Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-mx8w7 Total loading time: 0 Render date: 2025-08-02T01:50:23.907Z Has data issue: false hasContentIssue false

Chapter 17 - Spinal Cord Lesions Affecting Respiration

Published online by Cambridge University Press:  26 May 2025

Martin Groß
Affiliation:
MEDIAN Clinic Bad Tennstedt
Eelco F. M. Wijdicks
Affiliation:
Mayo Clinic
Maxwell S. Damian
Affiliation:
Basildon University Hospitals
Oliver Summ
Affiliation:
Evangelisches Krankenhaus Oldenburg
Get access

Summary

The spinal cord is a highly differentiated neural conductive system. In spinal cord injury, respiration can be abnormal depending on the level(s) involved. The pathophysiology is different than other lesions of the CNS and is discussed in this chapter. Intensive care for spinal cord injury is extraordinarily complex, requiring great skills and experience. Multiprofessional teams are involved to guide the patient toward successful rehabilitation. This chapter goes beyond the crucial first phase in the intensive care unit and includes long-term treatment of respiratory impairment and in particular, how phrenic nerve stimulation can be used.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 May;18(5):459–80. doi: 10.1016/S1474-4422(18)30499-X. Epub 2019 Mar 14. PMID: 30879893; PMCID: PMC6459001.Google Scholar
Barbiellini Amidei, C, Salmaso, L, Bellio, S, Saia, M. Epidemiology of traumatic spinal cord injury: a large population-based study. Spinal Cord. 2022 Sep;60(9):812–19. doi: 10.1038/s41393-022-00795-w. Epub 2022 Apr 8. PMID: 35396455; PMCID: PMC8990493.CrossRefGoogle ScholarPubMed
Eli, I, Lerner, DP, Ghogawala, Z. Acute traumatic spinal cord injury. Neurol Clin. 2021 May;39(2):471–88. doi: 10.1016/j.ncl.2021.02.004. Epub 2021 Mar 31. PMID: 33896529.CrossRefGoogle ScholarPubMed
O’Shea, TM, Burda, JE, Sofroniew, MV. Cell biology of spinal cord injury and repair. J Clin Invest. 2017 Sep 1;127(9):3259–70. doi: 10.1172/JCI90608. Epub 2017 Jul 24. PMID: 28737515; PMCID: PMC5669582.CrossRefGoogle ScholarPubMed
Anjum, A, Yazid, MD, Fauzi Daud, M, Idris, J, Ng, AMH, Selvi Naicker, A, Ismail, OHR, Athi Kumar, RK, Lokanathan, Y. Spinal cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020 Oct 13;21(20):7533. doi: 10.3390/ijms21207533. PMID: 33066029; PMCID: PMC7589539.CrossRefGoogle ScholarPubMed
Mrackwald, M. The Movements of Respiration: and Their Innervation in the Rabbit. With a Supplement on the Relation of Respiration to Deglutition, and on the Question of the Existence of Respiratory Centres in the Spinal Cord. Blackie & Son; 1888.Google Scholar
Prabhakar, H, Mahajan, C, eds. Brain and Lung Crosstalk. Springer Singapore; 2020. Physiology in Clinical Neurosciences – Brain and Spinal Cord Crosstalks. Accessed April 12, 2022. http://link.springer.com/10.1007/978-981-15-2345-8.CrossRefGoogle Scholar
Routal, RV, Pal, GP. Location of the phrenic nucleus in the human spinal cord. J Anat. 1999 Nov;195(Pt 4):617–21. doi: 10.1046/j.1469-7580.1999.19540617.x. PMID: 10634699; PMCID: PMC1468031.CrossRefGoogle ScholarPubMed
Ghali, MZ. The crossed phrenic phenomenon. Neural Regen Res. 2017;12(6):845. doi: 10.1152/japplphysiol.00847.2002.CrossRefGoogle ScholarPubMed
Goshgarian, HG, Moran, MF, Prcevski, P. Effect of cervical spinal cord hemisection and hemidiaphragm paralysis on arterial blood gases, pH, and respiratory rate in the adult rat. Exp Neurol. 1986 Aug;93(2):440–5. doi: 10.1016/0014-4886(86)90206-2.CrossRefGoogle ScholarPubMed
Dougherty, BJ, Lee, KZ, Gonzalez-Rothi, EJ, Lane, MA, Reier, PJ, Fuller, DD. Recovery of inspiratory intercostal muscle activity following high cervical hemisection. Respir Physiol Neurobiol. 2012 Sep 30;183(3):186–92. doi: 10.1016/j.resp.2012.06.006. Epub 2012 Jun 13. PMID: 22705013; PMCID: PMC4288928.CrossRefGoogle ScholarPubMed
Fuller, DD, Golder, FJ, Olson, EB, Mitchell, GS. Recovery of phrenic activity and ventilation after cervical spinal hemisection in rats. J Appl Physiol (1985). 2006 Mar;100(3):800–6. doi: 10.1152/japplphysiol.00960.2005.CrossRefGoogle ScholarPubMed
Golder, FJ, Reier, PJ, Davenport, PW, Bolser, DC. Cervical spinal cord injury alters the pattern of breathing in anesthetized rats. J Appl Physiol (1985). 2001 Dec 1;91(6):2451–8. doi: 10.1152/jappl.2001.91.6.2451.CrossRefGoogle ScholarPubMed
Baussart, B, Stamegna, JC, Polentes, J, Tadié, M, Gauthier, P. A new model of upper cervical spinal contusion inducing a persistent unilateral diaphragmatic deficit in the adult rat. Neurobiol Dis. 2006 Jun;22(3):562–74. doi: 10.1016/j.nbd.2005.12.019.CrossRefGoogle ScholarPubMed
Zimmer, MB, Nantwi, K, Goshgarian, HG. Effect of spinal cord injury on the respiratory system: basic research and current clinical treatment options. J Spinal Cord Med. 2007 Jan;30(4):319–30. doi: 10.1080/10790268.2007.11753947.CrossRefGoogle ScholarPubMed
Ahuja, CS, Wilson, JR, Nori, S, Kotter, MRN, Druschel, C, Curt, A, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017 Dec 21;3(1):17018. doi: 10.1038/nrdp.2017.18.CrossRefGoogle ScholarPubMed
Alizadeh, A, Dyck, SM, Karimi-Abdolrezaee, S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 2019 Mar 22;10:282. doi: 10.3389/fneur.2019.00282.CrossRefGoogle Scholar
Zimmer, MB, Nantwi, K, Goshgarian, HG. Effect of spinal cord injury on the respiratory system: basic research and current clinical treatment options. J Spinal Cord Med. 2007;30(4):319–30. doi: 10.1080/10790268.2007.11753947. PMID: 17853653; PMCID: PMC2031930.CrossRefGoogle ScholarPubMed
Harrop, JS, Sharan, AD, Vaccaro, AR, Przybylski, GJ. The cause of neurologic deterioration after acute cervical spinal cord injury. Spine. 2001;26:340–6. doi: 10.1097/00007632-200102150-00008.CrossRefGoogle ScholarPubMed
Cabrini, L, Baiardo Redaelli, M, Filippini, M, et al. Tracheal intubation in patients at risk for cervical spinal cord injury: a systematic review. Acta Anaesthesiol Scand. 2020;64:443–54. doi: 10.1111/aas.13532.Google ScholarPubMed
Sawin, PD, Todd, MM, Traynelis, VC, et al. Cervical spine motion with direct laryngoscopy and orotracheal intubation. An in vivo cinefluoroscopic study of subjects without cervical abnormality. Anesthesiology. 1996; 85: 2636. doi: 10.1097/00000542-199607000-00005.CrossRefGoogle Scholar
De Backer, D. The cuff-leak test: what are we measuring? Crit Care. 2005 Feb;9(1):31–3. doi: 10.1186/cc3031. Epub 2004 Dec 17. PMID: 15693980; PMCID: PMC1065116.CrossRefGoogle ScholarPubMed
Menaker, J, Kufera, JA, Glaser, J, Stein, DM, Scalea, TM. Admission ASIA motor score predicting the need for tracheostomy after cervical spinal cord injury. J Trauma Acute Care Surg. 2013;75(4):629–34. doi: 10.1097/TA.0b013e3182a12b86.CrossRefGoogle ScholarPubMed
Foran, SJ, Taran, S, Singh, JM, Kutsogiannis, DJ, McCredie, V. Timing of tracheostomy in acute traumatic spinal cord injury: A systematic review and meta-analysis. J Trauma Acute Care Surg. 2022 Jan 1;92(1):223–31. doi: 10.1097/TA.0000000000003394. PMID: 34508010; PMCID: PMC8677619.CrossRefGoogle ScholarPubMed
Zakrasek, E.C., Nielson, J., Kosarchuk, J.J., Crew, J.D., Ferguson, A., McKenna, S. Pulmonary outcomes following specialized respiratory management for acute cervical spinal cord injury: A retrospective analysis. Spinal Cord. 2017;55:559–65. doi:10.1038/sc.2017.10.CrossRefGoogle ScholarPubMed
Ladra, J. Verfahren nach Ciaglia und Griggs versus konventionelle Tracheotomie-Verfahren – 40 Metaanalyse und Literaturvergleich. Dissertation. University of Cologne; 2005.Google Scholar
Hirschfeld, S, Jürgens, N, Tiedemann, S, Thietje, R. Invasives Beatmungs- und Sekretmanagement bei hoher Tetraplegie. In: Bachmann, M, Schucher, B, eds. Kompendium Außerklinische Beatmung im Kindes- und Erwachsenenalter. Kleanthes; 2013:185–90.Google Scholar
Bach, JR. Noninvasive respiratory management of high-level spinal cord injury. J Spinal Cord Med. 2012;35(2):7280. doi: 10.1179/2045772311Y.0000000051. PMID: 22525322; PMCID: PMC3304560.CrossRefGoogle ScholarPubMed
Berney, S, Bragge, P, Granger, C, Opdam, H, Denehy, L. The acute respiratory management of cervical spinal cord injury in the first 6 weeks after injury: a systematic review. Spinal Cord. 2011;49(1):1729. doi: 10.1038/sc.2010.39.CrossRefGoogle ScholarPubMed
Windisch, W, Brambring, J, Budweiser, S, et al. [Non-invasive and invasive mechanical ventilation for treatment of chronic respiratory failure. S2-Guidelines published by the German Medical Association of Pneumology and Ventilatory Support]. Pneumologie. 2010;64(4):207–40. doi: 10.1055/s-0029-1243978.CrossRefGoogle ScholarPubMed
Schonhofer, B, Geiseler, J, Dellweg, D, et al. [Prolonged weaning: S2k-guideline published by the German Respiratory Society]. Pneumologie. 2014;68(1):1975. doi: 10.1159/000510085.Google ScholarPubMed
Chen, Y, Shao, J, Zhu, W, Jia, LS, Chen, XS. Identification of risk factors for respiratory complications in upper cervical spinal injured patients with neurological impairment. Acta Orthop Traumatol Turc. 2013;47(2):111–7. doi: 10.3944/aott.2013.2945.CrossRefGoogle ScholarPubMed
Leyk, G, Hirschfeld, S, Bothig, R, et al. Spinal cord injury (SCI): aspects of intensive medical care. Anasthesiol Intensivmed Notfallmed Schmerzther. 2014;49(9):506–12; quiz 13. doi: 10.1055/s-0034-1390052.Google ScholarPubMed
Do, JG, Kim du, H, Sung, DH. Incidence of deep vein thrombosis after spinal cord injury in Korean patients at acute rehabilitation unit. J Korean Med Sci. 2013;28(9):1382–7. doi: 10.3346/jkms.2013.28.9.1382.CrossRefGoogle ScholarPubMed
Gutierrez, CJ, Harrow, J, Haines, F. Using an evidence-based protocol to guide rehabilitation and weaning of ventilator–dependent cervical spinal cord injury patients. J Rehabil Res Dev. 2003; 40: 99110. doi: 10.1682/jrrd.2003.10.0099.CrossRefGoogle ScholarPubMed
Fenton, J., Warner, M., Lammertse, D., et al. A comparison of high vs standard tidal volumes in ventilator weaning for individuals with sub-acute spinal cord injuries: a site-specific randomized clinical trial. Spinal Cord. 2016;54:234–8. doi: 10.1038/sc.2015.145.Google ScholarPubMed
Zakrasek, E.C., Nielson, J., Kosarchuk, J.J., Crew, J.D., Ferguson, A., McKenna, S. Pulmonary outcomes following specialized respiratory management for acute cervical spinal cord injury: A retrospective analysis. Spinal Cord. 2017;55:559–65. doi: 10.1038/sc.2017.10.CrossRefGoogle ScholarPubMed
Füssenich, W, Hirschfeld Araujo, S, Kowald, B, Hosman, A, Auerswald, M, Thietje, R. Discontinuous ventilator weaning of patients with acute SCI. Spinal Cord. 2018 May;56(5):461–8. doi: 10.1038/s41393-017-0055-x.CrossRefGoogle ScholarPubMed
Berlowitz, D.J., Tamplin, J. Respiratory muscle training for cervical spinal cord injury. Cochrane Database Syst Rev. 2013;7:CD008507. doi: 10.1002/14651858.CD008507.pub2.Google Scholar
Schileroa, GJ, Spungena, AM, Baumana, WA, Radulovic, M, Lessera, M. Pulmonary function and spinal cord injury. Respir Physiol Neurobiol. 2009;166(3):129–41. doi: 10.1016/j.resp.2009.04.002.Google Scholar
Deutschsprachige Gesellschaft für Paraplegiologie (DMGP). S2k-Leitlinie Atmung, Atemunterstützung und Beatmung bei akuter und chronischer Querschnittlähmung Langfassung. Deutschsprachige Medizinische Gesellschaft für Paraplegiologie e.V; 2022. Accessed February 26, 2024. https://register.awmf.org/assets/guidelines/179-011l_S2k_Atmung-Atemunterstuetzung-Beatmung-bei-akuter-und-chronischer-Querschnittlaehmung_2022-11.pdf.Google Scholar
Mueller, G, de Groot, S, van der Woude, LH, Perret, C, Michel, F, Hopman, MT. Prediction models and development of an easy to use open-access tool for measuring lung function of individuals with motor complete spinal cord injury. J Rehabil Med. 2012;44:642. doi: 10.2340/16501977-1011.CrossRefGoogle ScholarPubMed
Linn, WS, Adkins, RH, Gong, H, Waters, RL. Pulmonary function in chronic spinal cord injury: a cross-sectional survey of 222 southern California adult outpatients. Arch Phys Med Rehabil. 2000;81:757–63. doi: 10.1016/s0003-9993(00)90107-2.CrossRefGoogle ScholarPubMed
Brown, R, DiMarco, AF, Hoit, JD, Garshick, E. Respiratory dysfunction and management in spinal cord injury. Respir Care. 2006;51:853–68; discussion 869–70.Google ScholarPubMed
Grimm, DR, Chandy, D, Almenoff, PL. Airway hyperreactivity in subjects with tetraplegia is associated with reduced baseline airway caliber. Chest. 2000;118:1397. doi: 10.1378/chest.118.5.1397.CrossRefGoogle ScholarPubMed
Estenne, M, De Troyer, A. The effects of tetraplegia on chest wall statics. Am Rev Respir Dis. 1968;134:121. doi: 10.1164/arrd.1986.134.1.121.Google Scholar
Hirschfeld, S, Huhtala, H, Thietje, R, Baer, G. Phrenic nerve stimulation experiences: a single centre, controlled, prospective study. J Clin Neurosci. 2022;101:2631. doi: 10.1016/j.jocn.2022.04.037.CrossRefGoogle ScholarPubMed
Chiodo, AE, Sitrin, RG, Bauman, KA. Sleep disordered breathing in spinal cord injury: A systematic review. J Spinal Cord Med. 2016 Jul;39(4):374–82. doi: 10.1080/10790268.2015.1126449. Epub 2016 Mar 15. PMID: 27077573; PMCID: PMC5102283.CrossRefGoogle ScholarPubMed
Hirschfeld, S, Exner, G, Tiedemann, S, Thietje, R. [Long term ventilation of SCI patients: results and perspectives in 25 years experience with clinical and out-of-hospital ventilation]. Trauma Berufskrankheit. 2010;12:177–81. doi: 10.1007/s10039-010-1655-2.Google Scholar
Hirschfeld, S, Jürgens, N, Tiedemann, S, Thietje, R. [Long-term complications in SCI patients]. In: Bachmann, M, Schucher, B, eds. Kompendium außerklinische Beatmung im Kindes- und Erwachsenenalter. Kleanthes;2023:177–84.Google Scholar
Glenn, WWL, Phelps, ML. Diaphragm pacing by electrical stimulation of the phrenic nerve. Neurosurgery. 1985;17:974–84. doi: 10.1227/00006123-198512000-00021.CrossRefGoogle ScholarPubMed
Hirschfeld, S, Exner, G, Luukkaala, T, Baer, GA. Mechanical ventilation or phrenic nerve stimulation for treatment of spinal cord injury-induced respiratory insufficiency. Spinal Cord. 2008;46(11):738–42. doi: 10.1038/sc.2008.43.CrossRefGoogle ScholarPubMed
Romero, FJ, Gambarrutta, C, Garcia-Forcada, A, Marín, MA, Diaz de la Lastra, E, Paz, F, et al. Long-term evaluation of phrenic nerve pacing for respiratory failure due to high cervical spinal cord injury. Spinal Cord. 2012;50(12):895–8. doi: 10.1038/sc.2012.74, Epub 2012 Jul 10.CrossRefGoogle ScholarPubMed
Hirschfeld, S, Huhtala, H, Thietje, R, Baer, G. Phrenic nerve stimulation experiences. A single centre, controlled, prospective study. J Clin Neurosci. 2022;101:2631. doi: 10.1016/j.jocn.2022.04.037.CrossRefGoogle ScholarPubMed
Hirschfeld, S, Vieweg, H, Schulz, AP, Thietje, R, Baer, GA. Threshold currents of platinum electrodes used for functional electrical stimulation of the phrenic nerves for treatment of central apnea. Pacing Clin Electrophysiol. 2013;36(6):714–8. doi: 10.1111/pace.12073.CrossRefGoogle ScholarPubMed
Tedde, ML, Onders, RP, Teixeira, MJ, et al. Electric ventilation: Indications for and technical aspects of diaphragm pacing stimulation surgical implantation. J Bras Pneumol. 2012;38(5):566–72. doi: 10.1590/s1806-37132012000500005.Google ScholarPubMed
Onders, RP, Elmo, MJ, Ignagni, AR. Diaphragm stimulation system for tetraplegia in individuals injured during childhood or adolescence. J Spinal Cord Med. 2007;30(suppl 1):S25–9. doi: 10.1080/10790268.2007.11753965.CrossRefGoogle ScholarPubMed
Morélot-Panzini, C, Le Pimpec-Barthes, F, Menegaux, F, Gonzalez-Bermejo, J, Similowski, T. Referred shoulder pain (C4 dermatome) can adversely impact diaphragm pacing with intramuscular electrodes. Eur Respir J. 2015 Jun; 45(6):1751–4. doi: 10.1183/09031936.00220614.CrossRefGoogle ScholarPubMed
Glenn, WWL, Brouillette, RT, Dentz, B, et al. Fundamental considerations in pacing of the diaphragm for chronic ventilatory insufficiency: a multi-center study. PACE. 1988;11(11):2121–7. doi: 10.1111/j.1540-8159.1988.tb06360.x.CrossRefGoogle ScholarPubMed
Talonen, PP, Baer, GA, Hakkinen, V, Ojala, JK. Neurophysiological and technical considerations for the design of an implantable phrenic nerve stimulator. Med Biol Eng Comput. 1990;28(1):31–7. doi: 10.1007/BF02441674.CrossRefGoogle ScholarPubMed
Hammell, KW. Quality of life among people with high spinal cord injury living in the community. Spinal Cord. 2004;42(11):607–20. doi: 10.1038/sj.sc.3101662.Google ScholarPubMed
van Diemen, T, Crul, T, van Nes, I, et al. SELF-SCI Group. Associations between self-efficacy and secondary health conditions in people living with spinal cord injury: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2017;98(12):2566–77. doi: 10.1016/j.apmr.2017.03.024.CrossRefGoogle ScholarPubMed
Morone, G, Pirrera, A, Iannone, A, Giansanti, D. Development and use of assistive technologies in spinal cord injury: a narrative review of reviews on the evolution, opportunities, and bottlenecks of their integration in the health domain. Healthcare (Basel). 2023;11(11):1646. doi: 10.3390/healthcare11111646.CrossRefGoogle ScholarPubMed
Wagner, A, Schweizer, C, Ronca, E, Gemperli, A. The most important assistive devices for persons with spinal cord injury in Switzerland: a cross-sectional study. Disabilities. 2023;3:367–78. doi: 10.3390/disabilities3030024.CrossRefGoogle Scholar
Böthig, R, Hirschfeld, S, Thietje, R. Quality of life and urological morbidity in tetraplegics with artificial ventilation managed with suprapubic or intermittent catheterisation. Spinal Cord. 2012; 50(3):247–51. doi: 10.1038/sc.2011.94.Google ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×