Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T22:39:02.024Z Has data issue: false hasContentIssue false

Movpe Growth of MCT for LWIR Detectors

Published online by Cambridge University Press:  15 February 2011

S.J.C. Irvine
Affiliation:
Rockwell International Science Center, Thousand Oaks, California 91360.
J. Bajaj
Affiliation:
Rockwell International Science Center, Thousand Oaks, California 91360.
L.O. Bubulac
Affiliation:
Rockwell International Science Center, Thousand Oaks, California 91360.
Get access

Abstract

Recent progress in the growth of Hg1−xCdxTe (MCT) by metal organic vapor phase epitaxy (MOVPE) is reviewed. The preferred diode structure for LWIR detectors is the p/n heterostructure, which requires extrinsic doping of both n and p-type layers and good compositional control of the base and cap layers. Uniform n-type doping has been demonstrated using a new precursor, TIPIn, with Auger-limited lifetime down to a doping concentration of 1 × 1015 cm−3. p-type doping has been more difficult to control because Group V dopants can occupy either Group II or Group VI sites, leading to autodoping. Some encouraging progress has been made by doping under metal rich conditions. An alternative approach to p-type doping during growth is the Rockwell-developed process of As implantation, diffusion and activation annealing, which has been used to demonstrate near diffusion-limited LWIR diodes at 77K. Major strides in the reproducibility of the MOVPE process have been achieved by in situ monitoring. Laser reflectometry has been used to monitor growth rates and morphology throughout the growth of multiple layer structures. This wafer monitoring has been complemented by system monitoring, using Epison concentration monitors and pyrometry to measure temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bubulac, L.O., Irvine, S.J.C., Gertner, E.R., Bajaj, J., Lin, W.P. and Zucca, R., Semicond. Sci. Technol. 8, S270(1993).Google Scholar
2. Korenstein, R., Hallock, P.H., Lee, D.L., Sullivan, E., Gedridge, R.W. and Higa, K.T., Extended Abstracts, 1992 US Workshop on the Physics and Chemistry of Mercury Cadmium Telluride, Boston, MA, October 13–15, 117, 1992.Google Scholar
3. Irvine, S.J C., Gertner, E.R., Bubulac, L.O., Gil, R.V. and Edwall, D.D., Semicond. Sci. Technol. 6, C15(1991).CrossRefGoogle Scholar
4. Tung, T., DeArmond, L.V., Herald, R.F., Herning, P.E., Kalisher, M.H., Olson, D.A., Risser, R.F., Stevens, A.P., and Tighe, S.J., SPIE vol. 1735 Infrared Detectors: State of the Art, Makky, W. H., ed. 109 (1992).Google Scholar
5. Irvine, S.J.C., Bajaj, J. and Sankur, H.O., J. Crystal Growth, 124, 654 (1992).Google Scholar
6. Tunnicliffe, J., Irvine, S.J.C., Dosser, O.D. and Mullin, J.B., J. Crystal Growth,, 68, 245 (1984).Google Scholar
7. Bajaj, J., Irvine, S.J.C. and Sankur, H.O., J. Electronic Materials (in press).Google Scholar
8. Stagg, J.P., Christer, J., Thrush, E.J. and Crawley, J., J. Crystal Growth, 120, 98 (1992).Google Scholar
9. Capper, P., J. Vac. Sci. Technol., B9, 1667 (1991).Google Scholar
10. Easton, B.C., Maxey, C.D., Whiffin, P.A. C., Roberts, J.A., Gale, I.G., Grainger, F. and Capper, P., J. Vac. Sci. Technol., B9, 1682 (1991).CrossRefGoogle Scholar
11. Gough, J.S., Houlton, M.R., Irvine, S.J.C., Shaw, N., Young, M.L. and Astles, M.G., J. Vac. Sci. Technol. B9, 1687 (1991).Google Scholar
12. Whitley, J.S., Koppel, P., Conger, V.L. and Owens, K.E., J. Vac. Sci. Technol. A6, 2804 (1988).Google Scholar
13. Edwall, D.D., and Bubulac, L.O., Extended Abstracts in 1990 US Workshop on the Physics and Chemistry of Mercury Cadmium Telluride, 51.Google Scholar
14. Gough, J.S., Houlton, M.R., Irvine, S.J.C., Shaw, N., Young, M.L. and Royle, A., Materials Letters, 10, 393 (1991).Google Scholar
15. Irvine, S.J.C., Bajaj, J., Bubulac, L.O., Lin, W.P., Gedridge, R.W. Jr.,, and Higa, K.T., J. Electronic Materials (in press).Google Scholar
16. Falconer, J.E., Palfrey, H.D. and Blackmore, G.W., J. Crystal Growth, 100, 275 (1990).Google Scholar
17. Capper, P., Maxey, C.D., Whiffin, P.A.C. and Easton, B.C., J. Crystal Growth, 97, 833 (1989).Google Scholar
18. Edwall, D.D., Bubulac, L.O. and Gertner, E.R., J. Vac. Sci. Technol. B10, 1423 (1992).Google Scholar
19. Bubulac, L.O. and Viswanathan, C.R., Appl. Phys. Lett. 60, 222 (1992).Google Scholar
20. Mullin, J.B., Irvine, S.J.C., Giess, J., Gough, J.S., Royle, A., Ward, M.C.L. and Crimes, G., SPIE Proceedings, 1106, 17 (1989).Google Scholar
21. Smith, L.M., Bryne, C.F., Patel, D., Knowles, P., Thompson, J., Jenkin, G.T., Duy, T. Nguyen, Durand, A. and Bourdillot, M., J. Crystal Growth, 107, 605 (1991).Google Scholar
22. Bubulac, L.O. and Edwall, D.D., J. Vac. Sci. Technol. B9, 1705(1991).Google Scholar