Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T04:19:53.219Z Has data issue: false hasContentIssue false

Influence of Radiation Damage and Isochronal Annealing on the Magnetic Susceptibility of Pu1-xAmx Alloys

Published online by Cambridge University Press:  01 February 2011

Scott K McCall
Affiliation:
mccall10@llnl.gov, LLNL, ., ., Livermore, CA, 94550, United States, 925-422-1499
Michael J Fluss
Affiliation:
fluss1@llnl.gov, LLNL, CMELS, 7000 East Ave, Livermore, CA, 94550, United States
Brandon W. Chung
Affiliation:
chung7@llnl.gov, LLNL, CMELS, 7000 East Ave, Livermore, CA, 94550, United States
Richard G. Haire
Affiliation:
hairerg@ornl.gov, ORNL, Oak Ridge, TN, 37830, United States
Get access

Abstract

Results of radiation damage in Pu and Pu1-xAmx alloys studied with magnetic susceptibility, χ(T), and resistivity are presented. Damage accumulated at low temperatures increases χ(T) for all measured alloys, with the trend generally enhanced as the lattice expands. There is a trend towards saturation observable in the damage induced magnetic susceptibility data. that is not evident in similar damage induced resistivity data taken on the same specimen. A comparison of isochronal annealing curves measured by both resistivity and magnetic susceptibility on a 4.3at% Ga stabilized δ-Pu specimen show that Stage I annealing, where interstitials begin to move, is largely transparent to the magnetic measurement. This indicates that interstitials have little impact on the damage induced increase in the magnetic susceptibility. The isochronal annealing curves of the Pu1-xAmx alloys do not show distinct annealing stages as expected for alloys. However, samples near 20% Am concentration show an unexpected increase in magnetization beginning when specimens are annealed to 35K. This behavior is also reflected in a time dependent increase in the magnetic susceptibility of damaged specimens indicative of first order kinetics. These results suggest there may be a metastable phase induced by radiation damage and annealing in Pu1-xAmx alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kanellakopulos, B. et al. , Sol St Comm 17, 713 (1975).10.1016/0038-1098(75)90392-0Google Scholar
[2] Kubota, A. et al. , Journal of Computer-Aided Materials Design 14, 367 (2007).Google Scholar
[3] McCall, S. K. et al. , Proc. Natl. Acad. Sci. U. S. A. 103, 17179 (2006).Google Scholar
[4] Lashley, J. C. et al. , JOM-Journal of the Minerals Metals & Materials Society 55, 34 (2003).Google Scholar
[5] Trainor, R. J. Brodsky, M. B. and Culbert, H. V. Phys. Rev. Lett. 34, 1019 (1975).Google Scholar
[6] Lashley, J. C. et al. , Phys. Rev. B 72, 054416 (2005).Google Scholar
[7] McCall, S. K. et al. , J. Alloys Compd. 444-445, 168 (2007).Google Scholar
[8] Fluss, M. J. et al. , J. Alloys Compd. 368, 62 (2004).10.1016/j.jallcom.2003.08.080Google Scholar
[9] McCall, S. K. et al. , in Materials Research Society Fall Meeting 2006, edited by Blobaum, K. J. M. Boston MA, 2007), Vol. 986, p. 0986.Google Scholar
[10] Pauw, L. J. van der, Philips Technical Review 20, 220 (1958).Google Scholar
[11] Wigley, D. A. Proc. R. Soc. London, A 284, 344 (1965).Google Scholar
[12] Yagi, E. et al. , Phys. Rev. B 38, 3189 (1988).Google Scholar
[13] Soderlind, P. and Sadigh, B. Phys. Rev. Lett. 92, 185702 (2004).Google Scholar
[14] Soderlind, P. Landa, A. and Sadigh, B. Phys. Rev. B 66, 205109 (2002).Google Scholar
[15] Savrasov, S. Y. and Kotliar, G. Phys. Rev. Lett. 84, 3670 (2000).Google Scholar
[16] Savrasov, S. Y. Kotliar, G. and Abrahams, E. Nature 410, 793 (2001).Google Scholar
[17] Bouchet, J. et al. , J. Phys.: Condens. Matter 12, 1723 (2000).Google Scholar
[18] Shorikov, A. O. et al. , Phys. Rev. B 72, 024458 (2005).Google Scholar
[19] Shick, A. B. Drchal, V. and Havela, L. Europhys. Lett. 69, 588 (2005).Google Scholar
[20] Heffner, R. H. et al. , Phys. Rev. B 73, 094453 (2006).Google Scholar
[21] Lashley, J. C. et al. , Phys. Rev. Lett. 91, 205901/1 (2003).10.1103/PhysRevLett.91.205901Google Scholar
[22] Clogston, A. M. et al. , Physical Review 125, 541 (1962).Google Scholar
[23] Bozorth, R. M. et al. , Physical Review 122, 1157 (1961).Google Scholar
[24] Hill, H. H. et al. , Physica 55, 615 (1971).Google Scholar
[25] Mendels, P. et al. , Europhys. Lett. 46, 678 (1999).Google Scholar
[26] Bobroff, J. et al. , Phys. Rev. Lett. 83, 4381 (1999).Google Scholar
[27] Rullier-Albenque, F., Alloul, H. and Tourbot, R. Phys. Rev. Lett. 91, 047001 (2003).Google Scholar
[28] Rubia, T. Diaz de la et al. , Journal of Computer-Aided Materials Design 5, 243 (1998).Google Scholar
[29] Lee, J. A. Mendelssohn, K. and Wigley, D. A. Phys. Lett. A 1, 325 (1962).Google Scholar
[30] Mortimer, M. J. Marples, J. A. C. and Lee, J. A. Int. Met. Rev. 20, 109 (1975).Google Scholar
[31] Elliott, R. O. Olsen, C. E. and Vineyard, G. H. Acta Metal. 11, 1129 (1963).10.1016/0001-6160(63)90040-3Google Scholar