Skip to main content

The importance of manganese in the cytoplasmic maturation of cattle oocytes: blastocyst production improvement regardless of cumulus cells presence during in vitro maturation

  • Juan Patricio Anchordoquy (a1) (a2), Juan Mateo Anchordoquy (a1) (a2), Matias Angel Sirini (a1) (a2), Juan Alberto Testa (a1) (a2), Pilar Peral-García (a1) and Cecilia Cristina Furnus (a3) (a4)...

Adequate dietary intake of manganese (Mn) is required for normal reproductive performance in cattle. This study was carried out to investigate the effect of Mn during in vitro maturation of bovine cumulus–oocyte complexes (COC) on apoptosis of cumulus cells, cumulus expansion, and superoxide dismutase (SOD) activity in the COC. The role of cumulus cells on Mn transport and subsequent embryo development was also evaluated. Early apoptosis decreased in cumulus cells matured with Mn compared with medium alone. Cumulus expansion did not show differences in COC matured with or without Mn supplementation. SOD activity was higher in COC matured with 6 ng/ml Mn than with 0 ng/ml Mn. Cleavage rates were higher in COC and denuded oocytes co-cultured with cumulus cells, either with or without Mn added to in vitro maturation (IVM) medium. Regardless of the presence of cumulus cells during IVM, the blastocyst rates were higher when 6 ng/ml Mn was supplemented into IVM medium compared with growth in medium alone. Blastocyst quality was enhanced when COC were matured in medium with Mn supplementation. The results of the present study indicated that Mn supplementation to IVM medium enhanced the ‘health’ of COC, and improved subsequent embryo development and embryo quality.

Corresponding author
All correspondence to: Cecilia Cristina Furnus. Instituto de Genética Veterinaria Prof. Fernando N. Dulout (IGEVET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata – CONICET, calle 60 y 118 s/n, CP (1900), La Plata, Buenos Aires, Argentina. Tel:/Fax: +54 0221 421 1799. e-mail:
Hide All
Anchordoquy J.P., Anchordoquy J.M., Sirini M.A., Mattioli G., Picco S.J. & Furnus C.C. (2013). Effect of different manganese concentrations during in vitro maturation of bovine oocytes on DNA integrity of cumulus cells and subsequent embryo development. Reprod. Domest. Anim. 48, 905–11.
Anchordoquy J.P., Anchordoquy J.M., Picco S.J., Sirini M.A., Errecalde A.L. & Furnus C.C. (2014). Influence of manganese on apoptosis and glutathione content of cumulus cells during in vitro maturation in bovine oocytes. Cell. Biol. Int. 38, 246–53.
Aschner J.L. & Aschner M. (2005). Nutritional aspects of manganese homeostasis. Mol. Aspects 26, 353–62.
Aschner M. & Gannon M. (1994). Manganese (Mn) transport across the rat blood–brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res. Bull. 33, 345–9.
Au C., Benedetto A. & Aschner M. (2008). Manganese transport in eukaryotes: the role of DMT1. Neuro Toxicol. 29, 569–76.
Bentley O.G. & Phillips P.H. (1951). The effect of low manganese rations upon dairy cattle. J. Dairy Sci. 34, 396403.
Chen L., Mao S.J. & Larsen W.J. (1992). Identification of a factor in fetal bovine serum that stabilizes the cumulus extracellular matrix. A role for a member of the inter-alpha-trypsin inhibitor family. J. Biol. Chem. 267, 12380–6.
Chian R.C., Niwa K. & Sirard M.A. (1994). Effect of cumulus cells on the male pronuclear formation and subsequent early development of bovine oocytes in vitro . Theriogenology 41, 1499–508.
Chihuailaf R., Contreras P.A. & Wittwer F. (2002). Patogénesis del estrés oxidativo: consecuencias y evaluación en salud animal. [Oxidative stress pathogenesis: consequences and animal health evaluation.] Vet. Méx. 33, 265–83.
Davidsson L., Lonnerdal B., Sandstrom B., Kunz C. & Keen C.L. (1989). Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the rat. J. Nutr. 119, 1461–4.
De Angelis P.L. (1999). Hyaluronan synthases: fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses. Cell Mol. Life Sci. 56, 670–82.
de Matos D.G., Furnus C.C. & Moses D.F. (1997). Glutathione synthesis during in vitro maturation of bovine oocytes: role of cumulus cells. Biol. Reprod. 57, 1420–5.
Dekel N. & Beers W. (1980). Development of the rat oocyte in vitro: inhibition and induction of maturation in the presence or absence of the cumulus oophorus. Dev. Biol. 75, 247–54.
Edson M.A., Nagaraja A.K. & Matzuk M.M. (2009). The mammalian ovary from genesis to revelation. Endocr. Rev. 30, 624712.
Epperly M.W., Sikora C.A., DeFilippi S.J., Gretton J.E., Zhan Q., Kufe D.W. & Greenberger J.S. (2002). Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat. Res. 157, 568–77.
Eppig J.J. (1979). FSH stimulates hyaluronic acid synthesis by oocyte–cumulus cell complexes from mouse preovulatory follicles. Nature 281, 483–4.
Eppig J.J. (1982). The relationship between cumulus cell oocyte coupling, oocyte meiotic maturation, and cumulus expansion. Dev. Biol. 89, 268–72.
Eppig J.J. (1991). Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 13, 569–74.
Eppig J.J. & Downs S.M. (1984). Chemical signals that regulate mammalian oocyte maturation. Biol. Reprod. 30, 111.
Forrest H.N. (1993). Ultratrace Minerals. In Shils M.E., Olson J.A. & Shike M. (eds), Modern Nutrition in Health and Disease, 8th edn, pp. 269–86. Philadelphia: Lea & Febiger.
Furnus C.C., de Matos D.G. & Moses D.F. (1998). Cumulus expansion during in vitro maturation of bovine oocytes: relationship with intracellular glutathione level and its role on subsequent embryo development. Mol. Reprod. Dev. 51, 7683.
Gardner D.K., Lane M., Spitzer A. & Batt P.A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390400.
Garrick M.D., Dolan K.G., Horbinski C., Ghio A.J., Higgins D., Porubcin M., Moore E.G., Hainsworth L.N., Umbreit J.N., Conrad M.E., Feng L., Lis A., Roth J.A., Singleton S., & Garrick L.M. (2003). DMT1: a mammalian transporter for multiple metals. Biometals 16, 4154.
Ge L., Han D., Lan G.C., Zhou P., Liu Y., Zhang X., Sui H.S. & Tan J.H. (2008). Factors affecting the in vitro action of cumulus cells on the maturing mouse oocytes. Mol. Reprod. Dev. 75, 136–42.
Gibbons R.A., Dixon S.N., Hallis K., Russell A.M., Sansom B.F. & Symonds H.W. (1976). Manganese metabolism in cows and goats. Biochim Biophys Acta 444, 110.
Gilchrist R.B., Ritter L.J. & Armstrong D.T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82, 431–46.
Gilchrist R.B., Lane M. & Thompson J.G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–77.
Glander H.J. & Schaller J. (1999). Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol. Hum. Reprod. 5, 109–15.
Goud P.T., Goud A.P., Qian C., Laverge H., Van der Elst J., De Sutter P. & Dhont M. (1998). In-vitro maturation of human germinal vesicle stage oocytes: role of cumulus cells and epidermal growth factor in the culture medium. Hum. Reprod. 13, 1638–44.
Gunshin H., Mackenzie B., Berger U.V., Gunshin Y., Romero M.F., Boron W.F., Nussbeger S., Gollan J.L. & Hediger M.A. (1997). Cloning and characterization of a mammalian proton-coupled metal–ion transporter. Nature 388 (6641), 482–8.
Kincaid R.L. (1999). Assessment of trace mineral status of ruminants: a review. Proc. Am. Soc. Anim. Sci. 1999, 110. Available at:
Hampton M.B. & Orrenius S. (1997). Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 414, 552–6.
Hansen S.L., Spears J.W., Lloyd K.E. & Whisnant C.S. (2006). Growth, reproductive performance, and manganese status of heifers fed varying concentrations of manganese. J. Anim. Sci. 84, 3375–80.
He L., Girijashanker K., Dalton T.P., Reed J., Li H., Soleimani M. & Nerbert D.W. (2006). ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol. Pharmacol. 70, 171180.
Himeno S., Yanagiya T. & Fujishiro H. (2009). The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie. 91, 1218–22.
Holley A.K., Bakthavatchalu V., Velez-Roman J.M. & St Clair D.K. (2011). Manganese superoxide dismutase: guardian of the powerhouse. Int. J. Mol. Sci. 12, 7114–62.
Ikeda S., Imai H. & Yamada M. (2003). Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 125, 369–76.
Keen C.L., Ensunsa J.L., Lönnerdal , Zidenberg-Cherr S. (2009). Manganese. In Caballero B. (editor), Guide to Nutritional Supplements. Oxford, UK: Elsevier, pp. 256–63.
Keller J.N., Kindy M.S., Holtsberg F.W., St Clair D.K., Yen H.C., Germeyer A., Steiner S.M., Bruce-Keller A.J., Hutchins J.B. & Mattson M.P. (1998). Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–97.
Kim J., Buckett P.D. & Wessling-Resnick M. (2013). Absorption of manganese and iron in a mouse model of hemochromatosis. PLoS One 8:e64944.
Kim S.K., Minami N., Yamada M. & Utsumi K. (1996). Functional role of cumulus cells during maturation in development of in vitro matured and fertilized bovine oocytes. Theriogenology 45, 278.
Kinoshita M., Sakamoto T., Kashio A., Shimizu T. & Yamasoba T. (2013). Age-related hearing loss in Mn-SOD heterozygous knockout mice. Oxid. Med. Cell Longev. doi: 10.1155/2013/325702.
Larsen W.J. & Wert S.E. (1988). Role of cell junctions in gametogenesis and in early embryonic development. Tiss. Cell. 20, 809–48.
Larsen W.J. (1989). Mechanisms of gap junction modulation. In Sperelakis N. & Cole W.C., Cell Interactions and Gap Junctions vol. I, pp. 327. Boca Raton, FL: CRC Press.
Lodde V., Modina S., Galbusera C., Franciosi F. & Luciano A.M. (2007). Large-scale chromatin remodeling in germinal vesicle bovine oocytes: interplay with gap junction functionality and developmental competence. Mol. Reprod. Dev. 74, 740–9.
Lonergan P., Monaghan P., Rizos D., Boland M.P. & Gordon I. (1994). Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro . Mol. Reprod. Dev. 37, 4853.
Luciano A.M., Lodde V., Beretta M.S., Colleoni S., Lauria A. & Modina S. (2005). Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus–oocyte complexes: role of cumulus cells, cyclic adenosine 3′,5′-monophosphate, and glutathione. Mol. Reprod. Dev. 71, 389–97.
Madison V., Avery B. & Greve T. (1992). Selection of immature bovine oocytes for developmental potential in vitro . Anim. Reprod. Sci. 27, 111.
Modina S., Luciano A.M., Vassena R., Baraldi-Scesi L., Lauria A. & Gandolfi F. (2001). Oocyte developmental competence after in vitro maturation depends on the persistence of cumulus–oocyte communications which are linked to the intracellular concentration of cAMP. Italian. J. Anat. Embryol. 106, 241–8.
Mohr A., Buneker C., Gough R.P. & Zwacka R.M. (2007). MnSOD protects colorectal cancer cells from TRAIL-induced apoptosis by inhibition of Smac/DIABLO release. Oncogene 27, 763–74.
Paasch U., Sharma R.K., Gupta A.K., Grunewald S., Mascha E.J., Thomas A.J. Jr, Glander H.J. & Agarwal A. (2004). Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol. Reprod. 71, 1828–37.
Pangas S.A. & Matzuk M.M. (2005). The art and artifact of GDF9 activity: cumulus expansion and the cumulus expansion-enabling factor. Biol. Reprod. 73, 582–5.
Parrish J.J., Susko-Parrish J., Leibfried-Rutledge M.L., Critser E.S., Eyestone W.H. & First N.F. (1986). Bovine in vitro fertilization with frozen–thawed semen. Theriogenology 25, 591600.
Racowsky C. & Satterlie R.A. (1985). Metabolic, fluorescent dye and electrical coupling between hamster oocytes and cumulus cells during meiotic maturation in vivo and in vitro . Dev. Biol. 108, 191202.
Racowsky C. (1985). Effect of forskolin on maintenance of meiotic arrest and stimulation of cumulus expansion, progesterone and cyclic AMP production by pig oocyte ± cumulus complexes. J. Reprod. Fertil. 74, 921.
Rojas M.A., Dyer I.A. & Cassatt W.A. (1965). Manganese deficiency in the bovine. J. Anim. Sci. 24, 664–7.
Salustri A. & Siracusa G. (1983). Metabolic coupling, cumulus expansion and meiotic resumption in mouse cumuli oophori cultured in vitro in the presence of FSH or dcAMP, or stimulated in vivo by hCG. J. Reprod. Fertil. 68, 335–41.
Schrantz N., Blanchard D.A., Mitenne F., Auffredou M.T., Vazquez A. & Leca G. (1999). Manganese induces apoptosis of human B cells: caspase-dependent cell death blocked by Bcl-2. Cell Death Diff. 6, 445–53.
Shioya Y., Kuwayama M., Fukushima M. & Iwasaki S., (1988). In vitro fertilization and cleavage capability of bovine follicular oocytes classified by cumulus cells and matured in vitro . Theriogenology 30, 489–96.
Sutton M.L., Gilchrist R.B., Thompson J.G. (2003). Effects of in-vivo and in-vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update 9, 3548.
Sutton-McDowall M.L., Gilchrist R.B., Thompson J.G. (2010). The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 39, 685–95.
Tervit H.R., Whittingham D.G., Rowson L.E.A. (1972). Successful culture in vitro of sheep and cattle ova. J Reprod Fertil. 30, 493–7.
Underwood E.J. & Suttle N.F. (1999). The Mineral Nutrition of Livestock. London, UK: CABI Publishing.
Van Remmen H., Ikeno Y., Hamilton M., Pahlavani M., Wolf N., Thorpe S.R., Alderson N.L., Baynes J.W., Epstein C.J., Huang T.T., Nelson J., Strong R. & Richardson A. (2003). Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 2937.
Vanderhyden B.C. & Armstrong D.T. (1989). Role of cumulus cells and serum on the in vitro maturation, fertilization, and subsequent development of rat oocytes. Biol. Reprod. 40, 720–8.
Wang J., Wang Z.Y., Wang Z.J., Liu R., Liu S.Q. & Wang L. (2014). Effects of manganese deficiency on chondrocyte development in tibia growth plate of Arbor Acres chicks. J. Bone Miner. Metab. doi: 10.1007/s00774-014-0563-0. [Epub ahead of print]
Wongsrikeao P., Kaneshige Y., Ooki R., Taniguchi M., Agung B., Nii M., & Otoi T. (2005). Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reprod. Dom. Anim. 40, 166170.
Zhang L., Jiang S., Wozniak P.J., Yang X. & Godke R.A. (1995). Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro . Mol. Reprod. Dev. 40, 338–44.
Zidenberg-Cherr S., Keen C.L., Lönnerdal B. & Hurley L.S. (1983). Superoxide dismutase activity and lipid peroxidation in the rat: developmental correlations affected by manganese deficiency. J. Nutr. 113, 2498– 504.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 41 *
Loading metrics...

Abstract views

Total abstract views: 303 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th January 2018. This data will be updated every 24 hours.