Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T14:11:12.764Z Has data issue: false hasContentIssue false

Osteoclast-type giant cell neoplasms of the parotid gland

Published online by Cambridge University Press:  29 June 2007

John G. Batsakis*
Affiliation:
Department of Pathology, The University of Texas M.D. Anderson Hospital and Tumor Institute at Houston, Coldwater, Michigan.
Nelson G. Ordonez
Affiliation:
Department of Pathology, The University of Texas M.D. Anderson Hospital and Tumor Institute at Houston, Coldwater, Michigan.
Pedro A. Sevidal Jr
Affiliation:
Departments of Surgery and Pathology, Community Health Center of Branch County, Coldwater, Michigan.
James R. Baker
Affiliation:
Departments of Surgery and Pathology, Community Health Center of Branch County, Coldwater, Michigan.
*
Department of Pathology, University of Texas M.D. Anderson Hospital and Tumor Institute at Houston, 1515 Holcombe Blvd., Houston, Texas 77030.

Abstract

The parotid gland is added to the list of parenchymal organs, notably the pancreas, in which osteoclast-like cells appear as constituent cells in their neoplasms. The cells' role in the neoplasms is a reactive one or, more rarely, as an integral element in an osteoclast-type giant cell neoplasm or so-called osteoclastoma. Distinctive in histological appearance, the osteoclast-type giant cell neoplasm is a malignant lesion that, to date, has been described only in the pancreas and parotid glands. This report presents examples of each type of giant cell lesion in the parotid gland.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnantis, N. T. and Rosen, P. P. (1979) Mammary carcinoma with osteoclast-like giant cells. A study of eight cases with follow-up data. American Journal of Clinical Pathology, 72: 383389.CrossRefGoogle ScholarPubMed
Balogh, K., Wolbarsht, R. L., Federman, M. and O'Hara, C. J. (1985) Carcinoma of the parotid gland with osteoclast-like giant cells. Immunohistochemcial and ultrastructural observations. Archives of Pathology and Laboratory Medicine, 109: 756761.Google Scholar
Baniel, J., Konichezky, M. and Wolloch, Y. (1987) Osteoclast-type giant cell tumour of the pancreas. Case report. Ada Chi-rurgica Scandinavica 153: 6769.Google Scholar
Berendt, R. C, Shnitka, T. K., Wiens, E., Manickavel, V. and Jewell, L. D. (1987) The osteoclast-type giant cell tumour of the pancreas. Archives of Pathology and Laboratory Medicine, 111; 4348.Google Scholar
Chambers, J. J. and Horton, M. A. (1984) Osteoclasts: putative, surrogate and authentic. Journal of Pathology, 144: 295296.CrossRefGoogle ScholarPubMed
Eusebi, V., Martin, S. A., Govoni, E. and Rosai, J. (1984) Giant cell tumour of major salivary glands: Report of three cases, one occurring in association with a malignant mixed tumour. American Journal of Clinical Pathology, 81: 666675.CrossRefGoogle ScholarPubMed
Hui, K. J., Batsakis, J. G., Luna, M. A., Mackay, B. and Byers, R. M. (1986) Salivary duct adenocarcinoma: a high grade malignancy. Journal of Laryngology and Otology, 100: 105114.CrossRefGoogle ScholarPubMed
Jeffrey, I., Crow, J. and Ellis, B. W. (1983) Osteoclast-type giant cell tumour of the pancreas. Journal of Clinical Pathology, 36: 11651170.CrossRefGoogle ScholarPubMed
Leader, M., Patel, J., Collins, M. and Henry, K. (1987) Anti-al-antichymotrypsin staining of 194 sarcomas, 38 carcinomas, and 17 malignant melanomas. Its lack of specificity as a tumour marker. American Journal of Surgical Pathology, 11: 133139.CrossRefGoogle ScholarPubMed
Ling, L., Klein, M. J., Sissons, H. A. and Steiner, G. C. (1986) Lysozyme and al-antitrypsin in giant cell tumour of bone and in other lesions that contain giant cells. Archives of Pathology and Laboratory Medicine. 110: 713718.Google Scholar
Marder, R. J., Variakojis, D., Silver, J. and Epstein, A. L. (1985) Immunohistochemical analysis of human lymphomas and mono-clonal antibodies to B cell and la antigens reactive in paraffin sections. Laboratory Investigations, 52: 497504.Google Scholar
Ordonez, N. G., Khorsand, J., Ayala, A. G. and Sneige, N. (1986) Oat cell carcinoma of the urinary tract. An immunohistochemi-cal and electron microscopic study. Cancer, 58: 25192530.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Rosai, J. (1968) carcinoma of pancreas simulating giant cell tumour of bone. Electron-microscopic evidence of its acinar cell origin. Cancer, 22: 333344.Google Scholar
Tsukada, T., Tippens, D., Gordon, D., Ross, A. and Gown, A. M. (1984) HHF35, a muscle actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. American Journal of Pathology, 126: 5161.Google Scholar
Underwood, J. C. E. (1984) From where comes the osteoclast? Journal of Pathology, 144: 225226.CrossRefGoogle ScholarPubMed
Wittekind, C. H., Wachner, R., Henke, W. and von Kleist, S. (1986) Localization of CEA, HCG, lysozyme, alpha-1-antitryp-sin, and alpha-1-antichymotrypsin in gastric cancer and prognosis. Virchows Archives (A), 409: 715724.CrossRefGoogle ScholarPubMed