Skip to main content
×
Home

Maternal effect gene expression in porcine metaphase II oocytes and embryos in vitro: effect of epidermal growth factor, interleukin-1β and leukemia inhibitory factor

  • Marta Wasielak (a1) (a2), Teresa Więsak (a2), Iwona Bogacka (a3), Beenu Moza Jalali (a2) and Marek Bogacki (a2)...
Summary
Summary

Maternal effect genes (MEG) play a crucial role in early embryogenesis. In vitro culture conditions may affect MEG expression in porcine oocytes and embryos. We investigated whether in vitro culture medium supplementation with epidermal growth factor (EGF), IL-1β or LIF (leukemia inhibitory factor) affects the mRNA level of ZAR-1 (zygote arrest 1), NPM2 (nucleoplasmin 2) and DPPA3 (developmental associated protein 3) in porcine MII oocytes and embryos. Cumulus–oocyte complexes (COCs) were matured in NCSU-37 medium (control) or in NCSU-37 with EGF 10 ng/ml, IL-1β 10 ng/ml or LIF 50 ng/ml. After maturation for 44–46 h, MII oocytes were preserved for the analysis of MEG mRNA levels (experiment 1). In experiment 2, COCs were fertilized, and the presumptive zygotes were cultured in the same groups. Then, 2-, 4-, 8-cell embryos, morulae and blastocysts were collected for the analysis of MEG mRNA levels. LIF addition to the maturation medium increased MII oocyte numbers (P < 0.05), while EGF and IL-1β did not affect oocyte maturation. Medium supplementation with EGF resulted in lower DPPA3 mRNA levels in MII oocytes and in 2- and 4-cell embryos versus control embryos (P < 0.05). LIF treatment increased DPPA3 mRNA levels in morulae and blastocysts (P < 0.05). Culture with EGF and IL-1β decreased ZAR-1 and NPM2 mRNA levels in 2-cell embryos (P < 0.05). The inclusion of EGF or IL-1β in the porcine in vitro production system influences ZAR-1, NPM2 and DPPA3 mRNA in MII oocytes and embryos but not beyond the 4-cell stage. LIF stimulates oocyte maturation and affects DPPA3 mRNA in porcine morulae and blastocysts in vitro.

Copyright
Corresponding author
All correspondence to: M. Wasielak. Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10–747 Olsztyn, Poland. Tel: +48 89 539 3114. Fax: +48 89 539 3155. E-mail: m.wasielak@pan.olsztyn.pl
References
Hide All
Abeydeera L.R., Wang W.-H., Cantley T.C., Rieke A., Prather R.S. & Day B.N. (1998). Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol. Reprod. Dev. 51, 395401.
Bogacki M., Wasielak M., Kitewska A., Bogacka I. & Jalali B.M. (2014). The effect of hormonal estrus induction on maternal effect and apoptosis-related genes expression in porcine cumulus–oocyte complexes. Reprod. Biol. Endocrinol. 12, 32.
Bowles J., Teasdale R.P., James K. & Koopman P. (2003). Dppa3 is a marker of pluripotency and has a human homologue that is expressed in germ cell tumours. Cytogenet. Genome Res. 101, 261–5.
Burns K.H., Viveiros M.M., Ren Y., Wang P., DeMayo F.J., Frail D.E., Eppig J.J. & Matzuk M.M. (2003). Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300, 633–6.
Choi Y.B., Kim S.J., Park E.J., Song K.Y., Moon J.H. & Lee B.C. (2014). Effect of leukemia inhibitory factor (LIF) on maturation of porcine oocytes in vitro maturation and development of parthenogenetic embryos. Reprod. Fertil. Dev. 26, 159.
Dang-Nguyen T.Q., Haraguchi S., Kikuchi K., Somfai T., Bodó S. & Nagai T. (2014). Leukemia inhibitory factor promotes porcine oocyte maturation and is accompanied by activation of signal transducer and activator of transcription 3. Mol. Reprod. Dev. 8, 230–9.
Marques M.G, Nicacio A.C, de Oliveira V.P., Nascimento A.B., Caetano H.V., Mendes C.M., Mello M.R., Milazzotto M.P., Assumpção M.E. & Visintin J.A. (2007). In vitro maturation of pig oocytes with different media, hormone and meiosis inhibitors. Anim. Reprod. Sci. 97, 375–81.
Heikinheimo O. & Gibbons W.E. (1998). The molecular mechanisms of oocyte maturation and early embryonic development are unveiling new insights into reproductive medicine. Mol. Hum. Reprod. 4, 745–56.
Jeung S.-H., Jeon Y.-B., Biswas D., Choi K.-Ch., Jeung E.-B. & Hyun S.-H. (2012). Effect of EGF and AREG treatment during porcine in vitro maturation on in vitro developmental potential of preimplantation embryos. J. Anim. Vet. Adv. 11, 1100–5.
Jiwakanon J., Berg M., Persson E., Fossum C. & Dalin A.-M. (2010). Cytokine expression in the gilt oviduct: effects of seminal plasma, spermatozoa and extender after insemination. Anim. Reprod. Sci. 119, 244–57.
Jiwakanon J., Persson E., Berg M. & Dalin A.-M. (2011). Influence of seminal plasma, spermatozoa and semen extender on cytokine expression in the porcine endometrium after insemination. Anim. Reprod. Sci. 123, 210–20.
Jung S.K., Kim H.J., Kim C.L., Lee J.H., You J.Y., Lee E.S., Lim J.M., Yun S.J., Song J.Y. & Cha S.H. (2014). Enhancing effects of serum-rich and cytokine-supplemented culture conditions on developing blastocysts and deriving porcine parthenogenetic embryonic stem cells. J. Vet. Sci. 15, 519–28.
Kikuchi K., Onishi A., Kashiwazaki N., Iwamoto M., Noguchi J., Kaneko H., Akita T. & Nagai T. (2002). Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–41.
Kohata C., Izquierdo-Rico M.J., Romar R. & Funahashi H. (2013). Development competence and relative transcript abundance of oocytes derived from small and medium follicles of prepubertal gilts. Theriogenology 80, 970–8.
Lee G.S., Kim H.S., Hyun S.H., Jeon H.Y., Nam D.H., Jeong Y.W., Kim S., Kim J.H., Kang S.K., Lee B.C. & Hwang W.S. (2005). Effect of epidermal growth factor in preimplantation development of porcine cloned embryos. Mol. Reprod. Dev. 71, 4551.
Lingenfelter B.M., Tripurani S.K., Tejomurtula J., Smith G.W. & Yao J. (2011). Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene regulated by miR-181a. Reprod. Biol. Endocrinol. 9, 40.
Litter R.J., Sugimura S. & Gilchrist R.B. (2015). Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology 156, 2299–312.
Mo X., Wu G., Yuan D., Jia B., Liu C., Zhu S. & Hou Y. (2014). Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 81, 608–18.
Nakamura T., Arai Y., Umehara H., Masuhara M., Kimura T., Taniguchi H., Sekimoto T., Ikawa M., Yoneda Y., Okabe M., Tanaka S., Shiota K. & Nakano T. (2007). PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9, 6471.
Nakatani T., Yamagata K., Kimura T., Oda M., Nakashima H., Hori M., Sekita Y., Arakawa T., Nakamura T. & Nakano T. (2015). Stella preserves maternal chromosome integrity by inhibiting 5hmC-induced γH2AX accumulation. EMBO Rep. 16, 582–9.
Neira J.A., Tainturier D., Peña M.A. & Martal J. (2010). Effect of the association of IGF-I, IGF-II, bFGF, TGF-β1, GM-CSF, and LIF on the development of bovine embryos produced in vitro. Theriogenology 73, 595604.
Paciolla M., Boni R., Fusco F., Pescatore A., Poeta L., Ursini M.V., Lioi M.B. & Miano M.G. (2011). Nuclear factor-kappa-B-inhibitor alpha (NFKBIA) is a developmental marker of NF-κB/p65 activation during in vitro oocyte maturation and early embryogenesis. Hum. Reprod. 26, 1191–201.
Passos J.R.S., Costa J.J.N., da Cunha E.V., Silva A.W.B., Ribeiro R.P., de Souz G.B., Barroso P.A.A., Dau A.M.P., Saraiva M.V.A., Gonçalves P.B.D., van den Hurk R. & Silva J.R.V. (2015). Protein and messenger RNA expression of interleukin 1 system members in bovine ovarian follicles and effects of interleukin 1β on primordial follicle activation and survival in vitro . Domest. Anim. Endocrinol. 54, 4859.
Richani D., Wang X., Zeng H.T., Smitz J., Thompson J.G. & Gilchrist R.B. (2014). Pre-maturation with cAMP modulators in conjunction with EGF-like peptides during in vitro maturation enhances mouse oocyte developmental competence. Mol. Reprod. Dev. 81, 422–35.
Rodriguez A., Allegrucci C. & Alberio R. (2012). Modulation of pluripotency in the porcine embryo and iPS cells. PLoS ONE 7, e49079.
Romar R., De Santis T., Papillier P., Perreau C., Thelie A., Dell'Aquila M.E., Mermillod P. & Dalbie R. (2011). Expression of maternal transcripts during bovine oocyte in vitro maturation is affected by donor age. Reprod. Domest. Anim. 46, 2330.
Ropka-Molik K., Oczkowicz M., Mucha A., Piórkowska K. & Piestrzyńska-Kajtoch A. (2012). Variability of mRNA abundance of leukemia inhibitory factor gene (LIF) in porcine ovary, oviduct and uterus tissues. Mol. Biol. Rep. 39, 7965–72.
Samudio-Ruiz S.L. & Hudson L.G. (2012). Increased DNA methyltransferase activity and DNA methylation following epidermal growth factor stimulation in ovarian cancer cells. Epigenetics 7, 216–24.
Scaltiri M. & Baselaga J. (2006). The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res. 12, 18.
Takakura K., Taii S., Fukuoka M., Yasuda K., Tagaya Y., Yodoi J. & Mori T. (1989). Interleukin-2 receptor/p55(Tac)-inducing activity in porcine follicular fluids. Endocrinology 125, 618–23.
Uzbekova S., Roy-Sabau M., Dalbiès-Tran R., Perreau C., Papillier P., Mompart F., Thelie A., Pennetier S., Cognie J., Cadoret V., Royere D., Monget P. & Mermillod P. (2006). Zygote arrest 1 gene in the pig, cattle and human: evidence of different transcripts variants in male and female germ cells. Reprod. Biol. Endocrinol. 4, 12.
Valleh M.V., Rasmussen M.A. & Hyttel P. (2015). Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes. Zygote 9, 112.
Wu G., Jia B., Mo X., Liu C., Fu X., Zhu S. & Hou Y. (2013). Nuclear maturation and embryo development of porcine oocytes vitrified by cryotop: effect of different stages of in vitro maturation. Cryobiology 67, 95101.
Wu X., Viveiros M.M, Eppig J.J., Bai Y., Fitzpatrick S.L. & Matzuk M.M. (2003). Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33, 187–91.
Yamanaka K., Sugimura S., Wakai T., Kawahara M., Sato E. (2009). Difference in sensitivity to culture condition between in vitro fertilized and somatic cell nuclear transfer embryos in pigs. J. Reprod. Dev. 55, 299304.
Yasuda K., Fukuoka M., Taii S., Takakura K. & Mori T. (1990). Inhibitory effects of interleukin-1 on follicle-stimulating hormone induction of aromatase activity, progesterone secretion, and functional luteinizing hormone receptors in cultures of porcine granulosa cells. Biol. Reprod. 43, 905–12.
Zhang W., Chen Q., Yang Y., Liu W., Zhang M., Xia G. & Wang C. (2014). Epidermal growth factor-network signaling mediates luteinizing hormone regulation of BNP and CNP and their receptor NPR2 during porcine oocyte meiotic resumption. Mol. Reprod. Dev. 81, 1030–41.
Zhao S. & Fernald R.D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1045–62.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Zygote
  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 354 *
Loading metrics...

* Views captured on Cambridge Core between 23rd December 2016 - 23rd November 2017. This data will be updated every 24 hours.