Skip to main content Accesibility Help
×
×
Home

Oleic acid in the modulation of oocyte and preimplantation embryo development

  • Shabnam Fayezi (a1), Jo L.M.R. Leroy (a2), Marefat Ghaffari Novin (a1) and Masoud Darabi (a3)
Summary

Potential reproductive effects are considered as the major aspect of biomolecules functionality in an organism. The recent identification of differential patterns of fatty acids across ovarian follicles and their association with levels of sexual maturity highlights the importance of these biomolecules. It is well known that fatty acids are highly diverse in terms of their functional properties. Oleic acid is chemically classified as an unsaturated omega-9 fatty acid. Besides serving as an important energy source, oleic acid is involved in metabolic and structural roles. Free and esterified oleic acids are compartmentalized into discrete extracellular fluids, cell organelles and found within the cytosol. This review summarizes the current knowledge on the contribution of oleic acid in regulating female fertility, particularly its involvement in female germ cell growth and development. Oleic acid has been identified as a blastomeric and post-cryopreservation survival biomarker in bovine. Several related studies have shown the critical role of oleic acid in counteracting the detrimental effects of saturated fatty acids and in paracrine support of oocyte development. Although available data are not ideally detailed, most data suggest that oleic acid can contribute to normal oocyte and preimplantation embryo development via mechanisms involving metabolic partitioning of fatty acids, change in the membrane structural organization, attenuation of oxidative stress and regulation of intracellular signalling. Thus, oleic acid may play a significant role in oocyte and early embryo development, suggesting that future studies should explore in more detail its potential effects on the physiopathology of female reproduction.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Oleic acid in the modulation of oocyte and preimplantation embryo development
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Oleic acid in the modulation of oocyte and preimplantation embryo development
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Oleic acid in the modulation of oocyte and preimplantation embryo development
      Available formats
      ×
Copyright
Corresponding author
All correspondence to: Masoud Darabi. Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran. Tel: +98 41 33363234. Fax +98 41 33363231. E-mail: darabim@tbzmed.ac.ir
References
Hide All
Aardema, H., van Tol, H.T.A., Wubbolts, R.W., Brouwers, J.F.H.M., Gadella, B.M. & Roelen, B.A.J. (2017). Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress. Biol. Reprod. 96, 982–92.
Aardema, H., Vos, P.L.A.M., Lolicato, F., Roelen, B.A.J., Knijn, H.M., Vaandrager, A.B., Helms, J.B. & Gadella, B.M. (2011). Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 85, 62–9.
Agirregoitia, E., Ibarra-Lecue, I., Totorikaguena, L., Mendoza, R., Expósito, A., Matorras, R., Urigüen, L. & Agirregoitia, N. (2015). Dynamics of expression and localization of the cannabinoid system in granulosa cells during oocyte nuclear maturation. Fertil. Steril. 104, 753–60.
Arav, A., Pearl, M. & Zeron, Y. (2000). Does membrane lipid profile explain chilling sensitivity and membrane lipid phase transition of spermatozoa and oocytes? Cryo Letters 21, 179–86.
Arav, A., Zeron, Y., Leslie, S.B., Behboodi, E., Anderson, G.B. & Crowe, J.H. (1996). Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 33, 589–99.
Ben-David, U., Gan, Q.-F., Golan-Lev, T., Arora, P., Yanuka, O., Oren, Y.S., Leikin-Frenkel, A., Graf, M., Garippa, R., Boehringer, M., Gromo, G. & Benvenisty, N. (2013). Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12, 167–79.
Bilby, T.R., Block, J., do Amaral, B.C., Sa Filho, O., Silvestre, F.T., Hansen, P.J., Staples, C.R. & Thatcher, W.W. (2006). Effects of dietary unsaturated fatty acids on oocyte quality and follicular development in lactating dairy cows in summer. J. Dairy Sci. 89, 3891–903.
Cagnone, G. & Sirard, M.A. (2014). The impact of exposure to serum lipids during in vitro culture on the transcriptome of bovine blastocysts. Theriogenology 81, 712–22.
Cao, J., Yosida, M., Kitazawa, T. & Taneike, T. (2005). Uterine region-dependent differences in responsiveness to prostaglandins in the non-pregnant porcine myometrium. Prostaglandins Other Lipid Mediat. 75 (1–4), 105–22.
Cheng, Z., Abayasekara, D.R.E., Elmes, M., Kirkup, S. & Wathes, D.C. (2015). Effect of oleic acid supplementation on prostaglandin production in maternal endometrial and fetal allantochorion cells isolated from late gestation ewes. Placenta 36, 1011–7.
Choe, E. & Min, D.B. (2009). Mechanisms of antioxidants in the oxidation of foods. Compr. Rev. Food Sci. Food Saf. 8, 345–58.
Dirandeh, E., Towhidi, a., Zeinoaldini, S., Ganjkhanlou, M., Pirsaraei, Z.A. & Fouladi-Nashta, A. (2013). Effects of different polyunsaturated fatty acid supplementations during the postpartum periods of early lactating dairy cows on milk yield, metabolic responses, and reproductive performances. J. Anim. Sci. 91, 713–21.
Dunning, K.R., Russell, D.L. & Robker, R.L. (2014). Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 148, R15–27.
El-Shahat, K.H. & Abo-El Maaty, A.M. (2010). The effect of dietary supplementation with calcium salts of long chain fatty acids and/or l-carnitine on ovarian activity of Rahmani ewes. Anim. Reprod. Sci. 117, 7882.
Fayezi, S., Darabi, M., Nouri, M., Rahimipour, A. & Mehdizadeh, A. (2014). Analysis of follicular fluid total phospholipids in women undergoing in-vitro fertilisation. J. Obstet. Gynaecol. 34, 259–62.
Fayezi, S., Ghaffari Novin, M., Darabi, M., Norouzian, M., Nouri, M., Farzadi, L. & Darabi, M. (2017). Primary culture of human cumulus cells requires stearoyl-coenzyme a desaturase 1 activity for steroidogenesis and enhancing oocyte in vitro maturation. Reprod. Sci. [Epub ahead of print]
Ferreira, M.S., de Oliveira, D.N., Gonçalves, R.F. & Catharino, R.R. (2014). Lipid characterization of embryo zones by silica plate laser desorption ionization mass spectrometry imaging (SP-LDI-MSI). Anal. Chim. Acta 807, 96102.
Feuerstein, P., Cadoret, V., Dalbies-Tran, R., Guerif, F., Bidault, R. & Royere, D. (2007). Gene expression in human cumulus cells: one approach to oocyte competence. Hum. Reprod. 22, 3069–77.
Fouladi-Nashta, A.A., Gutierrez, C.G., Gong, J.G., Garnsworthy, P.C. & Webb, R. (2007). Impact of dietary fatty acids on oocyte quality and development in lactating dairy cows. Biol. Reprod. 77, 917.
Funari, S.S., Barceló, F. & Escribá, P.V (2003). Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. J. Lipid Res. 44, 567–75.
Ghetler, Y., Yavin, S., Shalgi, R. & Arav, A. (2005). The effect of chilling on membrane lipid phase transition in human oocytes and zygotes. Hum. Reprod. 20, 3385–9.
González-Serrano, A.F., Pirro, V., Ferreira, C.R., Oliveri, P., Eberlin, L.S., Heinzmann, J., Lucas-Hahn, A., Niemann, H. & Cooks, R.G. (2013). Desorption electrospray ionization mass spectrometry reveals lipid metabolism of individual oocytes and embryos. PLoS One 8, e74981.
Guardieiro, M.M., Machado, G.M., Bastos, M.R., Mourão, G.B., Carrijo, L.H.D., Dode, M.A.N., Leroy, J.L.M.R. & Sartori, R. (2014). A diet enriched in linoleic acid compromises the cryotolerance of embryos from superovulated beef heifers. Reprod. Fertil. Dev. 26, 511–20.
Haggarty, P., Wood, M., Ferguson, E., Hoad, G., Srikantharajah, A., Milne, E., Hamilton, M. & Bhattacharya, S. (2006). Fatty acid metabolism in human preimplantation embryos. Hum. Reprod. 21, 766–73.
Han, S., Schroeder, E.A., Silva-García, C.G., Hebestreit, K., Mair, W.B. & Brunet, A. (2017). Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 544 (7649), 185–90.
Van Hoeck, V., Rizos, D., Gutierrez-Adan, A., Pintelon, I., Jorssen, E., Dufort, I., Sirard, M.A., Verlaet, A., Hermans, N., Bols, P.E.J. & Leroy, J.L.M.R. (2015). Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reprod. Fertil. Dev. 27, 372–84.
Homa, S.T. & Brown, C.A. (1992). Changes in linoleic acid during follicular development and inhibition of spontaneous breakdown of germinal vesicles in cumulus-free bovine oocytes. J. Reprod. Fertil. 94, 153–60.
Homa, S.T., Racowsky, C. & McGaughey, R.W. (1986). Lipid analysis of immature pig oocytes. J. Reprod. Fertil. 77, 425–34.
Hudson, N.L., Berg, M.C., Green, M.P., Back, P.J., Thorstensen, E.B., Peterson, A.J., Pitman, J.L. & McNatty, K.P. (2014). The microenvironment of the ovarian follicle in the postpartum dairy cow: Effects on reagent transfer from cumulus cells to oocytes in-vitro. Theriogenology 82, 563–73.
Ingvartsen, K.L. & Andersen, J.B. (2000). Integration of metabolism and intake regulation: a review focusing on periparturient animals. J. Dairy Sci. 83, 1573–97.
Jorritsma, R., César, M.L., Hermans, J.T., Kruitwagen, C.L.J.J., Vos, P.L.A.M. & Kruip, T.A.M. (2004). Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro . Anim. Reprod. Sci. 81, 225–35.
Jungheim, E.S., MacOnes, G.A., Odem, R.R., Patterson, B.W., Lanzendorf, S.E., Ratts, V.S. & Moley, K.H. (2011). Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil. Steril. 95, 1970–4.
Karaşahiṅ, T. & Arikan, Ş. (2015). The effect of oleic and linoleic acids on in vitro bovineembryonic development and embryo quality. Turk. J. Vet. Anim. Sci. 39, 154–9.
Khandoker, M.A.M.Y. & Tsujii, H. (1999). Effect of exogenous fatty acids on in vitro development of rat embryos. Asian Australas. J. Anim. Sci. 12, 169–73.
Kim, J.Y., Kinoshita, M., Ohnishi, M. & Fukui, Y. (2001). Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocytes. Reproduction 122, 131–8.
Lager, S., Gaccioli, F., Ramirez, V.I., Jones, H.N., Jansson, T. & Powell, T.L. (2013). Oleic acid stimulates system A amino acid transport in primary human trophoblast cells mediated by Toll-like receptor 4. J. Lipid Res. 54, 725–33.
Lapa, M., Marques, C.C., Alves, S.P., Vasques, M.I., Baptista, M.C., Carvalhais, I., Silva Pereira, M., Horta, A.E.M., Bessa, R.J.B. & Pereira, R.M. (2011). Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition. Reprod. Domest. Anim. 46, 904–10.
Lee, H. & Park, W.J. (2014). Unsaturated fatty acids, desaturases, and human health. J. Med. Food 17, 189–97.
Leroy, J.L.M. R., Van Soom, A., Opsomer, G. & Bols, P.E.J. (2008). The consequences of metabolic changes in high-yielding dairy cows on oocyte and embryo quality. Animal 2, 1120–7.
Leroy, J.L.M.R., Sturmey, R.G., Van Hoeck, V., De Bie, J., McKeegan, P.J. & Bols, P.E.J. (2014). Dietary fat supplementation and the consequences for oocyte and embryo quality: hype or significant benefit for dairy cow reproduction? Reprod. Domest. Anim. 49, 353–61.
Leroy, J.L.M.R., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., Genicot, G. & Van Soom, A. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro . Reproduction 130, 485–95.
Leroy, J., Valckx, S.D.M., Jordaens, L., De Bie, J., Desmet, K.L.J., Van Hoeck, V., Britt, J.H., Marei, W.F. & Bols, P.E.J. (2015). Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod. Fertil. Dev. 27, 693703.
Leroy, J., Vanholder, T., Van Soom, A., Opsomer, G., Bols, P. & de Kruif, A. (2003). Effect of oleic acid during in vitro maturation and fertilisation, first cleavage and embryo development of bovine cumulus-oocyte-complexes. Reprod. Domest. Anim. 38, 328.
Listenberger, L.L., Ory, D.S. & Schaffer, J.E. (2001). Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276, 14890–5.
Lopez, S., Bermudez, B., Montserrat-De La Paz, S., Jaramillo, S., Varela, L.M., Ortega-Gomez, A., Abia, R. & Muriana, F.J.G. (2014). Membrane composition and dynamics: A target of bioactive virgin olive oil constituents. Biochim. Biophys. Acta 1838, 1638–56.
Marei, W.F., Wathes, D.C. & Fouladi-Nashta, A.A. (2010). Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction 139, 979988.
Matorras, R., Ruiz, J.I., Mendoza, R., Ruiz, N., Sanjurjo, P. & Rodriguez-Escudero, F.J. (1998). Fatty acid composition of fertilization-failed human oocytes. Hum. Reprod. 13, 2227–30.
Maya-Soriano, M.J., Taberner, E. & López-Béjar, M. (2013). Retinol improves in vitro oocyte nuclear maturation under heat stress in heifers. Zygote 21, 377–84.
McEvoy, T.G., Coull, G.D., Broadbent, P.J., Hutchinson, J.S. & Speake, B.K. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–70.
McKeegan, P.J. & Sturmey, R.G. (2011). The role of fatty acids in oocyte and early embryo development. Reprod. Fertil. Dev. 24, 5967.
Menezo, Y., Renard, J.P., Delobel, B. & Pageaux, J.F. (1982). Kinetic study of fatty acid composition of day 7 to day 14 cow embryos. Biol. Reprod. 26, 787–90.
Mondadori, R.G., Neves, J.P. & Gonçalves, P.B. (2008). Protein kinase C (PKC) role in bovine oocyte maturation and early embryo development. Anim. Reprod. Sci. 107, 20–9.
Moreau, C., Froment, P., Tosca, L., Moreau, V. & Dupont, J. (2006). Expression and regulation of the SCD2 desaturase in the rat ovary. Biol. Reprod. 74, 7587.
Mu, Y.M., Yanase, T., Nishi, Y., Tanaka, A., Saito, M., Jin, C.H., Mukasa, C., Okabe, T., Nomura, M., Goto, K. & Nawata, H. (2001). Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology 142, 3590–7.
Nandi, S., Tripathi, S.K., Farman, M., Gupta, P.S.P. & Mondal, S. (2014). Effect of non-esterified fatty acids on oocyte and granulosa cell growth in vitro . J. Agroecol. Nat. Resour. Manag. 1, 2931.
Nonogaki, T., Noda, Y., Goto, Y., Kishi, J. & Mori, T. (1994). Developmental blockage of mouse embryos caused by fatty acids. J. Assist. Reprod. Genet. 11, 482–8.
O'Gorman, a, Wallace, M., Cottell, E., Gibney, M.J., McAuliffe, F.M., Wingfield, M. & Brennan, L. (2013). Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction 146, 389–95.
Pereira, R.M., Baptista, M.C., Vasques, M.I., Horta, A.E.M., Portugal, P.V., Bessa, R.J.B., Silva, J.C., Pereira, M.S. & Marques, C.C. (2007). Cryosurvival of bovine blastocysts is enhanced by culture with trans-10 cis-12 conjugated linoleic acid (10t,12c CLA). Anim. Reprod. Sci. 98 (3–4), 293301.
Pirro, V., Oliveri, P., Ferreira, C.R., González-Serrano, A.F., Machaty, Z. & Cooks, R.G. (2014). Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. Anal. Chim. Acta 848, 5160.
Prates, E.G., Alves, S.P., Marques, C.C., Baptista, M.C., Horta, A.E.M., Bessa, R.J.B. & Pereira, R.M. (2013). Fatty acid composition of porcine cumulus oocyte complexes (COC) during maturation: effect of the lipid modulators trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) and forskolin. In Vitro Cell. Dev. Biol. Anim. 49, 335–45.
Pratt, H.P.M. & George, M.A. (1989). Organisation and assembly of the surface membrane during early cleavage of the mouse embryo. Roux's Arch. Dev. Biol. 198, 170–8.
Renaville, B., Bacciu, N., Comin, A., Motta, M., Poli, I., Vanini, G. & Prandi, A. (2010). Plasma and follicular fluid fatty acid profiles in dairy cows. Reprod. Domest. Anim. 45, 118–21.
Rios-Esteves, J. & Resh, M.D. (2013). Stearoyl CoA desaturase is required to produce active, lipid-modified Wnt proteins. Cell Rep. 4, 1072–81.
Rivera, R.M. & Hansen, P.J. (2001). Development of cultured bovine embryos after exposure to high temperatures in the physiological range. Reproduction 121, 107–15.
Robinson, M.D. & Cistola, D.P. (2014). Nanofluidity of fatty acid hydrocarbon chains as monitored by benchtop time-domain nuclear magnetic resonance. Biochemistry 53, 7515–22.
Salehi, R., Colazo, M.G., Oba, M. & Ambrose, D.J. (2015). A prepartum diet supplemented with oilseeds high in oleic or linoleic acid reduced GnRH-induced LH release in dairy cows during second week postpartum. Reprod. Biol. Endocrinol. 13, 69.
Shaaker, M., Rahimipour, A., Nouri, M., Khanaki, K., Darabi, M., Farzadi, L., Shahnazi, V. & Mehdizadeh, A. (2012). Fatty acid composition of human follicular fluid phospholipids and fertilization rate in assisted reproductive techniques. Iran. Biomed. J. 16, 17.
Shehab-El-Deen, M.A., Leroy, J.L.M.R., Maes, D. & Van Soom, A. (2009). Cryotolerance of bovine blastocysts is affected by oocyte maturation in media containing palmitic or stearic acid. Reprod. Domest. Anim. 44, 140–2.
Silvestre, F.T., Carvalho, T.S.M., Crawford, P.C., Santos, J.E.P., Staples, C.R., Jenkins, T. & Thatcher, W.W. (2011). Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: II. Neutrophil fatty acids and function, and acute phase proteins. J. Dairy Sci. 94, 2285–301.
Sinclair, K.D., Lunn, L.A., Kwong, W.Y., Wonnacott, K., Linforth, R.S.T. & Craigon, J. (2008). Amino acid and fatty acid composition of follicular fluid as predictors of in-vitro embryo development. Reprod. Biomed. Online 16, 859–68.
Stinshoff, H., Wilkening, S., Hanstedt, A., Bollwein, H. & Wrenzycki, C. (2014). Dimethylsulfoxide and conjugated linoleic acids affect bovine embryo development in vitro . Reprod. Fertil. Dev. 26, 502–10.
Ströhle, A. & Döring, F. (2010). Molecularization in nutritional science: a view from philosophy of science. Mol. Nutr. Food Res. 54, 1385–404.
Sudano, M.J., Santos, V.G., Tata, A., Ferreira, C.R., Paschoal, D.M., Machado, R., Buratini, J., Eberlin, M.N. & Landim-Alvarenga, F.D.C. (2012). Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Biol. Reprod. 87, 130.
Tabernero, A., Lavado, E.M., Granda, B., Velasco, A. & Medina, J.M. (2001). Neuronal differentiation is triggered by oleic acid synthesized and released by astrocytes. J. Neurochem. 79, 606–16.
Tepekoy, F., Ustunel, I. & Akkoyunlu, G. (2014). Protein kinase C isoforms α, δ and ε are differentially expressed in mouse ovaries at different stages of postnatal development. J. Ovarian Res. 7, 111.
Uzbekova, S., Elis, S., Teixeira-Gomes, A.-P., Desmarchais, A., Maillard, V. & Labas, V. (2015). MALDI mass spectrometry imaging of lipids and gene expression reveals differences in fatty acid metabolism between follicular compartments in porcine ovaries. Biology (Basel). 4, 216–36.
Valckx, S.D.M., Arias-Alvarez, M., De Pauw, I., Fievez, V., Vlaeminck, B., Fransen, E., Bols, P.E.J. & Leroy, J.L.M.R. (2014a). Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reprod. Biol. Endocrinol. 12, 13.
Valckx, S.D.M., De Bie, J., Michiels, E.D., Goovaerts, I.G., Punjabi, U., Ramos-Ibeas, P., Gutierrez-Adan, A., Bols, P.E. & Leroy, J.L. (2015). The effect of human follicular fluid on bovine oocyte developmental competence and embryo quality. Reprod. Biomed. Online 30, 203–7.
Valckx, S.D.M., Van Hoeck, V., Arias-Alvarez, M., Maillo, V., Lopez-Cardona, A.P., Gutierrez-Adan, A., Berth, M., Cortvrindt, R., Bols, P.E.J. & Leroy, J.L.M.R. (2014b). Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence. Fertil. Steril. 102, 1769–76.
Van Hoeck, V., Bols, P.E.J., Binelli, M. & Leroy, J.L.M.R. (2014). Reduced oocyte and embryo quality in response to elevated non-esterified fatty acid concentrations: A possible pathway to subfertility? Anim. Reprod. Sci. 149, 1929.
Van Hoeck, V., Leroy, J.L.M.R., Alvarez, M.A., Rizos, D., Gutierrez-Adan, A., Schnorbusch, K., Bols, P.E.J., Leese, H.J. & Sturmey, R.G. (2013). Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: Mechanistic insights. Reproduction 145, 3344.
Van Hoeck, V., Sturmey, R.G., Bermejo-Alvarez, P., Rizos, D., Gutierrez-Adan, A., Leese, H.J., Bols, P.E.J. & Leroy, J.L.M.R. (2011). Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 6, e23183.
Vanholder, T., Leroy, J.L.M.R., Van Soom, A., Opsomer, G., Maes, D., Coryn, M. & de Kruif, A. (2005). Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro . Anim. Reprod. Sci. 87, 3344.
Vanholder, T., Lmr Leroy, J., Van Soom, A., Maes, D., Coryn, M., Fiers, T., de Kruif, A. & Opsomer, G. (2006). Effect of non-esterified fatty acids on bovine theca cell steroidogenesis and proliferation in vitro . Anim. Reprod. Sci. 92, 5163.
Vilella, F., Ramirez, L.B. & Simón, C. (2013a). Lipidomics as an emerging tool to predict endometrial receptivity. Fertil. Steril. 99, 1100–6.
Vilella, F., Ramirez, L., Berlanga, O., Martínez, S., Alamá, P., Meseguer, M., Pellicer, A. & Simón, C. (2013b). PGE2 and PGF2α concentrations in human endometrial fluid as biomarkers for embryonic implantation. J. Clin. Endocrinol. Metab. 98, 4123–32.
Wang, G. & Tsujii, H. (1999). Metabolism of exogenous palmitic and oleic acids by preimplantation mouse embryos. J. Mamm. Ova Res. 16, 10–5.
Warzych, E., Cieslak, A., Madeja, Z.E., Pawlak, P., Wolc, A. & Lechniak, D. (2014). Multifactorial analysis of the follicular environment is predictive of oocyte morphology in cattle. J. Reprod. Dev. 60, 18.
Warzych, E., Pawlak, P., Pszczola, M., Cieslak, A. & Lechniak, D. (2017). Prepubertal heifers versus cows – the differences in the follicular environment. Theriogenology 87, 3647.
Wathes, D.C., Abayasekara, D.R.E. & Aitken, R.J. (2007). Polyunsaturated fatty acids in male and female reproduction. Biol. Reprod. 77, 190201.
Yahia Khandoker, M.A.M., Tsujii, H. & Karasawa, D. (1998). A kinetics study of fatty acid composition of embryos, oviductal and uterine fluids in the rabbit. Asian Australas. J. Anim. Sci. 11, 60–4.
Yenuganti, V.R., Viergutz, T. & Vanselow, J. (2016). Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells. Gen. Comp. Endocrinol. 232, 134–44.
Zelinski, M.B., Selivonchick, D.P. & Stormshak, F. (1988). Characterization of plasma membrane lipids and luteinizing hormone receptors of ovine corpora lutea during luteolysis and early pregnancy. Biol. Reprod. 38, 768–79.
Zeron, Y., Ocheretny, A., Kedar, O., Borochov, A., Sklan, D. & Arav, A. (2001). Seasonal changes in bovine fertility: Relation to developmental competence of oocytes, membrane properties and fatty acid composition of follicles. Reproduction 121, 447–54.
Zeron, Y., Tomczak, M., Crowe, J. & Arav, A. (2002). The effect of liposomes on thermotropic membrane phase transitions of bovine spermatozoa and oocytes: Implications for reducing chilling sensitivity. Cryobiology 45, 143–52.
Ziecik, A.J., Waclawik, A. & Bogacki, M. (2008). Conceptus signals for establishment and maintenance of pregnancy in pigs – lipid signaling system. Exp. Clin. Endocrinol. Diabetes 116, 443–9.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Zygote
  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed