Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T05:58:55.728Z Has data issue: false hasContentIssue false

The effect of bovine embryo culture without proteins supplements until day 4 on transcription level of hyaluronan synthases, receptors and mtDNA content

Published online by Cambridge University Press:  11 December 2009

A.T. Palasz*
Affiliation:
Ministry of Science and Innovation, Department of Animal Reproduction, INIA, Madrid, Spain
P. Beltrán Breña
Affiliation:
Ministry of Science and Innovation, Department of Animal Reproduction, INIA, Madrid, Spain
J. De la Fuente
Affiliation:
Ministry of Science and Innovation, Department of Animal Reproduction, INIA, Madrid, Spain
A. Gutiérrez-Adán
Affiliation:
Ministry of Science and Innovation, Department of Animal Reproduction, INIA, Madrid, Spain
*
1All correspondence to: A.T. Palasz. Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos INIA, Ctra de la Coruña Km 5.9, Madrid 28040, Spain. Fax: +34 91 347 4014. e-mail; atpalasz@gmail.com

Summary

The effect of bovine embryo culture on a flat surface, (without a surface-active compound) on the level of mRNA expression of hyaluronan (HA) synthases (Has1, Has2 and Has3), Ha receptors RHAMM and C44 receptors was evaluated by mitochondrial DNA concentration and in vitro development. Cultures were evaluated up to 96 h post-insemination (hpi) using SOFaa medium. Of the three Has isoforms, Has2 expression only increased in the bovine serum albumin (BSA)-only supplemented groups regardless of time of BSA addition. Expression of RHAMM receptors was highly dependent on the addition of HA, irrespective of the presence of BSA in the medium. In contrast, expression of the CD44 receptor gene was not affected by any treatment. The cleavage rates and number of embryos that developed to ≤8-cell stage by day 4 were not affected by lack of BSA in the medium, but increased numbers of blastocysts developed in medium supplemented with BSA from days 1 or 4 with or without HA than in medium that had HA only. Addition of both HA and BSA at day 4 increased mtDNA copy numbers at the blastocyst stage. Data suggest that the addition of BSA and/or HA at 96 hpi increased expression of RHAMM and Has2 genes, but not CD44, Has1 or Has3 genes. Higher expression levels of Has2 than Has1 and the three isoforms indicate that high- rather than low-molecular-weight HA should be used for preimplantation bovine embryo culture.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bavister, B.D., Leibfried, M.L. & Lieberman, G. (1983). Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol. Reprod. 28, 235–47.CrossRefGoogle Scholar
Bavister, B.D., Rose-Hellekant, T.A. & Pinyopummintr, T. (1992). Development of in vitro matured/in vitro fertilized bovine embryos into morulae and blastocysts in defined culture media. Theriogenology 37, 111–26.CrossRefGoogle Scholar
Biggers, J.D. (1987). Pioneering mammalian embryo culture. In The Mammalian Preimplantation Embryo: Regulation of Growth and Differentiation In Vitro. (ed. Bavister, B.D.), pp. 122. New York: Plenum Press.Google Scholar
Camenisch, T.D., Spicer, A.P., Brehm-Gibson, T., Biesterfeldt, J., Augustine, M.L., Calabro, A. Jr., Kubalak, S., Klewer, S.E. & McDonald, JA. (2000). Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–60.Google ScholarPubMed
Campbell, S., Swann, H.R., Aplin, J.D., Seif, M.W., Kimber, S.J. & Elstein, M. (1995). CD44 is expressed throughout pre-implantation human embryo development. Hum. Reprod. 10, 425–30.CrossRefGoogle ScholarPubMed
Douard, V., Hermier, D. & Blesbois, E. (2000). Changes in turkey semen lipids during liquid in vitro storage. Biol. Reprod. 63, 1450–6.CrossRefGoogle ScholarPubMed
Fenderson, B.A., Stamenkovic, I. & Aruffo, A. (1993). Localization of hyaluronan in mouse embryo during implantation, gastrulation and organogenesis. Differentiation 54, 8598.CrossRefGoogle ScholarPubMed
Furnus, C.C., Valcarcel, A., Dulout, F.N. & Errecalde, A.L. (2003). The hyaluronic acid receptor (CD44) is expressed in bovine oocytes and early stage embryos. Theriogenology 60, 1633–44.CrossRefGoogle ScholarPubMed
Gardner, D.K., Rodriguez-Martinez, H. & Lane, M. (1999). Fetal development after transfer is increased by replacing protein with the glycosaminoglycan hyaluronan for mouse embryo culture and transfer. Hum. Reprod. 14, 2575–80.CrossRefGoogle ScholarPubMed
Gotoh, S., Onaya, J., Abe, M., Miyazaki, K., Hamai, A., Horie, K. & Tokuyasu, K. (1993). Effects of the molecular weight of hyaluronic acid and its action mechanisms on experimental joint pain in rats. Ann. Rheum. Dis. 52, 817–22.CrossRefGoogle ScholarPubMed
Graham, J.K. & Foote, R.H. (1987). Effect of several lipids, fatty acyl chain length, and degree of unsaturation on the motility of bull spermatozoa after cold shock and freezing. Cryobiology 24, 4252.CrossRefGoogle ScholarPubMed
He, L., Bailey, J.L. & Buhr, M.M. (2001). Incorporating lipids into boar sperm decreases chilling sensitivity but not capacitation potential. Biol. Reprod. 64, 6979.CrossRefGoogle Scholar
Hsieh, R.H., Au, H.K., Yeh, T.S., Chang, S.J., Cheng, Y.F. & Tzeng, C.R. (2004). Decreased expression of mitochondrial genes in human unfertilized oocytes and arrested embryos. Fertil. Steril. 81, 912–8.CrossRefGoogle ScholarPubMed
Itano, N. & Kimata, K. (2002). Mammalian hyaluronan synthases. Life 54, 195–9.Google ScholarPubMed
Itano, N., Sawai, T., Yoshida, M., Lenas, P., Yamada, Y., Imagawa, M., Shinomura, T., Hamaguchi, M., Yoshida, Y., Ohnuki, Y., Miyauchi, S., Spicer, A.P., McDonald, J.A. & Kimata, K. (1999). Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J. Biol. Chem. 274, 25085–92.CrossRefGoogle ScholarPubMed
Itano, N., Sawai, T., Atsumi, F., Miyaishi, O., Taniguchi, S., Kannagi, R., Hamaguchi, M. & Kimata, K. (2004). Selective expression and functional characteristics of three.ammalian hyaluronan synthases in oncogenic malignant transformation. J. Biol. Chem. 279, 18679–87.CrossRefGoogle ScholarPubMed
Keskintepe, L., Burnely, C.A. & Brackett, B.G. (1995). Production of viable bovine blastocysts in defined in vitro conditions. Biol. Reprod. 52, 1410–7.CrossRefGoogle ScholarPubMed
Kimura, N., Konno, Y., Miyoshi, K., Matsumoto, H. & Sato, E. (2002). Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus–oocyte complexes during in vitro maturation. Biol. Reprod. 66, 707–17.CrossRefGoogle ScholarPubMed
Kraemer, P.M., Barnhart, B.J. (1978). Elevated cell-surface hyaluronate in substrate-attached cells. Exp. Cell Res. 114, 153–7.CrossRefGoogle ScholarPubMed
Lane, M., Maybach, J.M., Hooper, K., Hasler, J.F. & Gardner, D.K. (2003). Cryo-survival and development of bovine blastocysts are enhanced by culture with recombinant albumin and hyaluronan Mol. Reprod. Dev. 64, 70–8.CrossRefGoogle ScholarPubMed
Laurent, T.C. (ed.) (1998). The Chemistry, Biology and Medical Applications of Hyaluronan and its Derivatives. Wenner-Gren International Series vol. 72. London: Portland Press.Google Scholar
Marchal, R., Caillaud, M., Martoriati, A., Gerard, N., Mermillod, P. & Goudet, G. (2003). Effect of growth hormone (GH) on in vitro nuclear and cytoplasmic oocyte maturation, cumulus expansion, hyaluronan synthases, and connexins 32 and 43 expression, and GH receptor messenger RNA expression in equine and porcine species. Biol. Reprod. 69, 1013–22.CrossRefGoogle ScholarPubMed
McDonald, J.A. & Camenish, T.D. (2003). Hyaluronan: genetic insights into the complex biology of a simple polysaccharide. Glycoconjugate J. 19, 331–9.CrossRefGoogle Scholar
Palasz, A.T., Thundathil, J., Verrall, R.E. & Mapletoft, R.J. (2000). The effect of macromolecular supplementation on the surface tension of TCM-199 and the utilization of growth factors by bovine oocytes and embryos in culture. Anim. Reprod. Sci. 58, 229–40.CrossRefGoogle ScholarPubMed
Palasz, A.T., Rodriguez-Martinez, H., Beltran-Breña, P., Perez-Garnelo, S., Martinez, M.F., Gutierrez-Adan, A. & De la Fuente, J. (2007). The effect of hyaluronan, BSA and serum on bovine embryo in vitro development, ultrastructure and gene expression patterns. Mol. Reprod. Dev. 73, 1503–11.CrossRefGoogle Scholar
Palasz, A.T., Beltrán-Breña, P., Martinez, M.F., Perez-Garnelo, S.S., Ramirez, M.A., Gutiérrez-Adán, A. & De la Fuente, J. (2008). Development, molecular composition and freeze tolerance of bovine embryos cultured in TCM-199 supplemented with hyaluronan. Zygote 16, 3947.CrossRefGoogle ScholarPubMed
Prehm, P. (1984). Hyaluronate is synthesized at plasma membranes. Bioch. J. 220, 597600.CrossRefGoogle ScholarPubMed
Presti, D. & Scott, J.E. (1994). Hyaluronan-mediated protective effect against cell damage caused by enzymatically produced hydroxyl (OH.) radicals is dependent on hyaluronan molecular mass. Cell Biochem. Funct. 4, 281–8.CrossRefGoogle Scholar
Ruoslahti, E. & Yamaguchi, Y. (1991). Proteoglycans as modulators of growth factor activities. Cell 64, 867–9.CrossRefGoogle ScholarPubMed
Salustri, A., Yanagishita, M., Underhill, C.B., Laurent, T.C. & Hascall, V.C. (1992). Localization and synthesis of hyaluronic acid in the cumulus cells and mural granulosa cells of the preovulatory follicle. Dev. Biol. 151, 541–51.CrossRefGoogle ScholarPubMed
Schmits, R., Filmus, J., Gerwin, N., Senaldi, G., Kiefer, F., Kundig, T., Wakeham, A., Shahinian, A., Catzavelos, C., Rak, J., Furlonger, C., Zakarian, A., Simard, J.J., Ohashi, P.S., Paige, C.J., Gutierrez-Ramos, J.C. & Mak, T.W. (1997). CD44 regulates hematopoietic progenitor distribution, granuloma formation, and tumorigenicity. Blood 90, 2217–33.CrossRefGoogle ScholarPubMed
Schoenfelder, M. & Einspanier, R. (2003). Expression of hyaluronan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle. Biol. Reprod. 69, 269–77.CrossRefGoogle ScholarPubMed
Scott, J.E. & Heatley, F. (2002). Biological properties of hyaluronan in aqueous solution are controlled and sequestered by reversible tertiary structures, defined by NMR spectroscopy. Biomacromolecules 3, 547–53.CrossRefGoogle ScholarPubMed
Spector, A.A. & York, M.A. (1985). Membrane lipid composition and cellular function. J. Lipids Res. 26, 1015–35.CrossRefGoogle ScholarPubMed
Spicer, A.P. & McDonald, J.A. (1998). Characterization and molecular evolution of a vertebrate hyaluronan synthase gene family. J. Biol. Chem. 273, 1923–32.CrossRefGoogle ScholarPubMed
Spicer, A.P. & Nguyen, T.K. (1999). Mammalian hyaluronan synthases: investigation of functional relationships in vivo. Biochem. Soc. Trans. 27, 109–15.CrossRefGoogle ScholarPubMed
Steeves, T.E. & Gardner, D.K. (1999). Temporal and differential effects of amino acids on bovine embryo development in culture. Biol. Reprod. 61, 731–40.CrossRefGoogle ScholarPubMed
Stojkovic, M., Krebs, O., Kolle, S., Prelle, K., Assmann, V., Zakhartchenko, V., Sinowatz, F. & Wolf, E. (2003). Developmental regulation of hyaluronan-binding protein (RHAMM/IHABP) expression in early embryos. Biol. Reprod. 68, 60–6.CrossRefGoogle Scholar
Suzuki, C. & Yoshioka, K. (2006). Effects of amino acid supplements and replacement of polyvinyl alcohol with bovine serum albumin in porcine zygote medium. Reprod. Fertil. Dev. 18, 789–95.CrossRefGoogle ScholarPubMed
Syrokou, A., Tzanakakis, G.N., Hjerpe, A. & Karamanos, N.K. (1999). Proteoglycans in human malignant mesothelioma. Stimulation of their synthesis induced by epidermal, insulin and platelet-derived growth factors involves receptors with tyrosine kinase activity. Biochimie 81, 733–44.CrossRefGoogle ScholarPubMed
Thompson, J.G., McNaughton, C., Gasparrini, B., McGowan, L.T. & Tervit, H.R. (2000). Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J. Reprod. Fertil. 118, 4755.CrossRefGoogle ScholarPubMed
Tien, J.Y. & Spicer, A.P. (2005). Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns. Dev. Dyn. 233, 130–41.CrossRefGoogle ScholarPubMed
Tirone, E., D'Alessandris, C., Hascall, V.C., Siracus, A.G. & Salustri, A. (1997). Hyaluronan synthesis by mouse cumulus cells is regulated by interactions between follicle-stimulating hormone (or epidermal growth factor) and a soluble oocyte factor (or transforming growth factor beta1). J. Biol. Chem. 272, 4787–94.CrossRefGoogle Scholar
Toole, B.P. (1997). Hyaluronan in morphogenesis. J. Intern. Med. 242, 3540.CrossRefGoogle ScholarPubMed
Tzanakakis, G.N., Karamanos, N.K. & Hjerpe, A. (1993). Effects on glycosaminoglycan synthesis in cultured human mesothelioma cells of transforming, epidermal, and fibroblast growth factors and their combinations with platelet-derived growth factor. Exp. Cell Res. 220, 130–7.CrossRefGoogle Scholar
Ulbrich, S.E., Schoenfelder, M., Thoene, S. & Einspanier, R. (2004). Hyaluronan in the bovine oviduct-modulation of synthases and receptors during the estrous cycle. Mol. Cell Endocrinol. 214, 918.CrossRefGoogle ScholarPubMed
Weigel, P.H., Hascall, V.C. & Tammi, M. (1997). Hyaluronan synthases. J. Biol. Chem. 272, 13997–4000.CrossRefGoogle ScholarPubMed