Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T21:40:42.071Z Has data issue: false hasContentIssue false

In vitro maturation, in vitro fertilization and embryonic development of canine oocytes

Published online by Cambridge University Press:  01 November 2007

S.R. Lee
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
B.S. Kim
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
J-W. Kim
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
M.O. Kim
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
S.H. Kim
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
D.H. Yoo
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
M-J. Shin
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
Y.S. Park
Affiliation:
Department of Animal Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 702–701, Republic of Korea.
S. Lee
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
Y.B. Park
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
J.H. Ha
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
Z.Y. Ryoo*
Affiliation:
School of Life Science and Biotechnology, Kyungpook National University, Daegu 702–701, Republic of Korea.
*
Correspondence and requests for materials should be addressed to: Zae Young Ryoo. School of Life Science and Biotechnology, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702–701, Korea. Tel: +82 53 950 7361. Fax: +82 53 943 6925. e-mail: truthaplomb@naver.com

Summary

In this study we have investigated the efficiency of in vitro maturation (IVM) as a basic way to study the development of canine oocytes after in vitro fertilization (IVF). We decided, therefore, to perform two-part experiments. Firstly, experiment I compared the effects of TCM199 without fetal bovine serum (FBS) with TCM199 supplemented with 5% FBS on the in vitro nuclear maturation rate of canine oocytes. For the efficiency of meiotic development to the metaphase II (MII) stage, we found that 4.7% (4/64) of all oocytes grown in TCM199 without FBS developed to the MII stage compared with only 1.7% (1/59) of those grown in TCM199 with 5% FBS for 48 h. Therefore, FBS did not increase in vitro nuclear maturation. In experiment II, the cleavage rate of canine oocytes used for IVF was investigated following heparin treatment. Canine oocytes were fertilized in four groups: Fert–TALP medium without heparin (Fert I) or Fert–TALP medium supplemented with 10, 20 or 30 µg/ml heparin (Fert II, Fert III, Fert IV, respectively). Oocytes that were grown for 24 h in Fert I following fertilization showed the highest rate of all of the groups, 6.5% (5/77) and developed to the early morula stage. Markedly, the oocytes cultured in Fert I for 24 h following insemination had a higher rate of embryonic development than other groups. We can assert that, unlike findings in other mammals, heparin treatment in canine IVF does not increase the efficiency of the fertilization rate and is therefore not an important factor.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A. & Sirard, M.A. (2002). Effect of the absence or presence of various protein supplements on further development of bovine oocytes during in vitro maturation. Biol. Reprod. 66, 901–5.CrossRefGoogle ScholarPubMed
Bolamba, D., Borden-Russ, K.D. & Durrant, B.S. (1998). In vitro maturation of domestic dog oocytes cultured in advanced preantral and early antral follicles. Theriogenology 49, 933–42.CrossRefGoogle ScholarPubMed
Bolamba, D., Russ, K.D., Olson, M.A., Sandler, J.L. & Durrant, B.S. (2002). In vitro maturation of bitch oocytes from advanced preantral follicles in synthetic oviduct fluid medium: Serum is not essential. Theriogenology 58, 1689–703.CrossRefGoogle Scholar
Cary, J.A., Madill, S., Farnsworth, K., Hayna, J.T., Duoos, L. & Fahning, M.L. (2004). A comparison of electroejaculation and epididymal sperm collection techniques in stallions. Can. Vet. J. 45, 3541.Google ScholarPubMed
Cinone, M., Ghneim, A., Caira, M., Dell'Aquila, M.E. & Minoia, P. (1992). Collection and maturation of oocytes in the bitch. Proceedings of the 12th Int. Congr. Anim. Reprod., The Hague, The Netherlands 4, 1767–9.Google Scholar
Cui, X.S., Jin, Y.X., Shen, X.H., Lee, J.Y., Lee, H.S., Yin, X.J., Kong, I.K. & Kim, N.H. (2006). Epidermal growth factor enhances meiotic resumption of canine oocytes in the presence of BSA. Theriogenology 66, 267–74.CrossRefGoogle ScholarPubMed
Davis, D.L. & Day, B.N. (1978). Cleavage and blastocyst formation by pig eggs in vitro. J. Anim. Sci. 46, 1043–53.CrossRefGoogle ScholarPubMed
De los Reyes, M., de Lange, J., Miranda, P., Palominos, J. & Barros, C. (2005). Effect of human chorionic gonadotrophin supplementation during different culture periods on in vitro maturation of canine oocytes. Theriogenology 64, 111.CrossRefGoogle ScholarPubMed
De los Reyes, M., Carrion, R. & Barros, C. (2006). In vitro fertilization of in vitro matured canine oocytes using frozen–thawed dog semen. Theriogenology 66, 1682–4.CrossRefGoogle ScholarPubMed
England, G.C.W., Verstegen, J.P. & Hewitt, D.A. (2001). Pregnancy following in vitro fertilization of canine oocytes. Vet. Rec. 148, 20–2.CrossRefGoogle ScholarPubMed
Farstad, W. (2000). Assisted reproductive technology in canid species. Theriogenology 53, 175–86.CrossRefGoogle ScholarPubMed
Fujii, M., Otoi, T., Murakami, M., Tanaka, M., Une, S. & Suzuki, T. (2000). The quality and maturation of bitch oocytes recovered from ovaries by the slicing method. J. Vet. Med. Sci. 62, 305–7.CrossRefGoogle ScholarPubMed
Funahashi, H. & Day, B.N. (1993). Effects of the duration of exposure to hormone supplements on cytoplasmic maturation of pig oocytes in vitro. J. Reprod. Fert. 98, 179–85.CrossRefGoogle ScholarPubMed
Galantino-Homer, H.L., Viscconi, P.E. & Kopf, G.S. (1997). Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 30,50-monophosphate-dependent pathway. Biol. Reprod. 56, 707–19.CrossRefGoogle Scholar
Gandolfi, F. & Moor, R.M. (1987). Stimulation of early embryonic development in the sheep by co-culture with oviduct epithelial cells. J. Reprod. Fertil. 81, 23–8.CrossRefGoogle ScholarPubMed
Gliedt, T., Rosenkrans, C.F.Jr., Rorie, R.W. & Rakes, J.M. (1996). Effects of oocyte maturation length, sperm capacitation time and heparin on bovine embryo development. J. Dairy Sci. 79, 532–5.CrossRefGoogle ScholarPubMed
Handrow, R., First, N.L. & Parrish, J.J. (1989). Calcium requirement and increased association with bovine sperm during capacitation by heparin. J. Exp. Zool. 252, 174–82.CrossRefGoogle ScholarPubMed
Hewitt, D.A., Watson, P.F. & England, G.C.W. (1998). Nuclear staining and culture requirements for in vitro maturation of domestic bitch oocytes. Theriogenology 49, 1083–101.CrossRefGoogle ScholarPubMed
Hewitt, D.A. & England, G.C.W. (1998a). The effect of oocyte size and bitch age upon oocytes nuclear maturation in vitro. Theriogenology 49, 957–66.CrossRefGoogle ScholarPubMed
Hewitt, D.A. & England, G.C.W. (1998b). The canine oocyte penetration assay; its use as an indicator of dog spermatozoal performance in vitro. Anim. Reprod. Sci. 50, 123–39.CrossRefGoogle ScholarPubMed
Hewitt, D.A. & England, G.C.W. (1998c). An investigation of capacitation and the acrosome reaction in dog spermatozoa using a dual fluorescent staining technique. Anim. Reprod. Sci. 51, 321–32.CrossRefGoogle ScholarPubMed
Hewitt, D.A. & England, G.C.W. (1999). Influence of gonadotrophin supplementation on the in vitro maturation of bitch oocytes. Vet. Rec. 144, 237–9.CrossRefGoogle ScholarPubMed
Holst, P.A. & Phemister, R.D. (1971). The prenatal development of the dog: preimplantation events. Biol. Reprod. 5, 194206.CrossRefGoogle ScholarPubMed
Kano, K., Miyano, T. & Kato, S. (1998). Effects of glycosaminoglycans on the development of in vitro-matured and -fertilized porcine oocytes to the blastocyst stage in vitro. Biol. Reprod. 58, 1226–32.CrossRefGoogle Scholar
Katska-Ksiazkiewicz, L., Rynska, B., Gajda, B. & Smorag, Z. (2004). Effect of donor stimulation, frozen semen and heparin treatment on the efficiency of in vitro embryo production in goats. Theriogenology 62, 576–86.CrossRefGoogle ScholarPubMed
Kim, H.S., Lee, G.S., Hyun, S.H., Nam, D.H., Lee, S.H., Jeong, Y.W., Kim, S., Kim, J.H., Kang, S.K., Lee, B.C. & Hwang, W.S. (2005). Embryotropic effect of glycosaminoglycans and receptors in development of porcine pre-implantation embryos. Theriogenology 63, 1167–80.CrossRefGoogle ScholarPubMed
Kim, M.K., Fibrianto, Y.H., Oh, H.J., Jang, G., Kim, H.J., Lee, K.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2004). Effect of beta-mercaptoethanol or epidermal growth factor supplementation on in vitro maturation of canine oocytes collected from dogs with different stages of the estrus cycle. J. Vet. Sci. 5, 253–8.CrossRefGoogle ScholarPubMed
Kim, M.K., Fibrianto, Y.H., Oh, H.J., Jang, G., Kim, H.J., Lee, K.S., Kang, S.K., Lee, B.C. & Hwang, W.S. (2005). Effects of estradiol-17β and progesterone supplementation on in vitro nuclear maturation of canine oocytes. Theriogenology 63, 1342–53.CrossRefGoogle ScholarPubMed
Li, G.P., Seidel, G.E.Jr. & Squires, E.L. (2004). Improved cleavage of bovine ICSI ova cultured in heparin-containing medium. Theriogenology 61, 1077–84.CrossRefGoogle ScholarPubMed
Miller, D.J. & Hunter, A.G. (1986). Effect of osmolality and glycosaminoglycans on motility, capacitation, acrosome reaction and in vitro fertilizability of bovine ejaculated sperm. J. Dairy Sci. 69, 2915–24.CrossRefGoogle ScholarPubMed
Nickson, D.A., Boyd, J., Eckersall, P.D., Ferguson, J.M., Harvey, M.J.A. & Renton, J.P. (2000). Molecular biological methods for monitoring oocyte maturation and in vitro fertilization in bitches. J. Reprod. Fertil. (Suppl.) 47, 231–40.Google Scholar
Otoi, M., Fujii, M., Tanaka, M., Ooka, A., Suzuki, T. (1999). Effect of serum on the in vitro maturation of canine oocytes. Reprod. Fertil. Dev. 11, 387–90.CrossRefGoogle ScholarPubMed
Otoi, T., Muramaki, M., Fujii, M., Tanaka, M., Ooka, A., Suzuki, T. & Une, S. (2000). Development of canine oocytes matured and fertilised in vitro. Vet. Rec. 146, 52–3.CrossRefGoogle ScholarPubMed
Otoi, T., Shin, T., Kraemer, D.C. & Westhusin, M.E. (2004). Influence of maturation culture period on the development of canine oocytes after in vitro maturation and fertilization. Reprod. Nutr. Dev. 44, 631–7.CrossRefGoogle ScholarPubMed
Parrish, J.J., Susko-Parrish, J., Winer, M.A. & First, N.L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod. 38, 1171–80.CrossRefGoogle ScholarPubMed
Pearson, O.P. & Enders, R.K. (1943). Ovulation, maturation and fertilization in the fox. Anat. Rec. 85, 6983.CrossRefGoogle Scholar
Phemister, R.D., Holst, P.A., Spano, J.S. & Hopwood, M.L. (1973). Time of ovulation in the beagle bitch. Biol. Reprod. 8, 7482.CrossRefGoogle ScholarPubMed
Rodrigues, bde. A., dos Santos, L.C. & Rodrigues, J.L. (2004). Embryonic development of in vitro matured and in vitro fertilized dog oocytes. Mol. Reprod. Dev. 67, 215–23.CrossRefGoogle ScholarPubMed
Rodrigues, B.A., dos Santos, L.C. & Rodrigues, J.L. (2006). The effect of hyaluronan concentrations in hST-supplemented TCM199 on in vitro nuclear maturation of bitch cumulus–oocyte complexes. Theriogenology 66, 1673–6.CrossRefGoogle Scholar
Saint-Dizier, M., Salomon, J-F., Pettit, C., Renard, J-P. & Chastant-Maillard, S. (2001). In vitro maturation of bitch oocytes: Effect of sperm penetration. J. Reprod. Fertil. (Suppl.) 57, 147–50.Google ScholarPubMed
Saint-Dizier, M., Reynaud, K. & Chastant-Maillard, S. (2004). Chromatin, microtubules and kinases activities during meiotic resumption in bitch oocytes. Mol. Reprod. Dev. 68, 205–12.CrossRefGoogle ScholarPubMed
Tanghe, S., Van Soom, A., Duchateau, L., Nauwynck, H. & de Kruif, A. (2004). Carbohydrates and glycoproteins involved in bovine fertilization in vitro. Mol. Reprod. Dev. 68, 492–9.CrossRefGoogle ScholarPubMed
Theiss, T. (1997). Untersuchungen zur gewinnung, in-vitro-reifung und fertilisation von oozyten beim hund. Doctoral thesis. Tierarztlichen Fakultat der Ludwig Maximilians-Universität, Muünchen. 96.Google Scholar
Thibault, C. (1966). La culture in vitro de l'eu de vache. Ann. Biol. Anim. Biochem. Biophys. 6, 159–64.CrossRefGoogle Scholar
Tsuisui, T., Shimada, K., Nishi, M., Kubo, N., Murao, I., Shimizu, T. & Ogasa, A. (1989). An experimental trial on embryo transfer in the dog. Jpn. J. Vet. Sci. 51, 797800.CrossRefGoogle Scholar
Vannucchi, C.I., de Oliveira, C.M., Marques, M.G., Assumcao, M.E. & Visintin, J.A. (2006). In vitro canine oocyte nuclear maturation in homologous oviductal cell co-culture with hormone-supplemented media. Theriogenology 66, 1677–81.CrossRefGoogle ScholarPubMed
Whittingham, D.G. & Biggers, J.D. (1967). Fallopian tube and early cleavage in the mouse. Nature 213, 942–3.CrossRefGoogle ScholarPubMed
Wood, T.C., Montali, R.J. & Wildt, D.E. (1997). Follicle–oocyte atresia and temporal taphonomy in cold-stored domestic cat ovaries. Mol. Reprod. Dev. 46, 190200.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Yamada, S., Shimazu, Y., Awaji, H., Nakazawa, M., Naito, K. & Toyoda, Y. (1992). Maturation, fertilization and development of dog oocytes in vitro. Biol. Reprod. 46, 853–8.CrossRefGoogle ScholarPubMed