Skip to main content
×
Home
    • Aa
    • Aa
  • Access

Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species

  • Erdogan Memili (a1) and Neal L. First (a1)
  • Published online: 01 February 2000
Abstract

Early embryonic development is largely dependent on maternal RNAs and proteins synthesised during oogenesis. Zygotic transcription is an essential event that occurs at a species-specific time after fertilisation. In the absence of zygotic transcription the embryo dies since it can no longer support requirements for successful embryo development. Molecular genetics of gene expression during early embryogenesis, especially in the bovine species, remain one of the unsolved questions in modern biology. Earlier studies suggested that embryonic transcription in cattle begins at the late 4-cell or 8-cell stage. However, more recent studies suggest that bovine zygotes and 2-cell embryos are both transcriptionally and translationally active. Moreover, changes in chromatin structure due to acetylation of core histones and DNA replication play important roles in the regulation of zygotic/embryonic gene expression. This review will summarise results of recent studies about the timing and mechanisms of zygotic/embryonic gene expression in cattle. In addition, terminology in the literature regarding gene expression during early embryogenesis will be clarified. These terminologies include: ‘zygotic/embryonic gene expression’, ‘maternal to embryonic transition in control of development (MET)’ and ‘zygotic/embryonic genome activation (ZEGA)’.

    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species
      Your Kindle email address
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species
      Available formats
      ×
Copyright
Corresponding author
Harvard Medical School, Harvard Institute of Human Genetics, Room 441, 4 Blackfan Circle, Boston, MA 02115, USA.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Zygote
  • ISSN: 0967-1994
  • EISSN: 1469-8730
  • URL: /core/journals/zygote
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: