Published online by Cambridge University Press: 14 July 2016
We consider the sample paths of the order statistics of independent and identically distributed random variables with common distribution function F. If F is strictly increasing but possibly having discontinuities, we prove that the sample paths of the order statistics satisfy the large deviation principle in the Skorokhod M 1 topology. Sanov's theorem is deduced in the Skorokhod M'1 topology as a corollary to this result. A number of illustrative examples are presented, including applications to the sample paths of trimmed means and Hill plots.