Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T14:53:14.316Z Has data issue: false hasContentIssue false

Ferroelectric Na0.5K0.5NbO3 Films for Voltage Tunable Microwave Devices

Published online by Cambridge University Press:  18 March 2011

Choong-Rae Cho
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
Alex Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
Johanna Andrèasson
Affiliation:
Department of Materials and Manufacturing Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden
Ture Lindbäck
Affiliation:
Department of Materials and Manufacturing Engineering, Luleå University of Technology, S-971 87 Luleå, Sweden
Saeed Abadei
Affiliation:
Department of Microelectronics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
Spartak Gevorgian
Affiliation:
Department of Microelectronics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
Get access

Abstract

Single phase Na0.5K0.5NbO3 (NKN) thin films have been pulsed laser deposited on Al2O3(0112), LaAlO3(001), and MgO(001) single crystal substrates as well as on the SiO2/Si(001) wafers to demonstrate films feasibility for voltage tunable microwave device applications. NKN film texture has been found to be quite different on three different single crystals: highly c-axis oriented on Al2O3, “cube-on-cube” epitaxial quality on LaAlO3, bi-axial textures on MgO, while NKN films grown on Si substrate with various thickness of SiO2 buffer layer possess highly c-axis oriented quadrupled structure. NKN film interdigital capacitors fabricated onto single crystal oxide substrates showed tunability of 30-40 % and dissipation factor of 0.01-0.02 at 1 MHz and applied electric field of 100kV/cm. Microwave frequency measurements for NKN/Si varactors yield 13 % tunability and dielectric loss tanδ as low as 0.012 at 40 GHz under 200 kV/cm applied bias.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wang, X., Helmersson, U., Olafsson, S., Rudner, S., Wernlund, L.-D., Gevorgian, S., Appl. Phys. Lett. 73, 927 (1998).Google Scholar
[2] Cho, C.-R., Koh, J.-H., Grishin, A., Abadei, S., Gevorgian, S., Appl. Phys. Lett. 76, 1761 (2000).Google Scholar
[3] McNeal, M. P., Jang, S.-J., Newnham, R. E., J. Appl. Phys. 83, 3288 (1998).Google Scholar
[4] Cho, C.-R., Grishin, A., J. Appl. Phys. 87, 4439 (2000).Google Scholar
[5] Glazer, A. M., Acta Crystallogr. Sect. A: Cryst Phys., Diffr., Theor. Gen. Crystallogr. A31, 756 (1975).Google Scholar
[6] Cho, C.-R., Grishin, A., To appear in Mat. Res. Soc. Proc. 623, (2000).Google Scholar
[7] Jia, Q. X., Groves, J. R., Arendt, P., Fan, Y., Findikoglu, A. T., Foltyn, S. R., Jiang, H., Miranda, F. A., Appl. Phys. Lett. 74, 1564 (1999).Google Scholar
[8] Knauss, L. A., Pond, J. M., Horwitz, J. S., Chrisey, D. B., Mueller, C. H., Treece, R., Appl. Phys. Lett. 69, 25 (1996).Google Scholar
[9] Gevorgian, S. S., Martinsson, T., Linner, P. L. J., Kollberg, E. L., IEEE Transactions on Microwave Theory and Technologies 44, 896, (1996).Google Scholar
[10] Chang, W., Gilmore, C. M., Kim, W.-J., Pond, J. M., Kirchoefer, S.W., Qadri, S.B., Chirsey, D.B., Horwitz, J.S., J. Appl. Phys. 87, 3044 (2000).Google Scholar
[11] Abadei, S., Gevorgian, S., Cho, C.-R., Grishin, A., Andrèasson, J., Lindbäck, T., Appl. Phys. Lett. 78, 1900 (2001).Google Scholar
[12] York, R. A., Nagra, A. S., Periaswamy, P., Auciello, O., Streiffer, S. K., Im, J., Integrated Ferroelectrics 34, 177 (2001).Google Scholar