Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-28T15:08:24.426Z Has data issue: false hasContentIssue false

Gene transfer to the mammalian reproductive tract

Published online by Cambridge University Press:  13 December 2010

Pedro Esponda*
Affiliation:
Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9 (Lab 008), 28040 Madrid, Spain.
*
All correspondence to Pedro Esponda. Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9 (Lab 008), 28040 Madrid, Spain. Tel: +34 91 8373132. Fax: 34 91 5360432. e-mail: esponda@cib.csic.es.

Summary

This review summarizes the results of research on gene transfer to the mammalian genital tract. Gene transfer experiments have been developed during the last 2 decades and have been applied using in vitro, ex vivo and in vivo procedures. (i) In vitro methods have been applied to the uterine epithelial cells with the principal purpose of analysing some pathological change occurring in the uterus. In the male tract, epididymal cell lines have been used to evaluate the expression of particular genes and the function of specific proteins. (ii) Ex vivo methods have been applied to both the uterus and the vas deferens in humans, and good transgene expression has been recorded. (iii) In vivo gene transfer in the female tract has been employed in the uterus and oviduct using gene injections or electroporation methods. The glandular epithelium of both organs can be transfected efficiently, and transfection efficiency depends on the hormonal stage of the animal. The best expression occurred during pseudopregnancy and meta-estrus periods, when high progesterone and low estradiol concentrations occur. In the male tract, in vivo methods have been applied to mouse vas deferens and epididymis. In both organs, patches of epithelial regions appeared to express the transgenes. Furthermore, the secretions of both organs were also modified using gene constructions that led to the expression of some secretory proteins. In summary, gene modifications in the epithelium of the mammalian reproductive tract have been successful employing different technologies. Further improvements in transfection efficiency would help provide new insights into the physiology of these reproductive organs. Furthermore, the use of these methods could also be used to modify the fertility of mammals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is dedicated to the memory of my friend, the late Dr Claudio Barros, for his dedication and contributions to reproductive biology.

References

Anderson, W.F. (1998). Human gene therapy. Nature 392, 2530.Google ScholarPubMed
Bagot, C.N., Troy, P.J. & Taylor, H.S. (2000). Alteration of maternal Hoxa10 expression by in vivo gene transfection affects implantation. Gene Ther. 7, 1378–84.CrossRefGoogle ScholarPubMed
Bedford, J.M. (1979). Evolution of sperm maturation and storage functions in the epididymis. In The Spermatozoon: Maturation, Motility, Surface Properties and Comparative Aspects (eds. Fawcett, D.W. & Bedford, J.M.), pp. 722. Baltimore: Urban & Schwarzemberg.Google Scholar
Bigey, P., Bureau, M.F. & Schermann, D. (2002). In vivo plasmid electrotransfer. Curr. Opin. Biotechnol. 13, 443–7.CrossRefGoogle Scholar
Boggess, J.F., Zhou, C., Bae-Jump, V.L., Gehrig, P.A. & Whang, Y.E. (2006). Estrogen-receptor-dependent regulation of telomerase activity in human endometrial cancer cell lines. Gynecol. Oncol. 103, 417–24.CrossRefGoogle ScholarPubMed
Brenner, R.M. & Maslar, I.A. (1988). The primate oviduct and endometrium. In The Physiology of Reproduction (eds. Knobil, E. & Neil, J.D.) vol. I, 2nd edn. pp. 303–39. New York: Raven Press.Google Scholar
Brinster, R.L. & Avarbock, M. (1994). Germ-line transmission of donor haplotype following spermatogonial transplantation. Proc. Natl. Acad. Sci. USA 91, 11303–7.CrossRefGoogle ScholarPubMed
Charnock-Jones, D.S., Sharkey, A.M., Jaggers, D.C., Yoo, H.J., Heap, R.B. & Smith, S.K. (1997). In vivo gene transfer to the uterine endometrium. Hum. Reprod. 12, 1720.CrossRefGoogle Scholar
Cooper, T.G. (1986). The Epididymis, Sperm Maturation and Fertilisation. Berlin: Springer Verlag.CrossRefGoogle Scholar
Cuevas, P., Garcia-Calvo, M., Carceller, F., Reimers, D., Zazo, M, Cuevas, B., Muñoz-Willery, I., Martinez-Coso, V., Lamas, S. & Gimenez-Gallego, G. (1996). Correction of hypertension by normalization of endothelial levels fibroblast growth factor and nitric oxide synthetase in spontaneously hypertensive rats. Proc. Natl. Acad. Sci. USA 93, 1199612001.CrossRefGoogle ScholarPubMed
Daftary, G.S. & Taylor, H.S. (2001). Efficient liposome-mediated gene transfection and expression in the intact human uterus. Hum. Gene Ther. 12, 2121–7.CrossRefGoogle ScholarPubMed
Daftary, G.S. & Taylor, H.S. (2003). Reproductive tract gene transfer. Fertil. Steril. 80, 475–84.CrossRefGoogle ScholarPubMed
Daniel, R. & Smith, J.A. (2008). Integration site selection by retroviral-vectors: molecular medicine and clinical consequences. Hum. Gene Ther. 19, 557–68.CrossRefGoogle Scholar
Danko, I., Williams, P., Herweijer, H., Zang, G., Latendresse, J.S. & Bock, I. (1997). High expression of naked plasmid DNA in muscles of young rodents. Hum. Mol. Genet. 6, 1435–43.CrossRefGoogle ScholarPubMed
Dean, D.A., , D.D. & Zimmer, W.E. (2005). Nuclear entry of non-viral vectors. Gene Ther. 12, 881–90.CrossRefGoogle Scholar
Dufresne, J., St-Pierre, N., Viger, R.S., Hermo, L. & Cyr, D.G. (2005). Characterization of a novel epididymal cell line to study epididymal function. Endocrinology 146, 4710–20.CrossRefGoogle ScholarPubMed
Eddy, C.A. & Pauerstein, C.J. (1980). Anatomy and physiology of the Fallopian tubes. Clin. Obstet. Gynecol. 23, 1177–93.CrossRefGoogle Scholar
Esponda, P. & Carballada, R. (2009). In vivo gene transfer induces transgene expression in cells and secretions of the mouse cauda epididymis. Mol. Human Reprod. 15, 355–61.CrossRefGoogle ScholarPubMed
Esponda, P., Goldstein, M. & Witkin, S.S. (2004). In vitro transfection of the human vas deferens using DNA–liposome and DNA–neutral lipid complexes. Fertil. Steril. 81, 171–5.CrossRefGoogle ScholarPubMed
Felgner, P., Gadek, T. & Holm, M. (1987). Highly efficient lipid-mediated DNA transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413–7.CrossRefGoogle ScholarPubMed
Fortunati, E., Bout, A., Zanta, M., Valerio, D. & Scarpa, M. (1996). In vitro and in vivo gene transfer to pulmonary cells mediated by cationic liposomes. Biochem. Biophys. Acta. 1306, 5562.Google ScholarPubMed
Fox, S.A., Yang, L. & Hinton, B.T. (2006) Identifying putative contraceptive targets by dissecting signal transduction networks in the epididymis using an in vivo electroporation (electrotransfer) approach. Mol. Cell Endocrinol. 250, 196200.CrossRefGoogle Scholar
Hackett, C.S., Geurts, A. M. & Hackett, P.B. (2007). Predicting preferential DNA vector insertion sites: implication for functional genomics and gene therapy. Genome Biol. Suppl 1, S12.Google Scholar
Hart, S.L. (2005). Lipid carriers for gene therapy. Curr. Drug Deliv. 2, 423–8.CrossRefGoogle ScholarPubMed
Hunter, R.H.F. (1988). The Fallopian Tubes: Their Role in Fertility and Infertility. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Jones, R. (1998). Plasma membrane structure and remodelling during sperm maturation in the epididymis. J. Reprod. Fertil. Suppl. 53, 7384.Google ScholarPubMed
Kaneda, Y. & Tabata, Y. (2006). Non-viral vectors for cancer therapy. Cancer Sci. 97, 348–54.CrossRefGoogle ScholarPubMed
Katkin, J.P., Gilbert, B.E., Langston, C., French, K. & Baudet, A.L. (1995). Aerosol delivery of a β-galactosidase adenoviral vector to the lungs of rodents. Hum. Gene Ther. 6, 985–95.CrossRefGoogle Scholar
Kendall, J.M. & Badminton, M.N. (1998). Aequorea victoria bioluminescence moves into an exiting era. Trends Biotechnol. 16, 216–24.CrossRefGoogle Scholar
Kimura, T., Nakamura, H., Koyama, S., Ogita, K., Tabata, C., Tsutsui, T., Shimoya, K., Koyama, M., Kaneda, Y. & Murata, Y. (2005). In vivo gene transfer into the mouse uterus: a powerful tool for investigating implantation physiology. J. Reprod. Immunol. 67, 1320.CrossRefGoogle ScholarPubMed
Kirby, J.L., Yang, L., Labus, J.C., Lye, R.J., Hsia, N., Day, R., Cornwall, G.A. & Hinton, B.T. (2004). Characterization of epididymal epithelial cells-specific gene promoters by in vivo electroporation. Biol. Reprod. 71, 613–9.CrossRefGoogle Scholar
Kirchhoff, C., Pera, I., Derr, P., Yeung, C.H. & Cooper, T. (1997). The molecular biology of sperm surface. Post-testicular membrane remodelling. Adv. Exp. Med. Biol. 424, 221–32.CrossRefGoogle ScholarPubMed
Kirchhoff, C., Araki, Y., Huhtaniemi, I., Matusik, R.J., Osterhoff, C., Poutanen, M., Samalecos, A., Sipila, P., Susuki, K. & Orgebin-Crist, M.C. (2004). Immortalization of large T-antigen of the adult epididymal duct epithelium. Mol. Cell Endocrinol. 216, 8394.CrossRefGoogle ScholarPubMed
Koyama, S., Kimura, T., Ogita, K., Nakamura, H., Tabata, C., Abu Haddi Noor, K., Temma-Asano, K., Shimoya, K., Tsutsui, T., Koyama, M., Kaneda, Y. & Murata, Y. (2006). Simple and highly efficient method for transient in vivo gene transfer to mid-late pregnant mouse uterus. J. Reprod. Immunol. 70, 5969.CrossRefGoogle ScholarPubMed
Laurema, A., Lumme, S., Heinonen, S.E., Heinonen, S. & Yla-Hertuala, S. (2007). Transduction patterns and efficiencies in rabbit uterine tissues after intraluminal uterine adenovirus administration vary with the reproductive cycle. Acta Obstet. Gynecol. Scand. 86, 1035–40.CrossRefGoogle ScholarPubMed
Lechardeur, D. & Lukacs, G.L. (2002) Intracellular barriers to non-viral gene transfer. Curr Gene Ther. 2, 183–94.CrossRefGoogle ScholarPubMed
Ledley, F.D. (1995). Non viral gene therapy: the promise of genes as pharmaceutical products. Hum. Gene Ther. 6, 1129–44CrossRefGoogle Scholar
Ledley, L.S. & Ledley, F.D. (1994). Multicompartment numerical model of cellular events in the pharmacokinetics of gene therapies. Hum. Gene Ther. 5, 679–91.CrossRefGoogle ScholarPubMed
Lye, R.J. & Hinton, B.T. (2004). Technologies fro the study of epididymal-specific genes. Mol. Cell Endocrinol. 216, 2330.CrossRefGoogle Scholar
Mulligan, R.C. (1993). The basic science of gene therapy. Science 249, 1285–8.Google Scholar
Nishikawa, M. & Huang, L. (2001). Non-viral vectors in the new millennium: delivery barriers in gene transfer. Hum. Gene Ther. 12, 861–70.CrossRefGoogle Scholar
Relloso, M. & Esponda, P. (1998). In vivo gene transfer to the mouse oviduct epithelium. Fertil. Steril. 70, 366–8.CrossRefGoogle Scholar
Relloso, M. & Esponda, P. (2000). In vivo transfection of the female reproductive tract epithelium. Mol. Hum. Reprod. 6, 1099–105.CrossRefGoogle ScholarPubMed
Rios, M., Venegas, A. & Croxatto, H.B. (2002). In vivo expression of beta-galactosidase by rat oviduct exposed to naked DNA or messenger RNA. Biol. Res. 35, 333–8.CrossRefGoogle ScholarPubMed
Sato, M. (2005). Intraoviductal introduction of plasmid DNA and subsequent electroporation for efficient in vivo gene transfer to murine oviductal epithelium. Mol. Reprod. Dev. 71, 321–30.CrossRefGoogle ScholarPubMed
Sinn, P.L., Sauter, S.L. & McCray, P.B. (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors. Design, biosafety and products. Gene Ther. 12, 1089–98.CrossRefGoogle Scholar
Subramanian, J., & Simon, R. (2010) Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J. Natl Cancer Inst. 102, 464–74.CrossRefGoogle ScholarPubMed
Sullivan, D.E., Dash, S., Du, H., Hiramatsu, N., Aydin, F., Kolls, J., Blanchard, J., Baskin, G. & Geber, M.A. (1997). Live direct gene transfer in non-human primates. Hum. Gene Ther. 8, 1195–206.CrossRefGoogle Scholar
Stribey, J.M., Rehman, K.S., Niu, H. & Christman, G.M. (2002). Gene therapy and reproductive medicine. Fertil. Steril. 77, 645–57.CrossRefGoogle Scholar
Sun, E.L. & Flickinger, C.J. (1982). Proliferative activity in rat epididymis during postnatal development. Anat. Rec. 203, 273–84.CrossRefGoogle ScholarPubMed
Telgmann, R. & Gellersen, B. (1998). Marker genes of decidualization: activation of the decidual prolactin gene. Hum. Reprod. Update 4, 472–9.CrossRefGoogle ScholarPubMed
Trezise, A.E., Palazon, L., Davies, W.L. & Colledge, W.H. (2003). In vivo gene expression: DNA electrotransfer. Curr. Opin. Mol. Ther. 5, 397404.Google ScholarPubMed
Uhrin, V. (1984). Submicroscopic changes in the luminal cells of the endometrium in cows during the estrus cycle. Vet. Med. 29, 917.Google ScholarPubMed
Valenzuela, M., Relloso, M. & Esponda, P. (2002). In vivo transfection of the mouse vas deferens. J. Exp. Zool. 293, 532–40.CrossRefGoogle ScholarPubMed
Vasir, J.K. & Labhasentwar, V. (2006). Polymeric nanoparticles for gene delivery. Exp. Opin. Drug Deliv. 3, 325–44.CrossRefGoogle ScholarPubMed
Verma, I.M. & Weitzman, M.D. (2005). Gene Therapy: twenty-first century medicine. Annu. Rev. Biochem. 74, 711–38.CrossRefGoogle ScholarPubMed
Voigt, K., Izvák, Z. & Ivics, Z. (2008). Targeted gene insertion for molecular medicine. J. Mol. Med. 86, 1205–19.CrossRefGoogle ScholarPubMed
Wadehra, M., Dayali, M., Maimigi, M., Ord, T., Ier, R., Braun, J. & Williams, C.J. (2006). Knockdown of the tetraspan protein epithelial membrane protein-2 inhibits implantation in the mouse. Dev. Biol. 292, 430–41.CrossRefGoogle ScholarPubMed
Wolff, J.A. & Budker, V. (2005). The mechanism of naked DNA uptake and expression. Adv. Genet. 54, 320.Google ScholarPubMed
Yang, L., Fox, S.A., Kirby, J.L., Troan, B.V. & Hinton, B.T. (2006). Putative regulation of expression of members of the Ets variant 4 transcription factor family and their downstream targets in the rat epididymis. Biol. Reprod. 74, 714–20.CrossRefGoogle ScholarPubMed
Yonezawa, F., Furuhata, Y., Hirabayashi, K., Susuki, M., Takahayashi, M. & Nishihara, M. (2001). Detection of transgene in progeny at different developmental stages following testis-mediated gene transfer. Mol. Reprod. Dev. 60, 196201.CrossRefGoogle ScholarPubMed
Yu, X., Suzuki, K., Wang, Y., Gupta, A., Jin, R., Orgebin-Crist, M.C. & Matusik, R. (2006). The role of forkhead box A2 (FoxA2) to restrict androgen regulated gene expression of lipocalin 5 in the mouse epididymis. Mol. Endocrinol. 20, 2418–31.CrossRefGoogle ScholarPubMed
Zelenin, A.V., Alimov, A.A., Zelenina, I.A., Semenova, M.L., Rodova, M.A., Chernov, B.K. & Kolesnikov, V.A. (1993). Transfer of foreign DNA into the cells of developing mouse embryos by microprojectile bombardment. FEBS Lett. 315, 2932.CrossRefGoogle ScholarPubMed
Zhou, H.S., Liu, D.P. & Liang, C.C. (2004) Challenges and strategies: the immune response in gene therapies. Med. Res. Rev. 24, 748–61.CrossRefGoogle Scholar
Zizi, A., Minardi, D., Ciavattini, A., Giantomassi, F., Montironi, R., Muzzonigro, G., Di Primio, R. & Lucarini, G. (2010) Green fluorescent protein as an indicator of nonviral transient transfection efficiency in endometrial and testicular biopsies. Microsc. Res. Tech. 73, 229–33.CrossRefGoogle Scholar