochondrial DNA in single living spermatozoon revealed by optical tweezers. Proc. Natl. Acad. Sci. USA 103, 1382–7.
Noda, T. & Ohsumi, Y. (1998). Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–6.
Politi, Y., Gal, L., Kalifa, Y., Ravid, L., Elazar, Z. & Arama, E. (2014). Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila . Dev. Cell 29, 305–20.
Rusten, T.E., Lindmo, K., Juhasz, G., Sass, M., Seglen, P.O., Brech, A. & Stenmark, H. (2004). Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev. Cell 7, 179–92.
Sato, M. & Sato, K. (2011). Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–4.
Sato, M. & Sato, K. (2013). Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta 1833, 1979–84.
Shalgi, R., Magnus, A., Jones, R. & Phillips, D.M. (1994). Fate of spermatozoon organelles during early embryogenesis in the rat. Mol. Reprod. Dev. 37, 264–71.
Sheng, Y., Sun, B., Guo, W.T., Zhang, Y.H., Liu, X., Xing, Y. & Dong, D.L. (2013). 3-Methyladenine induces cell death and its interaction with chemotherapeutic drugs is independent of autophagy. Biochem. Biophys. Res. Commun. 432, 59.
Song, W.H., Ballard, J.W., Yi, Y.J. & Sutovsky, P. (2014). Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility. Biomed. Res. Int. 2014, 981867.
Sun, S.C., Xu, Y.N., Li, Y.H., Lee, S.E., Jin, Y.X., Cui, X.S. & Kim, N.H. (2011). WAVE2 regulates meiotic spindle stability, peripheral positioning and polar body emission in mouse oocytes. Cell Cycle 10, 1853–60.
Sun, S.C., Gao, W.W., Xu, Y.N., Jin, Y.X., Wang, Q.L., Yin, X.J., Cui, X.S. & Kim, N.H. (2012). Degradation of actin nucleators affects cortical polarity of aged mouse oocytes. Fertil. Steril. 97, 984–90.
Sutovsky, P., Hewitson, L., Simerly, C.R., Tengowski, M.W., Navara, C.S., Haavisto, A. & Schatten, G. (1996a). Intracytoplasmic spermatozoon injection for Rhesus monkey fertilization results in unusual chromatin, cytoskeletal, and membrane events, but eventually leads to pronuclear development and spermatozoon aster assembly. Hum. Reprod. 11, 1703–12.
Sutovsky, P., Navara, C.S. & Schatten, G. (1996b). Fate of the spermatozoon mitochondria, and the incorporation, conversion, and disassembly of the spermatozoon tail structures during bovine fertilization. Biol. Reprod. 55, 1195–205.
Sutovsky, P., Moreno, R.D., Ramalho-Santos, J., Dominko, T., Simerly, C. & Schatten, G. (1999). Ubiquitin tag for spermatozoon mitochondria. Nature 402, 371–2.
Sutovsky, P., Moreno, R.D., Ramalho-Santos, J., Dominko, T., Simerly, C. & Schatten, G (2000). Ubiquitinated spermatozoon mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol. Reprod. 63, 583–90.
Sutovsky, P., McCauley, T.C., Sutovsky, M. & Day, B.N. (2003). Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132. Biol. Reprod. 68, 1793–800.
Szollosi, D. (1965). The fate of spermatozoon middle-piece mitochondria in the rat egg. J. Exp. Zool. 159, 367–77.
Takatsuka, C., Inoue, Y., Matsuoka, K. & Moriyasu, Y. (2004). 3-Methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol. 45, 265–74.
Tesarik, J., Rienzi, L., Ubaldi, F., Mendoza, C. & Greco, E. (2002). Use of a modified intracytoplasmic spermatozoon injection technique to overcome spermatozoon-borne and oocyte-borne oocyte activation failures. Fertil. Steril. 78, 619–24.
Torroni, A., D’Urbano, L., Rengo, C., Scozzari, R., Sbracia, M., Manna, C., Cavazzini, C. & Sellitto, D. (1998). Intracytoplasmic injection of spermatozoa does not appear to alter the mode of mitochondrial DNA inheritance. Hum. Reprod. 13, 1747–9.
Yorimitsu, T., Klionsky, D.J. (2005). Autophagy: molecular machinery for self-eating. Cell Death Diff. 12, 1542–52.
Wang, K. & Klionsky, D.J (2011). Mitochondria removal by autophagy. Autophagy 7, 297300.
Zheng, Z., Jia, J.L., Bou, G., Hu, L.L., Wang, Z.D., Shen, X.H., Shan, Z.Y., Shen, J.L., Liu, Z.H. & Lei, L. (2012). rRNA genes are not fully activated in mouse somatic cell nuclear transfer embryos. J. Biol. Chem. 287, 19949–60.
Zhou, Q., Li, H. & Xue, D. (2011). Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans . Cell Res. 21, 1662–9.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed