1 Introduction
The asymptotic evaluation of higher moments of the central L-values carries important arithmetic information: for example, subconvex bounds or nonvanishing results for the central L-values. This evaluation becomes more and more difficult as the moment, the degrees of the L-functions or the rank of the underlying group increase.
Obtaining subconvex bounds – that is, proving bounds of the form
 $$ \begin{align*}L(1/2,\pi)\ll C(\pi)^{1/4-\delta},\quad \delta>0, \end{align*}$$
$$ \begin{align*}L(1/2,\pi)\ll C(\pi)^{1/4-\delta},\quad \delta>0, \end{align*}$$
 
Footnote 
1
where 
 $C(\pi )$
 is the analytic conductor of an automorphic representation
$C(\pi )$
 is the analytic conductor of an automorphic representation 
 $\pi $
, is an extremely difficult problem with respect to the current technology. A narrow, but important for applications, class of automorphic representations suffers from yet another major technical difficulty named conductor-drop. These representations are usually functorially lifted from smaller groups and have unusually small analytic conductors.
$\pi $
, is an extremely difficult problem with respect to the current technology. A narrow, but important for applications, class of automorphic representations suffers from yet another major technical difficulty named conductor-drop. These representations are usually functorially lifted from smaller groups and have unusually small analytic conductors.
 For example, if 
 $\pi $
 varies over automorphic representations for
$\pi $
 varies over automorphic representations for 
 $\mathrm {PGL}_2(\mathbb {Q})$
 with
$\mathrm {PGL}_2(\mathbb {Q})$
 with 
 $C(\pi )$
 being of size T, then the size of the analytic conductor of the Rankin–Selberg convolution
$C(\pi )$
 being of size T, then the size of the analytic conductor of the Rankin–Selberg convolution 
 $\pi \otimes \tilde {\pi }$
 is roughly
$\pi \otimes \tilde {\pi }$
 is roughly 
 $T^2$
, where
$T^2$
, where 
 $\tilde {\pi }$
 is the contragredient of
$\tilde {\pi }$
 is the contragredient of 
 $\pi $
, whereas
$\pi $
, whereas 
 $C(\pi \otimes \pi ')$
 has size
$C(\pi \otimes \pi ')$
 has size 
 $T^4$
 if
$T^4$
 if 
 $C(\pi ')$
 is of size
$C(\pi ')$
 is of size 
 $T^2$
 but
$T^2$
 but 
 $\pi '$
 is away from
$\pi '$
 is away from 
 $\tilde {\pi }$
. That is, the
$\tilde {\pi }$
. That is, the 
 $\mathrm {PGL}(4)$
-subfamily of
$\mathrm {PGL}(4)$
-subfamily of 
 $\pi \otimes \tilde {\pi }$
 shows the conductor-drop phenomena. Another example of a family that sees conductor-dropping is the
$\pi \otimes \tilde {\pi }$
 shows the conductor-drop phenomena. Another example of a family that sees conductor-dropping is the 
 $\mathrm {PGL}(3)$
-family of
$\mathrm {PGL}(3)$
-family of 
 $\mathrm {Sym}^2\pi $
, where
$\mathrm {Sym}^2\pi $
, where 
 $\pi $
 varies over a
$\pi $
 varies over a 
 $\mathrm {PGL}(2)$
 family (the subconvexity problem for this family is directly related to the arithmetic quantum unique ergodicity problem for
$\mathrm {PGL}(2)$
 family (the subconvexity problem for this family is directly related to the arithmetic quantum unique ergodicity problem for 
 $\mathrm {SL}_2(\mathbb {R})$
). This happens due to one of the Langlands parameters of
$\mathrm {SL}_2(\mathbb {R})$
). This happens due to one of the Langlands parameters of 
 $\mathrm {Sym}^2\pi $
 being extremely small compared to the others. The families defined by the Plancherel balls with a large radius (for example, dilated) or high centre often exclude these narrow classes. Thus moment estimates over these families do not usually become fruitful to yield a subconvex bound of an L-function that has conductor drop; see, for example, [Reference Blomer and Buttcane2, Reference Nelson and Venkatesh31, Reference Nelson30].
$\mathrm {Sym}^2\pi $
 being extremely small compared to the others. The families defined by the Plancherel balls with a large radius (for example, dilated) or high centre often exclude these narrow classes. Thus moment estimates over these families do not usually become fruitful to yield a subconvex bound of an L-function that has conductor drop; see, for example, [Reference Blomer and Buttcane2, Reference Nelson and Venkatesh31, Reference Nelson30].
One naturally interesting and important family of automorphic representations can be given by representations with growing conductors: for example,
 $$ \begin{align*}\mathcal{F}_X:=\{\pi \text{ automorphic representation for }\mathrm{PGL}_n(\mathbb{Z})\mid C(\pi)<X\},\end{align*} $$
$$ \begin{align*}\mathcal{F}_X:=\{\pi \text{ automorphic representation for }\mathrm{PGL}_n(\mathbb{Z})\mid C(\pi)<X\},\end{align*} $$
with 
 $X\to \infty $
. The family
$X\to \infty $
. The family 
 $\mathcal {F}_X$
, unlike the families defined by the Plancherel balls, is indifferent to the conductor-drop issue. So a Lindelöf-consistent estimate for a high enough moment over the family
$\mathcal {F}_X$
, unlike the families defined by the Plancherel balls, is indifferent to the conductor-drop issue. So a Lindelöf-consistent estimate for a high enough moment over the family 
 $\mathcal {F}_X$
 will likely produce a subconvex estimate even for the L-functions suffering from conductor-drop. Here, by Lindelöf-consistent (also called Lindelöf on average) estimate for the
$\mathcal {F}_X$
 will likely produce a subconvex estimate even for the L-functions suffering from conductor-drop. Here, by Lindelöf-consistent (also called Lindelöf on average) estimate for the 
 $2k$
th moment, we mean the estimate
$2k$
th moment, we mean the estimate 
 $$ \begin{align*}\mathbb{E}_{\mathcal{F}_X}|L(1/2,\pi)|^{2k}\ll_\epsilon X^{\epsilon},\end{align*} $$
$$ \begin{align*}\mathbb{E}_{\mathcal{F}_X}|L(1/2,\pi)|^{2k}\ll_\epsilon X^{\epsilon},\end{align*} $$
where 
 $\mathbb {E}$
 denotes the average. On the other hand, a more interesting and difficult question would be to find an asymptotic formula of (a suitably weighted and smoothened version of) the above average whose leading term is believed to be a polynomial in
$\mathbb {E}$
 denotes the average. On the other hand, a more interesting and difficult question would be to find an asymptotic formula of (a suitably weighted and smoothened version of) the above average whose leading term is believed to be a polynomial in 
 $\log X$
.
$\log X$
.
 However, the family 
 $\mathcal {F}_X$
 becomes quite large as X tends to infinity. One informally has
$\mathcal {F}_X$
 becomes quite large as X tends to infinity. One informally has 
 $|\mathcal {F}_X|\asymp X^{n-1}$
; see [Reference Brumley and Milićević6] for the corresponding nonarchimedean analogue. This is why, to obtain a subconvex bound of an L-function attached to an element in
$|\mathcal {F}_X|\asymp X^{n-1}$
; see [Reference Brumley and Milićević6] for the corresponding nonarchimedean analogue. This is why, to obtain a subconvex bound of an L-function attached to an element in 
 $\mathcal {F}_X$
, one needs to evaluate quite a high moment asymptotically or at least estimate in the Lindelöf-consistent manner. For example, we need to estimate an amplified
$\mathcal {F}_X$
, one needs to evaluate quite a high moment asymptotically or at least estimate in the Lindelöf-consistent manner. For example, we need to estimate an amplified 
 $4(n-1)$
th moment over
$4(n-1)$
th moment over 
 $\mathcal {F}_X$
 even to break the convexity barrier. Unfortunately, the current technology is not advanced enough to tackle such a high moment of these L-functions due to the large size of the conductors. Hence a natural, informal question arises regarding the race between the sizes of the conductors of the L-functions and the families: as a function of n, how high of a moment can be asymptotically evaluated (or estimated in a Lindelöf-consistent manner) over the family
$\mathcal {F}_X$
 even to break the convexity barrier. Unfortunately, the current technology is not advanced enough to tackle such a high moment of these L-functions due to the large size of the conductors. Hence a natural, informal question arises regarding the race between the sizes of the conductors of the L-functions and the families: as a function of n, how high of a moment can be asymptotically evaluated (or estimated in a Lindelöf-consistent manner) over the family 
 $\mathcal {F}_X$
?
$\mathcal {F}_X$
?
 Such a question has been addressed in the literature for low-rank groups. We may try to guess an answer to our proposed informal question by looking at the small number of examples in low ranks. For 
 $n=2$
 in [Reference Kowalski, Michel and VanderKam22], the authors obtained an asymptotic formula of the
$n=2$
 in [Reference Kowalski, Michel and VanderKam22], the authors obtained an asymptotic formula of the 
 $4$
th moment over a family in the nonarchimedean conductor aspect and restricted only to the holomorphic forms. In [Reference Blomer, Buttcane and Maga3], the authors proved a Lindelöf-consistent upper bound of the
$4$
th moment over a family in the nonarchimedean conductor aspect and restricted only to the holomorphic forms. In [Reference Blomer, Buttcane and Maga3], the authors proved a Lindelöf-consistent upper bound of the 
 $6$
th moment in the nonarchimedean conductor aspect for
$6$
th moment in the nonarchimedean conductor aspect for 
 $n=3$
. These are the best possible estimates so far for small n, which allows us to wonder whether the
$n=3$
. These are the best possible estimates so far for small n, which allows us to wonder whether the 
 $2n$
th moment can be asymptotically evaluated over the family
$2n$
th moment can be asymptotically evaluated over the family 
 $\mathcal {F}_X$
. However, if we work on the
$\mathcal {F}_X$
. However, if we work on the 
 $\mathrm {GL}(n)$
 rather than on the
$\mathrm {GL}(n)$
 rather than on the 
 $\mathrm {PGL}(n)$
 family – that is, if we do an extra central average – we expect that an asymptotic formula of the
$\mathrm {PGL}(n)$
 family – that is, if we do an extra central average – we expect that an asymptotic formula of the 
 $2n+2$
th moment is achievable.
$2n+2$
th moment is achievable.
 Our primary motivation is to prove an asymptotic formula for the 
 $2n$
th moment of the central L-values for
$2n$
th moment of the central L-values for 
 $\mathrm {PGL}(n)$
 with
$\mathrm {PGL}(n)$
 with 
 $n\ge 3$
, over the family
$n\ge 3$
, over the family 
 $\mathcal {F}_X$
, using the integral representations of the L-functions and spectral theory. If
$\mathcal {F}_X$
, using the integral representations of the L-functions and spectral theory. If 
 $\pi $
 is an automorphic representation for
$\pi $
 is an automorphic representation for 
 $\mathrm {PGL}(n)$
, then
$\mathrm {PGL}(n)$
, then 
 $$ \begin{align*}L(1/2,\pi)^n= L(1/2,\pi \otimes E_0),\end{align*} $$
$$ \begin{align*}L(1/2,\pi)^n= L(1/2,\pi \otimes E_0),\end{align*} $$
where 
 $E_0$
 is the minimal Eisenstein series for
$E_0$
 is the minimal Eisenstein series for 
 $\mathrm {PGL}(n)$
 with trivial Langlands parameters and
$\mathrm {PGL}(n)$
 with trivial Langlands parameters and 
 $\otimes $
 denotes the Rankin–Selberg convolution. Thus evaluating the
$\otimes $
 denotes the Rankin–Selberg convolution. Thus evaluating the 
 $2n$
th moment of
$2n$
th moment of 
 $L(1/2,\pi )$
 is the same as evaluating the second moment of
$L(1/2,\pi )$
 is the same as evaluating the second moment of 
 $L(1/2,\pi \otimes E_0)$
. However, the approach of the integral representations and the spectral decomposition encounters severe analytic difficulties due to the growth of
$L(1/2,\pi \otimes E_0)$
. However, the approach of the integral representations and the spectral decomposition encounters severe analytic difficulties due to the growth of 
 $E_0$
 near the cusp: for example,
$E_0$
 near the cusp: for example, 
 $E_0$
 fails to be square integrable in the fundamental domain. To avoid this particular technical difficulty, we may replace
$E_0$
 fails to be square integrable in the fundamental domain. To avoid this particular technical difficulty, we may replace 
 $E_0$
 with a fixed cusp form and try to evaluate their second moment asymptotically.
$E_0$
 with a fixed cusp form and try to evaluate their second moment asymptotically.
 Let 
 $n\ge 3$
. In this article, we evaluate the second moment of the central Rankin–Selberg L-values
$n\ge 3$
. In this article, we evaluate the second moment of the central Rankin–Selberg L-values 
 $L(1/2,\pi \otimes \pi _0)$
, where
$L(1/2,\pi \otimes \pi _0)$
, where 
 $\pi $
 varies over a family of automorphic representations for
$\pi $
 varies over a family of automorphic representations for 
 $\mathrm {PGL}_n(\mathbb {Q})$
 that are unramified at all the finite places and the archimedean conductors are growing to infinity. Here
$\mathrm {PGL}_n(\mathbb {Q})$
 that are unramified at all the finite places and the archimedean conductors are growing to infinity. Here 
 $\pi _0$
 is a fixed cuspidal representation for
$\pi _0$
 is a fixed cuspidal representation for 
 $\mathrm {PGL}_n(\mathbb {Q})$
, which is again unramified at all the finite places. Below we informally describe our main theorem.
$\mathrm {PGL}_n(\mathbb {Q})$
, which is again unramified at all the finite places. Below we informally describe our main theorem.
Theorem 1.1 Informal version
 Let 
 $n\ge 3$
 and
$n\ge 3$
 and 
 $\pi _0$
 be a cuspidal automorphic representation for
$\pi _0$
 be a cuspidal automorphic representation for 
 $\mathrm {PGL}_n(\mathbb {Z})$
 (i.e., unramified at the finite places), which is tempered at
$\mathrm {PGL}_n(\mathbb {Z})$
 (i.e., unramified at the finite places), which is tempered at 
 $\infty $
. Let
$\infty $
. Let 
 $\pi $
 vary over the generic automorphic representations in
$\pi $
 vary over the generic automorphic representations in 
 $\mathcal {F}_X$
. Then we have an asymptotic formula of the following (weighted) average
$\mathcal {F}_X$
. Then we have an asymptotic formula of the following (weighted) average 
 $$ \begin{align*}\mathbb{E}_{\substack{{\pi\in\mathcal{F}_X}\\{\mathrm{generic}}}}\left[\frac{|L(1/2,\pi\otimes\pi_0)|^2}{L(1,\pi,\mathrm{Ad})}+\mathrm{continuous}\right]= n\frac{\zeta(n/2)^2}{\zeta(n)}L(1,\pi_0,\mathrm{Ad})\log X + O_{\pi_0}(1),\end{align*} $$
$$ \begin{align*}\mathbb{E}_{\substack{{\pi\in\mathcal{F}_X}\\{\mathrm{generic}}}}\left[\frac{|L(1/2,\pi\otimes\pi_0)|^2}{L(1,\pi,\mathrm{Ad})}+\mathrm{continuous}\right]= n\frac{\zeta(n/2)^2}{\zeta(n)}L(1,\pi_0,\mathrm{Ad})\log X + O_{\pi_0}(1),\end{align*} $$
as X tends to infinity.
For the actual formal statement, we refer to Theorem 2.1.
Remark 1.2. In Theorem 1.1, by ‘continuous’, we mean the corresponding terms from the generic noncuspidal spectrum. In the actual statement – that is, Theorem 2.1 – we do a specific weighted average over the full generic automorphic spectrum such that the weights are uniformly bounded away from zero on the cuspidal spectrum with analytic conductors bounded by X. Consequently, we also need to change the harmonic weight 
 $L(1,\pi ,\mathrm {Ad})$
 by an equivalent arithmetic factor for the noncuspidal spectrum.
$L(1,\pi ,\mathrm {Ad})$
 by an equivalent arithmetic factor for the noncuspidal spectrum.
 This is the first instance of an asymptotic evaluation of the second moment of a family of L-functions with arbitrary high degree. In general, for a pair of groups 
 $H\le G$
 and their representations
$H\le G$
 and their representations 
 $\pi $
 and
$\pi $
 and 
 $\Pi $
, respectively, it is an interesting question to asymptotically evaluate moments of the central L-values of the Rankin–Selberg product
$\Pi $
, respectively, it is an interesting question to asymptotically evaluate moments of the central L-values of the Rankin–Selberg product 
 $\Pi \otimes \pi $
 (if defined). Previously, in [Reference Nelson and Venkatesh31], Nelson–Venkatesh asymptotically evaluated the first moment keeping
$\Pi \otimes \pi $
 (if defined). Previously, in [Reference Nelson and Venkatesh31], Nelson–Venkatesh asymptotically evaluated the first moment keeping 
 $\Pi $
 fixed and letting
$\Pi $
 fixed and letting 
 $\pi $
 vary over a dilated Plancherel ball when
$\pi $
 vary over a dilated Plancherel ball when 
 $(G,H)$
 are Gan–Gross–Prasad pairs and, more interestingly, allowing arbitrary weights in the spectral side. More recently, in [Reference Nelson30], Nelson proved a Lindelöf-consistent upper bound of the first moment for the groups
$(G,H)$
 are Gan–Gross–Prasad pairs and, more interestingly, allowing arbitrary weights in the spectral side. More recently, in [Reference Nelson30], Nelson proved a Lindelöf-consistent upper bound of the first moment for the groups 
 $(G,H)=(\mathrm {U}(n+1),\mathrm {U}(n))$
 in the nonsplit case, keeping
$(G,H)=(\mathrm {U}(n+1),\mathrm {U}(n))$
 in the nonsplit case, keeping 
 $\pi $
 fixed and letting
$\pi $
 fixed and letting 
 $\Pi $
 vary over a Plancherel ball with high centre. Both [Reference Nelson and Venkatesh31, Reference Nelson30] assume that the family of
$\Pi $
 vary over a Plancherel ball with high centre. Both [Reference Nelson and Venkatesh31, Reference Nelson30] assume that the family of 
 $L(s,\Pi \otimes \pi )$
 does not show any conductor-dropping. The method in [Reference Nelson30] also yields an asymptotic formula with power savings of a specific weighted first moment over this family. Blomer in [Reference Blomer1] obtained a Lindelöf-consistent upper bound of the second moment for
$L(s,\Pi \otimes \pi )$
 does not show any conductor-dropping. The method in [Reference Nelson30] also yields an asymptotic formula with power savings of a specific weighted first moment over this family. Blomer in [Reference Blomer1] obtained a Lindelöf-consistent upper bound of the second moment for 
 $G=H=\mathrm {GL}(n)$
, keeping
$G=H=\mathrm {GL}(n)$
, keeping 
 $\Pi $
 a fixed cuspidal representation and letting
$\Pi $
 a fixed cuspidal representation and letting 
 $\pi $
 vary in a Plancherel ball. On the contrary to [Reference Nelson and Venkatesh31, Reference Nelson30], he proves a Lindelöf-consistent upper bound when the family of
$\pi $
 vary in a Plancherel ball. On the contrary to [Reference Nelson and Venkatesh31, Reference Nelson30], he proves a Lindelöf-consistent upper bound when the family of 
 $L(s,\Pi \otimes \pi )$
 shows conductor-dropping. However, his method does not yield an asymptotic formula.
$L(s,\Pi \otimes \pi )$
 shows conductor-dropping. However, his method does not yield an asymptotic formula.
 There have been quite a few results for asymptotic formulas and upper bounds on rank 
 $\le 2$
 and degree
$\le 2$
 and degree 
 $\le 4$
. In particular, we refer to [Reference Blomer and Harcos4]: the authors prove an asymptotic formula for
$\le 4$
. In particular, we refer to [Reference Blomer and Harcos4]: the authors prove an asymptotic formula for 
 $\mathrm {GL}(2)\times \mathrm {GL}(2)$
 Rankin–Selberg L-functions, fixing one of the representations but with an extra average over the centre of
$\mathrm {GL}(2)\times \mathrm {GL}(2)$
 Rankin–Selberg L-functions, fixing one of the representations but with an extra average over the centre of 
 $\mathrm {GL}(2)$
. In [Reference Chandee and Li10], an asymptotic formula for the sixth moment of the L-values attached to holomorphic cusp forms for
$\mathrm {GL}(2)$
. In [Reference Chandee and Li10], an asymptotic formula for the sixth moment of the L-values attached to holomorphic cusp forms for 
 $\mathrm {GL}(2)$
 is achieved, but again with an extra average over the centre of
$\mathrm {GL}(2)$
 is achieved, but again with an extra average over the centre of 
 $\mathrm {GL}(2)$
.
$\mathrm {GL}(2)$
.
1.1 Sketch of the proof
 Our point of departure is similar to [Reference Blomer1] and [Reference Venkatesh32]. We use the spectral decomposition of 
 $\mathrm {PGL}(n)$
 and integral representations of the L-functions. We start by choosing
$\mathrm {PGL}(n)$
 and integral representations of the L-functions. We start by choosing 
 $\phi _0\in \pi _0$
 such that the Whittaker function
$\phi _0\in \pi _0$
 such that the Whittaker function 
 $W_0$
 of
$W_0$
 of 
 $\phi _0$
 is an analytic newvector; see Section 2.9 for a brief description of the analytic newvectors. Such
$\phi _0$
 is an analytic newvector; see Section 2.9 for a brief description of the analytic newvectors. Such 
 $W_0$
 in the Kirillov model of
$W_0$
 in the Kirillov model of 
 $\pi _0$
 can be described by a fixed bump function. Let
$\pi _0$
 can be described by a fixed bump function. Let 
 $\mathrm {Eis}(f_s)$
 be the maximal Eisenstein series
$\mathrm {Eis}(f_s)$
 be the maximal Eisenstein series 
 $\mathrm {PGL}_n(\mathbb {Z})$
 attached to a generalised principal series vector
$\mathrm {PGL}_n(\mathbb {Z})$
 attached to a generalised principal series vector 
 $f_s$
. Also let X be a large real number and x be the diagonal element in
$f_s$
. Also let X be a large real number and x be the diagonal element in 
 $\mathrm {PGL}_n(\mathbb {R})$
 given by
$\mathrm {PGL}_n(\mathbb {R})$
 given by 
 $\mathrm {diag}(X,\dots ,X,1)$
. We translate the Eisenstein series by x to obtain
$\mathrm {diag}(X,\dots ,X,1)$
. We translate the Eisenstein series by x to obtain 
 $\mathrm {Eis}(f_s)(.x)$
.
$\mathrm {Eis}(f_s)(.x)$
.
 For this subsection, let 
 $\mathbb {X}:=\mathrm {PGL}_n(\mathbb {Z})\backslash \mathrm {PGL}_n(\mathbb {R})$
 and N be the maximal unipotent of the upper triangular matrices in
$\mathbb {X}:=\mathrm {PGL}_n(\mathbb {Z})\backslash \mathrm {PGL}_n(\mathbb {R})$
 and N be the maximal unipotent of the upper triangular matrices in 
 $\mathrm {PGL}_n(\mathbb {R})$
. We start by writing the inner product
$\mathrm {PGL}_n(\mathbb {R})$
. We start by writing the inner product 
 $$ \begin{align} \langle \phi_0\mathrm{Eis}(f_{1/2})(.x),\phi_0\mathrm{Eis}(f_{1/2})(.x)\rangle=\langle |\phi_0|^2, |\mathrm{Eis}(f_{1/2})|^2(.x)\rangle, \end{align} $$
$$ \begin{align} \langle \phi_0\mathrm{Eis}(f_{1/2})(.x),\phi_0\mathrm{Eis}(f_{1/2})(.x)\rangle=\langle |\phi_0|^2, |\mathrm{Eis}(f_{1/2})|^2(.x)\rangle, \end{align} $$
where all the inner products above are the usual 
 $L^2$
-inner product on the fundamental domain
$L^2$
-inner product on the fundamental domain 
 $\mathbb {X}$
. Note that both of the sides of equation (1.1) are absolutely convergent as
$\mathbb {X}$
. Note that both of the sides of equation (1.1) are absolutely convergent as 
 $\phi _0$
 decays rapidly at the cusps.
$\phi _0$
 decays rapidly at the cusps.
 We use Parseval’s identity on the left-hand side over 
 $\mathrm {PGL}(n)$
. A typical term corresponding to an automorphic representation
$\mathrm {PGL}(n)$
. A typical term corresponding to an automorphic representation 
 $\pi $
 in the spectral sum would look like
$\pi $
 in the spectral sum would look like 
 $$ \begin{align*}\left|\int_{\mathbb{X}} \phi_0(g)\overline{\phi(g)}\mathrm{Eis}(f_{1/2})(gx)dg\right|^2 = \frac{|L(1/2,\tilde{\pi}\otimes\pi_0|^2}{L(1,\pi,\mathrm{Ad})}|Z_x(f_{1/2},W,W_0)|^2,\end{align*} $$
$$ \begin{align*}\left|\int_{\mathbb{X}} \phi_0(g)\overline{\phi(g)}\mathrm{Eis}(f_{1/2})(gx)dg\right|^2 = \frac{|L(1/2,\tilde{\pi}\otimes\pi_0|^2}{L(1,\pi,\mathrm{Ad})}|Z_x(f_{1/2},W,W_0)|^2,\end{align*} $$
and
 $$ \begin{align*}Z_x(f_{s},W,W_0)=\int_{N\backslash\mathrm{PGL}_r(\mathbb{R})} W_0(g)\overline{W(g)}f_{s}(gx)dg\end{align*} $$
$$ \begin{align*}Z_x(f_{s},W,W_0)=\int_{N\backslash\mathrm{PGL}_r(\mathbb{R})} W_0(g)\overline{W(g)}f_{s}(gx)dg\end{align*} $$
is the local zeta integral.
 We choose 
 $f_s$
 such that
$f_s$
 such that 
 $f_{1/2}\left [\begin {pmatrix}I&\\c&1\end {pmatrix}\right ]$
 is supported on
$f_{1/2}\left [\begin {pmatrix}I&\\c&1\end {pmatrix}\right ]$
 is supported on 
 $|c|<\tau $
 for some
$|c|<\tau $
 for some 
 $\tau>0$
 sufficiently small, so that
$\tau>0$
 sufficiently small, so that 
 $W_0f_{1/2}(.x)$
 would mimic a smoothened characteristic function of the archimedean congruence subgroup
$W_0f_{1/2}(.x)$
 would mimic a smoothened characteristic function of the archimedean congruence subgroup 
 $K_0(X,\tau )$
 (see equation (2.8)). If W is an analytic newvector (see Section 2.9), then the invariance property of W will yield that
$K_0(X,\tau )$
 (see equation (2.8)). If W is an analytic newvector (see Section 2.9), then the invariance property of W will yield that 
 $Z_x(f_{1/2},W,W_0)\gg 1$
 if
$Z_x(f_{1/2},W,W_0)\gg 1$
 if 
 $C(\pi )<X$
. We use
$C(\pi )<X$
. We use 
 $$ \begin{align*}\sum_{W}|Z_x(f_{1/2},W,W_0)|^2\end{align*} $$
$$ \begin{align*}\sum_{W}|Z_x(f_{1/2},W,W_0)|^2\end{align*} $$
as the spectral weights where in the above sum W traverses some orthonormal basis of 
 $\pi $
. We point out on the naive similarities between the spectral weight here and the one used in, for example, [Reference Jana18, Theorem 1]. However, the invariance property that is needed here is a bit stronger than the invariance used in [Reference Jana18, Theorem 1]: we only needed invariance at points near the identity in
$\pi $
. We point out on the naive similarities between the spectral weight here and the one used in, for example, [Reference Jana18, Theorem 1]. However, the invariance property that is needed here is a bit stronger than the invariance used in [Reference Jana18, Theorem 1]: we only needed invariance at points near the identity in 
 $\mathrm {GL}_n(\mathbb {R})$
 in [Reference Jana18], whereas here, we have to gain an invariance that is uniform for all elements in
$\mathrm {GL}_n(\mathbb {R})$
 in [Reference Jana18], whereas here, we have to gain an invariance that is uniform for all elements in 
 $\mathrm {GL}_{n-1}(\mathbb {R})$
. The method of using the approximate invariance of the newvectors is similar to [Reference Venkatesh32] for
$\mathrm {GL}_{n-1}(\mathbb {R})$
. The method of using the approximate invariance of the newvectors is similar to [Reference Venkatesh32] for 
 $\mathrm {GL}(2)$
, where in the nonarchimedean aspect, the exact invariance is used. This analysis is done in Section 7.
$\mathrm {GL}(2)$
, where in the nonarchimedean aspect, the exact invariance is used. This analysis is done in Section 7.
We now explain how we proceed to give an asymptotic expansion of the right-hand side of equation (1.1). The heuristic idea, at least to obtain an upper bound, is to make the change of variables in the period of the right-hand side of equation (1.1) to write it as
 $$ \begin{align*}\int_{\mathbb{X}}|\phi_0(gx^{-1})|^2|\mathrm{Eis}(f_{1/2})(g)|^2dg\end{align*} $$
$$ \begin{align*}\int_{\mathbb{X}}|\phi_0(gx^{-1})|^2|\mathrm{Eis}(f_{1/2})(g)|^2dg\end{align*} $$
and then bound this period by
 $$ \begin{align*}\le \|\phi_0\|^2_{L^\infty(\mathbb{X})}\int_{\mathbb{X}}|\mathrm{Eis}(f_{1/2})(g)|^2dg.\end{align*} $$
$$ \begin{align*}\le \|\phi_0\|^2_{L^\infty(\mathbb{X})}\int_{\mathbb{X}}|\mathrm{Eis}(f_{1/2})(g)|^2dg.\end{align*} $$
But unfortunately, 
 $\mathrm {Eis}(f_{1/2})$
 (barely!) fails to be square integrable on
$\mathrm {Eis}(f_{1/2})$
 (barely!) fails to be square integrable on 
 $\mathbb {X}$
. That is why we have to regularise the period. We adopt the regularising techniques of Zagier [Reference Zagier34]; see also [Reference Michel and Venkatesh27, Reference Nelson29]. First we deform
$\mathbb {X}$
. That is why we have to regularise the period. We adopt the regularising techniques of Zagier [Reference Zagier34]; see also [Reference Michel and Venkatesh27, Reference Nelson29]. First we deform 
 $|\mathrm {Eis}(f_{1/2})|^2$
 as
$|\mathrm {Eis}(f_{1/2})|^2$
 as 
 $\mathrm {Eis}(f_{1/2+s})\overline {\mathrm {Eis}(f_{1/2})}$
 for s lying in some generic position with very small
$\mathrm {Eis}(f_{1/2+s})\overline {\mathrm {Eis}(f_{1/2})}$
 for s lying in some generic position with very small 
 $\Re (s)$
. From the Fourier expansions of the Eisenstein series, we can pick off the nonintegrable terms in the product
$\Re (s)$
. From the Fourier expansions of the Eisenstein series, we can pick off the nonintegrable terms in the product 
 $\mathrm {Eis}(f_{1/2+s})\overline {\mathrm {Eis}(f_{1/2})}$
 and call their sum
$\mathrm {Eis}(f_{1/2+s})\overline {\mathrm {Eis}(f_{1/2})}$
 and call their sum 
 $F_s$
. Then we construct a regularised Eisenstein series by
$F_s$
. Then we construct a regularised Eisenstein series by 
 $$ \begin{align*} \tilde{E}(s,.):=\mathrm{Eis}(f_{1/2+s})\overline{\mathrm{Eis}(f_{1/2})}-\mathrm{Eis}(F_s). \end{align*} $$
$$ \begin{align*} \tilde{E}(s,.):=\mathrm{Eis}(f_{1/2+s})\overline{\mathrm{Eis}(f_{1/2})}-\mathrm{Eis}(F_s). \end{align*} $$
We will check that 
 $\tilde {E}(s,.)$
 lies in
$\tilde {E}(s,.)$
 lies in 
 $L^2(\mathbb {X})$
. Consequently, we regularise the period as
$L^2(\mathbb {X})$
. Consequently, we regularise the period as 
 $$ \begin{align*} \langle |\phi_0(.x^{-1})|^2, |\mathrm{Eis}(f_{1/2})|^2\rangle &=\lim_{s\to 0}\langle |\phi_0(.x^{-1})|^2, \overline{\mathrm{Eis}(f_{1/2})}\mathrm{Eis}(f_{1/2+s})\rangle\\ &=\lim_{s\to 0}\langle |\phi_0(.x^{-1})|^2, \tilde{E}(s,.)\rangle+\lim_{s\to 0}\langle |\phi_0(.x^{-1})|^2,\mathrm{Eis}(F_s)\rangle. \end{align*} $$
$$ \begin{align*} \langle |\phi_0(.x^{-1})|^2, |\mathrm{Eis}(f_{1/2})|^2\rangle &=\lim_{s\to 0}\langle |\phi_0(.x^{-1})|^2, \overline{\mathrm{Eis}(f_{1/2})}\mathrm{Eis}(f_{1/2+s})\rangle\\ &=\lim_{s\to 0}\langle |\phi_0(.x^{-1})|^2, \tilde{E}(s,.)\rangle+\lim_{s\to 0}\langle |\phi_0(.x^{-1})|^2,\mathrm{Eis}(F_s)\rangle. \end{align*} $$
We call the first summand the regularised term, which, upon rigorous application of the heuristic above, can be proved to be of bounded size. The second summand is called the degenerate term and yields the main term.
 Up to some nonarchimedean factors involving 
 $L(1,\pi _0,\mathrm {Ad})$
, the degenerate term is of the form
$L(1,\pi _0,\mathrm {Ad})$
, the degenerate term is of the form 
 $$ \begin{align*}\partial_{s=0}Z_x(f_{1/2}f_{1/2+s},W_0,\overline{W_0})-\partial_{s=0}Z_x(Mf_{1/2}Mf_{1/2+s},W_0,\overline{W_0}),\end{align*} $$
$$ \begin{align*}\partial_{s=0}Z_x(f_{1/2}f_{1/2+s},W_0,\overline{W_0})-\partial_{s=0}Z_x(Mf_{1/2}Mf_{1/2+s},W_0,\overline{W_0}),\end{align*} $$
where M is certain intertwining operator that arises in the constant term of a maximal parabolic Eisenstein series. One main difficulty of the paper is asymptotically evaluating the above two derivatives. The first one is comparatively easy to understand as one can apply the support condition of 
 $f_{1/2}f_{1/2+s}\left [\begin {pmatrix}I&\\c&1\end {pmatrix}x\right ]$
, which is concentrated on
$f_{1/2}f_{1/2+s}\left [\begin {pmatrix}I&\\c&1\end {pmatrix}x\right ]$
, which is concentrated on 
 $c=O(1/X)$
 and the approximate invariance of
$c=O(1/X)$
 and the approximate invariance of 
 $W_0$
. The second one is more technical to analyse. The intertwined vector
$W_0$
. The second one is more technical to analyse. The intertwined vector 
 $Mf_{1/2+s}\left [\begin {pmatrix}I&\\c&1\end {pmatrix}x\right ]$
, which on the matrices
$Mf_{1/2+s}\left [\begin {pmatrix}I&\\c&1\end {pmatrix}x\right ]$
, which on the matrices 
 $\begin {pmatrix}I&\\c&1\end {pmatrix}$
 essentially mimics a Fourier transform of
$\begin {pmatrix}I&\\c&1\end {pmatrix}$
 essentially mimics a Fourier transform of 
 $f_{1/2+s}$
, has support of size
$f_{1/2+s}$
, has support of size 
 $c=O(X)$
. So we cannot get away with just the invariance properties of
$c=O(X)$
. So we cannot get away with just the invariance properties of 
 $W_0$
. In this case, we understand a more detailed shape of the intertwined vectors via the Iwasawa decomposition on the matrices of the form
$W_0$
. In this case, we understand a more detailed shape of the intertwined vectors via the Iwasawa decomposition on the matrices of the form 
 $\begin {pmatrix}I&\\cX&1\end {pmatrix}$
. This analysis is done in Section 5.
$\begin {pmatrix}I&\\cX&1\end {pmatrix}$
. This analysis is done in Section 5.
 On the other hand, to analyse the regularised term, we understand the growth of the (degenerate) Fourier terms of 
 $\mathrm {Eis}(f_s)$
 for s being close to
$\mathrm {Eis}(f_s)$
 for s being close to 
 $0,1/2$
 or
$0,1/2$
 or 
 $1$
. This analysis relies on the analytic properties of the intertwining operators attached to various Weyl elements and functional analytic properties of the Eisenstein series. This analysis is done in Section 6.
$1$
. This analysis relies on the analytic properties of the intertwining operators attached to various Weyl elements and functional analytic properties of the Eisenstein series. This analysis is done in Section 6.
Remark 1.3. We remark that our method of proof, which is uniform for 
 $n\ge 3$
, can also be made to work for
$n\ge 3$
, can also be made to work for 
 $n=2$
 with a slight modification with a modified main term (the statement of our theorem does not in any way make sense for
$n=2$
 with a slight modification with a modified main term (the statement of our theorem does not in any way make sense for 
 $n=2$
). The main terms in the asymptotic expansion are the artefacts of the nonintegrable terms among the product of the constant terms in the Fourier expansion of
$n=2$
). The main terms in the asymptotic expansion are the artefacts of the nonintegrable terms among the product of the constant terms in the Fourier expansion of 
 $\mathrm {Eis}(f_{1/2})$
 and
$\mathrm {Eis}(f_{1/2})$
 and 
 $\mathrm {Eis}(f_{1/2+s})$
. The constant term of
$\mathrm {Eis}(f_{1/2+s})$
. The constant term of 
 $\mathrm {Eis}(f_s)$
 looks like
$\mathrm {Eis}(f_s)$
 looks like 
 $\sum _w M_wf_s$
, where
$\sum _w M_wf_s$
, where 
 $M_w$
 are certain intertwining operators and w runs over a set of Weyl elements attached to the underlying parabolic subgroup (see Section 3). If
$M_w$
 are certain intertwining operators and w runs over a set of Weyl elements attached to the underlying parabolic subgroup (see Section 3). If 
 $n\ge 3$
, then the nonintegrable terms in the above-mentioned product are of the form
$n\ge 3$
, then the nonintegrable terms in the above-mentioned product are of the form 
 $f_{1/2}f_{1/2+s}$
 and
$f_{1/2}f_{1/2+s}$
 and 
 $Mf_{1/2}Mf_{1/2+s}$
, where M is the intertwiner attached to the relative long Weyl element. In particular, the off-diagonal terms of the from
$Mf_{1/2}Mf_{1/2+s}$
, where M is the intertwiner attached to the relative long Weyl element. In particular, the off-diagonal terms of the from 
 $f_{1/2} Mf_{1/2+s}$
 are integrable. Such a phenomenon does not happen for
$f_{1/2} Mf_{1/2+s}$
 are integrable. Such a phenomenon does not happen for 
 $n=2$
. In this case (where the maximal Eisenstein series is also a minimal Eisenstein series), the off-diagonal terms are also nonintegrable.
$n=2$
. In this case (where the maximal Eisenstein series is also a minimal Eisenstein series), the off-diagonal terms are also nonintegrable.
 As described in the sketch of the proof, eventually we need to deform the principal series vector to regularise the Eisenstein series. The number of deformations needed in the Langlands parameters of the associated principal series vector depends on the number of nonintegrable terms in the product of the constant terms. For 
 $n \ge 3$
, we need to deform only one of the parameters of the principal series vector to regularise the corresponding maximal parabolic Eisenstein series. However, for
$n \ge 3$
, we need to deform only one of the parameters of the principal series vector to regularise the corresponding maximal parabolic Eisenstein series. However, for 
 $n=2$
, for the reasons stated above, to regularise the Eisenstein series, we need to deform two (i.e., both) of the parameters. This modification will produce more degenerate terms, and consequently, a different main term with a different constant will appear; see [Reference Blomer and Harcos4].
$n=2$
, for the reasons stated above, to regularise the Eisenstein series, we need to deform two (i.e., both) of the parameters. This modification will produce more degenerate terms, and consequently, a different main term with a different constant will appear; see [Reference Blomer and Harcos4].
1.2 What’s next?
 As we have described above, the motivating question for us is to find an asymptotic expansion of the 
 $2n$
th moment of the central L-values for
$2n$
th moment of the central L-values for 
 $\mathrm {PGL}(n)$
, and to do that, we need to replace
$\mathrm {PGL}(n)$
, and to do that, we need to replace 
 $\phi _0$
 with a minimal Eisenstein series
$\phi _0$
 with a minimal Eisenstein series 
 $E_0$
 with trivial Langlands parameters. As, in particular,
$E_0$
 with trivial Langlands parameters. As, in particular, 
 $E_0$
 is not in
$E_0$
 is not in 
 $L^\infty $
, our current proof obviously fails (see the sketch of the proof), and that is why we need to regularise
$L^\infty $
, our current proof obviously fails (see the sketch of the proof), and that is why we need to regularise 
 $E_0$
 as well. However, this regularisation increases the analytic difficulties manyfold. We need to employ a regularised version of the spectral decomposition (and Parseval), as in, for example, [Reference Nelson29, Reference Michel and Venkatesh27], to follow the same strategy as in the sketch of the proof of the main theorem. On the other hand, regularising both the Eisenstein series involved in the period
$E_0$
 as well. However, this regularisation increases the analytic difficulties manyfold. We need to employ a regularised version of the spectral decomposition (and Parseval), as in, for example, [Reference Nelson29, Reference Michel and Venkatesh27], to follow the same strategy as in the sketch of the proof of the main theorem. On the other hand, regularising both the Eisenstein series involved in the period 
 $\langle |E_0|^2,|\mathrm {Eis}(f_{1/2})(.x)|^2\rangle $
 will introduce many more degenerate terms, which will typically have higher-order poles at the critical point. This will likely yield a higher power of
$\langle |E_0|^2,|\mathrm {Eis}(f_{1/2})(.x)|^2\rangle $
 will introduce many more degenerate terms, which will typically have higher-order poles at the critical point. This will likely yield a higher power of 
 $\log X$
 in the main term. It will be interesting to see if the constant appearing in the main term is the same as predicted by the random matrix models; see [Reference Conrey, Farmer, Keating, Rubinstein and Snaith9]. However, we leave this to future work.
$\log X$
 in the main term. It will be interesting to see if the constant appearing in the main term is the same as predicted by the random matrix models; see [Reference Conrey, Farmer, Keating, Rubinstein and Snaith9]. However, we leave this to future work.
 It is natural to speculate what happens for the second moment of the Rankin–Selberg L-functions for other 
 $(\mathrm {GL}(n),\mathrm {GL}(m))$
 pairs with
$(\mathrm {GL}(n),\mathrm {GL}(m))$
 pairs with 
 $m\neq n$
 and the
$m\neq n$
 and the 
 $\mathrm {GL}(m)$
 form being fixed (cuspidal or Eisenstein). If
$\mathrm {GL}(m)$
 form being fixed (cuspidal or Eisenstein). If 
 $m<n$
, we believe that the problems become simpler than the
$m<n$
, we believe that the problems become simpler than the 
 $m=n$
 case as the degrees, and hence conductors, become lower. Similarly, for
$m=n$
 case as the degrees, and hence conductors, become lower. Similarly, for 
 $m>n$
, we expect the problems to be much more difficult for high degree and conductor size. In particular, it will be very interesting to see if we can push the method in this paper at least to the case
$m>n$
, we expect the problems to be much more difficult for high degree and conductor size. In particular, it will be very interesting to see if we can push the method in this paper at least to the case 
 $m=n+1$
 case. More interestingly, if
$m=n+1$
 case. More interestingly, if 
 $n=3$
 and the fixed form is a minimal Eisenstein series, then we will have a Lindelöf-consistent eighth moment (the convexity barrier) of L-functions of
$n=3$
 and the fixed form is a minimal Eisenstein series, then we will have a Lindelöf-consistent eighth moment (the convexity barrier) of L-functions of 
 $\mathrm {PGL}(3)$
 over the family
$\mathrm {PGL}(3)$
 over the family 
 $\mathcal {F}_X$
.
$\mathcal {F}_X$
.
Remark 1.4. We briefly remark that one may try to explicate the constant contribution of the asymptotic expansion in the main theorem and obtain a power-saving error term as in [Reference Blomer and Harcos4]. One possible way to obtain finer asymptotics in the regularised part is to spectrally expand the period 
 $\langle |\phi _0|^2,\tilde {E}_s(.x)\rangle $
 over the
$\langle |\phi _0|^2,\tilde {E}_s(.x)\rangle $
 over the 
 $\mathrm {PGL}(n)$
 automorphic spectrum. Then one may use the existence of a spectral gap and explicit decay of the matrix coefficient for
$\mathrm {PGL}(n)$
 automorphic spectrum. Then one may use the existence of a spectral gap and explicit decay of the matrix coefficient for 
 $n\ge 3$
 to obtain that
$n\ge 3$
 to obtain that 
 $\langle |\phi _0|^2,\phi \rangle \langle \phi ,\tilde {E}_s(.x)\rangle $
, at least for a tempered
$\langle |\phi _0|^2,\phi \rangle \langle \phi ,\tilde {E}_s(.x)\rangle $
, at least for a tempered 
 $\phi $
, will decay polynomially in X. However, it is not yet clear to us how to explicate the constant term and get an error term with polynomial saving in the degenerate part; see Remark 5.4.
$\phi $
, will decay polynomially in X. However, it is not yet clear to us how to explicate the constant term and get an error term with polynomial saving in the degenerate part; see Remark 5.4.
2 Basic notations and preliminaries
2.1 Basic notations
 We use adèlic language. Let 
 $r\ge 3$
. For any ring R by
$r\ge 3$
. For any ring R by 
 $G(R)$
, we denote the set of points
$G(R)$
, we denote the set of points 
 $\mathrm {GL}_r(R)/R^\times $
. In this paper, R will denote the adèles
$\mathrm {GL}_r(R)/R^\times $
. In this paper, R will denote the adèles 
 $\mathbb {A}$
 over
$\mathbb {A}$
 over 
 $\mathbb {Q}$
 or the local fields
$\mathbb {Q}$
 or the local fields 
 $\mathbb {R},\mathbb {Q}_p$
 or rational numbers
$\mathbb {R},\mathbb {Q}_p$
 or rational numbers 
 $\mathbb {Q}$
 or the local ring
$\mathbb {Q}$
 or the local ring 
 $\mathbb {Z}_p$
. We drop the ring R from the notation
$\mathbb {Z}_p$
. We drop the ring R from the notation 
 $G(R)$
 if the ring is clear from the context.
$G(R)$
 if the ring is clear from the context.
 Let N be the maximal unipotent subgroup of G consisting of upper triangular matrices. For 
 $q\in \mathbb {A}^{r-1}$
, we define a character of
$q\in \mathbb {A}^{r-1}$
, we define a character of 
 $N(\mathbb {A})$
 by
$N(\mathbb {A})$
 by 
 $$ \begin{align*}\psi_q(n(x))=\psi_0\left(\sum_{i=1}^{r-1}q_ix_{i,i+1}\right),\quad n(x):=(x_{i,j})_{i,j},\end{align*} $$
$$ \begin{align*}\psi_q(n(x))=\psi_0\left(\sum_{i=1}^{r-1}q_ix_{i,i+1}\right),\quad n(x):=(x_{i,j})_{i,j},\end{align*} $$
where 
 $\psi _0$
 is an additive character of
$\psi _0$
 is an additive character of 
 $\mathbb {Q}\backslash \mathbb {A}$
. We abbreviate
$\mathbb {Q}\backslash \mathbb {A}$
. We abbreviate 
 $\psi _{(1,\dots ,1)}$
 by
$\psi _{(1,\dots ,1)}$
 by 
 $\psi $
. We call
$\psi $
. We call 
 $\psi _q$
 nondegenerate if
$\psi _q$
 nondegenerate if 
 $q_i\neq 0$
 for
$q_i\neq 0$
 for 
 $1\le i\le r-1$
; otherwise, we call
$1\le i\le r-1$
; otherwise, we call 
 $\psi _q$
 degenerate.
$\psi _q$
 degenerate.
 Let A be the set of diagonal matrices in G, which we identify with 
 $\begin {pmatrix}A_{r-1}&\\&1\end {pmatrix}$
, where
$\begin {pmatrix}A_{r-1}&\\&1\end {pmatrix}$
, where 
 $A_{r-1}$
 is the set of diagonal matrices in
$A_{r-1}$
 is the set of diagonal matrices in 
 $\mathrm {GL}(r-1)$
. We parametrise elements of
$\mathrm {GL}(r-1)$
. We parametrise elements of 
 $A_{r-1}$
 as
$A_{r-1}$
 as 
 $a(y):=\mathrm {diag}(y_1\dots y_{r-1},\dots , y_{r-1})$
 Let
$a(y):=\mathrm {diag}(y_1\dots y_{r-1},\dots , y_{r-1})$
 Let 
 $K:=\prod _{p\le \infty }K_p$
 be the standard maximal compact in
$K:=\prod _{p\le \infty }K_p$
 be the standard maximal compact in 
 $G(\mathbb {A})$
, where
$G(\mathbb {A})$
, where 
 $K_p:=G(\mathbb {Z}_p)$
 for
$K_p:=G(\mathbb {Z}_p)$
 for 
 $p<\infty $
 and
$p<\infty $
 and 
 $K_\infty :=\mathrm {PO}_r(\mathbb {R})$
.
$K_\infty :=\mathrm {PO}_r(\mathbb {R})$
.
 For any factorisable function f on 
 $G(\mathbb {A})$
 by
$G(\mathbb {A})$
 by 
 $f_p$
, we denote the pth component of f, which is a function on
$f_p$
, we denote the pth component of f, which is a function on 
 $G(\mathbb {Q}_p)$
.
$G(\mathbb {Q}_p)$
.
2.2 Domains and measures
 We fix Haar measures on G and its subgroups, and a G-invariant measure of 
 $N\backslash G$
. If the subgroup is compact, then we normalise the Haar measure to be a probability measure. Let
$N\backslash G$
. If the subgroup is compact, then we normalise the Haar measure to be a probability measure. Let 
 $\delta $
 denote the modular character on A. It is defined by
$\delta $
 denote the modular character on A. It is defined by 
 $$ \begin{align*}\delta(a(y)) := \prod_{j=1}^{r-1} |y_j|^{j(r-1-j)}\end{align*} $$
$$ \begin{align*}\delta(a(y)) := \prod_{j=1}^{r-1} |y_j|^{j(r-1-j)}\end{align*} $$
and is trivially extended to 
 $NA$
.
$NA$
.
 To integrate over 
 $N(\mathbb {R})\backslash G(\mathbb {R})$
, we use two different types of coordinates according to efficiency. The first one is Bruhat (with respect to the standard maximal parabolic) coordinates. First, note that the set of elements of the form
$N(\mathbb {R})\backslash G(\mathbb {R})$
, we use two different types of coordinates according to efficiency. The first one is Bruhat (with respect to the standard maximal parabolic) coordinates. First, note that the set of elements of the form 
 $\begin {pmatrix}h&b^t\\c&0\end {pmatrix}$
 with
$\begin {pmatrix}h&b^t\\c&0\end {pmatrix}$
 with 
 $h\in \mathrm {GL}_{r-1}(\mathbb {R})$
 and row vectors
$h\in \mathrm {GL}_{r-1}(\mathbb {R})$
 and row vectors 
 $b,c\in \mathbb {R}^{r-1}$
 has zero measure in
$b,c\in \mathbb {R}^{r-1}$
 has zero measure in 
 $\mathrm {GL}_r(\mathbb {R})$
 with respect to its Haar measure. Thus while integrating over
$\mathrm {GL}_r(\mathbb {R})$
 with respect to its Haar measure. Thus while integrating over 
 $G(\mathbb {R})$
, we integrate over the points of the form
$G(\mathbb {R})$
, we integrate over the points of the form 
 $$ \begin{align*}\begin{pmatrix}h&b^t\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix},\quad h\in \mathrm{GL}_{r-1}(\mathbb{R})\text{ and } b,c\in\mathbb{R}^{r-1} \text{ row vectors}.\end{align*} $$
$$ \begin{align*}\begin{pmatrix}h&b^t\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix},\quad h\in \mathrm{GL}_{r-1}(\mathbb{R})\text{ and } b,c\in\mathbb{R}^{r-1} \text{ row vectors}.\end{align*} $$
Similarly, the set of points of the form
 $$ \begin{align*}g = \begin{pmatrix}h&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix},\quad h\in N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})\text{ and } c\in\mathbb{R}^{r-1}\text{ row vector}\end{align*} $$
$$ \begin{align*}g = \begin{pmatrix}h&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix},\quad h\in N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})\text{ and } c\in\mathbb{R}^{r-1}\text{ row vector}\end{align*} $$
has full measure in 
 $N(\mathbb {R})\backslash G(\mathbb {R})$
. We use these coordinates to integrate over
$N(\mathbb {R})\backslash G(\mathbb {R})$
. We use these coordinates to integrate over 
 $N(\mathbb {R})\backslash G(\mathbb {R})$
 using the invariant measure
$N(\mathbb {R})\backslash G(\mathbb {R})$
 using the invariant measure 
 $$ \begin{align*}dg=\frac{dh}{|\det(h)|}dc,\end{align*} $$
$$ \begin{align*}dg=\frac{dh}{|\det(h)|}dc,\end{align*} $$
where 
 $dc$
 denotes the Lebesgue measure and
$dc$
 denotes the Lebesgue measure and 
 $dh$
 is the
$dh$
 is the 
 $\mathrm {GL}_{r-1}(\mathbb {R})$
-invariant Haar measure on
$\mathrm {GL}_{r-1}(\mathbb {R})$
-invariant Haar measure on 
 $N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R})$
. Description of the above invariant measure follows from [Reference Knapp23, eq. (5.14)] and discussion above that. However, there is a more direct way to see this. Let
$N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R})$
. Description of the above invariant measure follows from [Reference Knapp23, eq. (5.14)] and discussion above that. However, there is a more direct way to see this. Let 
 $\phi \in C_c(G(\mathbb {R}))$
 be measurable. Then it follows from [Reference Goldfeld14, Proposition 1.4.3] that
$\phi \in C_c(G(\mathbb {R}))$
 be measurable. Then it follows from [Reference Goldfeld14, Proposition 1.4.3] that 
 $$ \begin{align*}\int_{G(\mathbb{R})} \phi(g) dg = \int_{\mathbb{R}^{n^2-1}}\phi\left[\begin{pmatrix}h&b^t\\c&1\end{pmatrix}\right]\frac{\prod_{i,j}d_L h_{ij}\prod_id_Lb_i\prod_i d_Lc_i}{\left|\det\left[\begin{pmatrix}h&b^t\\c&1\end{pmatrix}\right]\right|^n},\end{align*} $$
$$ \begin{align*}\int_{G(\mathbb{R})} \phi(g) dg = \int_{\mathbb{R}^{n^2-1}}\phi\left[\begin{pmatrix}h&b^t\\c&1\end{pmatrix}\right]\frac{\prod_{i,j}d_L h_{ij}\prod_id_Lb_i\prod_i d_Lc_i}{\left|\det\left[\begin{pmatrix}h&b^t\\c&1\end{pmatrix}\right]\right|^n},\end{align*} $$
where 
 $d_Lx$
 denotes the Lebesgue measure on
$d_Lx$
 denotes the Lebesgue measure on 
 $\mathbb {R}$
. Noting that
$\mathbb {R}$
. Noting that 
 $$ \begin{align*}\begin{pmatrix}h&b^t\\c&1\end{pmatrix}=\begin{pmatrix}\mathrm{I}_{r-1}&b^t\\&1\end{pmatrix}\begin{pmatrix}h-b^tc\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix},\end{align*} $$
$$ \begin{align*}\begin{pmatrix}h&b^t\\c&1\end{pmatrix}=\begin{pmatrix}\mathrm{I}_{r-1}&b^t\\&1\end{pmatrix}\begin{pmatrix}h-b^tc\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix},\end{align*} $$
we can write
 $$ \begin{align*}\int_{G(\mathbb{R})} \phi(g) dg = \int_{\mathbb{R}^{n^2-1}}\phi\left[\begin{pmatrix}\mathrm{I}_{r-1}&b^t\\&1\end{pmatrix}\begin{pmatrix}h-b^tc\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\frac{\prod_{i,j}d_L h_{ij}\prod_id_Lb_i\prod_id_Lc_i}{|\det(h-b^tc)|^n}.\end{align*} $$
$$ \begin{align*}\int_{G(\mathbb{R})} \phi(g) dg = \int_{\mathbb{R}^{n^2-1}}\phi\left[\begin{pmatrix}\mathrm{I}_{r-1}&b^t\\&1\end{pmatrix}\begin{pmatrix}h-b^tc\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\frac{\prod_{i,j}d_L h_{ij}\prod_id_Lb_i\prod_id_Lc_i}{|\det(h-b^tc)|^n}.\end{align*} $$
Fixing 
 $b,c$
 and changing variables
$b,c$
 and changing variables 
 $h_{ij}\mapsto h_{ij}+(b^tc)_{ij}$
, we can write the above as
$h_{ij}\mapsto h_{ij}+(b^tc)_{ij}$
, we can write the above as 
 $$ \begin{align*}\int_{G(\mathbb{R})} \phi(g) dg = \int_{\mathbb{R}^{n^2-1}}\phi\left[\begin{pmatrix}\mathrm{I}_{r-1}&b^t\\&1\end{pmatrix}\begin{pmatrix}h\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\frac{\prod_{i,j}d_L h_{ij}\prod_id_Lb_i\prod_id_Lc_i}{|\det(h)|^n}.\end{align*} $$
$$ \begin{align*}\int_{G(\mathbb{R})} \phi(g) dg = \int_{\mathbb{R}^{n^2-1}}\phi\left[\begin{pmatrix}\mathrm{I}_{r-1}&b^t\\&1\end{pmatrix}\begin{pmatrix}h\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\frac{\prod_{i,j}d_L h_{ij}\prod_id_Lb_i\prod_id_Lc_i}{|\det(h)|^n}.\end{align*} $$
Noting that 
 $\frac {\prod _{i,j}d_Lh_{ij}}{|\det (h)|^{n-1}}=dh$
 and taking the
$\frac {\prod _{i,j}d_Lh_{ij}}{|\det (h)|^{n-1}}=dh$
 and taking the 
 $N(\mathbb {R})$
-quotient on the left, we deduce the invariant measure on
$N(\mathbb {R})$
-quotient on the left, we deduce the invariant measure on 
 $N(\mathbb {R})\backslash G(\mathbb {R})$
.
$N(\mathbb {R})\backslash G(\mathbb {R})$
.
 On the other hand, when we integrate on 
 $N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R})$
, we use Iwasawa coordinates. We write
$N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R})$
, we use Iwasawa coordinates. We write 
 $$ \begin{align*}N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})\ni h=a(y)k,\quad a(y)\in A_{r-1}, k\in K_{r-1},\end{align*} $$
$$ \begin{align*}N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})\ni h=a(y)k,\quad a(y)\in A_{r-1}, k\in K_{r-1},\end{align*} $$
where 
 $K_{r-1}$
 is the standard maximal compact in
$K_{r-1}$
 is the standard maximal compact in 
 $\mathrm {GL}_{r-1}$
, with the measure
$\mathrm {GL}_{r-1}$
, with the measure 
 $$ \begin{align*}dh=\frac{\prod_id^\times y_i}{\delta(a(y))}dk,\end{align*} $$
$$ \begin{align*}dh=\frac{\prod_id^\times y_i}{\delta(a(y))}dk,\end{align*} $$
where 
 $dk$
 is the probability Haar measure on
$dk$
 is the probability Haar measure on 
 $K_{r-1}$
.
$K_{r-1}$
.
 Let 
 $\mathbb {X}:=G(\mathbb {Q})\backslash G(\mathbb {A})$
. We fix a fundamental domain
$\mathbb {X}:=G(\mathbb {Q})\backslash G(\mathbb {A})$
. We fix a fundamental domain 
 $\mathbb {X}$
 in
$\mathbb {X}$
 in 
 $G(\mathbb {A})$
 of the form
$G(\mathbb {A})$
 of the form 
 $$ \begin{align*}D\times K_f,\quad D\subseteq G(\mathbb{R}), K_f:=\prod_{p<\infty}K_p\end{align*} $$
$$ \begin{align*}D\times K_f,\quad D\subseteq G(\mathbb{R}), K_f:=\prod_{p<\infty}K_p\end{align*} $$
that is contained in a Siegel domain of the form 
 $\mathbb {S}\times K_f$
, where
$\mathbb {S}\times K_f$
, where 
 $$ \begin{align} \mathbb{S}:=\{G(\mathbb{R})\ni g=n(x)\begin{pmatrix}a(y)&\\&1\end{pmatrix}k\mid |x_{i,j}|<1,|y_i|> y_0, k\in K_\infty\}, \end{align} $$
$$ \begin{align} \mathbb{S}:=\{G(\mathbb{R})\ni g=n(x)\begin{pmatrix}a(y)&\\&1\end{pmatrix}k\mid |x_{i,j}|<1,|y_i|> y_0, k\in K_\infty\}, \end{align} $$
where 
 $y_0>0$
 is an explicit constant dependent only on the group. The above follows from strong approximation for
$y_0>0$
 is an explicit constant dependent only on the group. The above follows from strong approximation for 
 $\mathrm {GL}(n)$
 and [Reference Goldfeld14, §1.3].
$\mathrm {GL}(n)$
 and [Reference Goldfeld14, §1.3].
 We equip 
 $\mathbb {X}$
 with the
$\mathbb {X}$
 with the 
 $G(\mathbb {A})$
-invariant probability measure that in Iwasawa coordinates is given by
$G(\mathbb {A})$
-invariant probability measure that in Iwasawa coordinates is given by 
 $$ \begin{align*}\mathbb{X}\ni g=n(x)\begin{pmatrix}a(y)&\\&1\end{pmatrix}k,\quad dg=\prod_{j,k}dx_{j,k}\frac{\prod_id^\times y_i}{\delta(a(y))|\det(a(y))|}dk,\end{align*} $$
$$ \begin{align*}\mathbb{X}\ni g=n(x)\begin{pmatrix}a(y)&\\&1\end{pmatrix}k,\quad dg=\prod_{j,k}dx_{j,k}\frac{\prod_id^\times y_i}{\delta(a(y))|\det(a(y))|}dk,\end{align*} $$
where 
 $n(x)\in N(\mathbb {R})$
 and
$n(x)\in N(\mathbb {R})$
 and 
 $dx_{i,j}$
 is the usual Lebesgue measure. Note that
$dx_{i,j}$
 is the usual Lebesgue measure. Note that 
 $\delta \begin {pmatrix}a(y)&\\&1\end {pmatrix}= \delta (a(y))|\det (a(y))|$
.
$\delta \begin {pmatrix}a(y)&\\&1\end {pmatrix}= \delta (a(y))|\det (a(y))|$
.
2.3 Automorphic representations
We briefly describe the classes of local and global representations that are relevant in this paper. We refer to [Reference Mœglin and Waldspurger28], [Reference Cogdell and Piatetski-Shapiro12, §5] for details.
 Let 
 $\hat {\mathbb {X}}$
 be the isomorphism class of irreducible unitary automorphic representations that are unramified at all finite places and appear in the spectral decomposition of
$\hat {\mathbb {X}}$
 be the isomorphism class of irreducible unitary automorphic representations that are unramified at all finite places and appear in the spectral decomposition of 
 $L^2(\mathbb {X})$
. Similarly, by
$L^2(\mathbb {X})$
. Similarly, by 
 $\hat {\mathbb {X}}_{\mathrm {gen}}$
, we denote the subclass of generic representations in
$\hat {\mathbb {X}}_{\mathrm {gen}}$
, we denote the subclass of generic representations in 
 $\hat {\mathbb {X}}$
: that is, the class of representations that have (unique) Whittaker models.
$\hat {\mathbb {X}}$
: that is, the class of representations that have (unique) Whittaker models.
 We first mention the Langlands description for 
 $\hat {\mathbb {X}}_{\mathrm {gen}}$
. We take a partition
$\hat {\mathbb {X}}_{\mathrm {gen}}$
. We take a partition 
 $r=r_1+\dots +r_k$
. Let
$r=r_1+\dots +r_k$
. Let 
 $\pi _j$
 be a unitary cuspidal automorphic representation for
$\pi _j$
 be a unitary cuspidal automorphic representation for 
 $\mathrm {GL}_{r_j}(\mathbb {Q})$
 (if
$\mathrm {GL}_{r_j}(\mathbb {Q})$
 (if 
 $r_j=1$
, we take
$r_j=1$
, we take 
 $\pi _j$
 to be a unitary Hecke character). Consider the normalised parabolic induction
$\pi _j$
 to be a unitary Hecke character). Consider the normalised parabolic induction 
 $\Pi $
 from the Levi
$\Pi $
 from the Levi 
 $\mathrm {GL}(r_1)\times \dots \times \mathrm {GL}(r_k)$
 to G of the tensor product
$\mathrm {GL}(r_1)\times \dots \times \mathrm {GL}(r_k)$
 to G of the tensor product 
 $\pi _1\otimes \dots \otimes \pi _k$
. There exists a unique irreducible constituent of
$\pi _1\otimes \dots \otimes \pi _k$
. There exists a unique irreducible constituent of 
 $\Pi $
, which we denote by the isobaric sum
$\Pi $
, which we denote by the isobaric sum 
 $\pi _1\boxplus \dots \boxplus \pi _k$
. Then the Langlands classification says that every element in
$\pi _1\boxplus \dots \boxplus \pi _k$
. Then the Langlands classification says that every element in 
 $\hat {\mathbb {X}}_{\mathrm {gen}}$
 is isomorphic to an isobaric sum
$\hat {\mathbb {X}}_{\mathrm {gen}}$
 is isomorphic to an isobaric sum 
 $\boxplus _{j=1}^{k'}\pi ^{\prime }_j$
 for some partition
$\boxplus _{j=1}^{k'}\pi ^{\prime }_j$
 for some partition 
 $r=\sum _{j=1}^{k'}r^{\prime }_j$
 and some cuspidal representation
$r=\sum _{j=1}^{k'}r^{\prime }_j$
 and some cuspidal representation 
 $\pi ^{\prime }_j$
 of
$\pi ^{\prime }_j$
 of 
 $\mathrm {GL}(r^{\prime }_j)$
.
$\mathrm {GL}(r^{\prime }_j)$
.
 We recall from [Reference Mœglin and Waldspurger28] that we call 
 $\pi '\in \hat {\mathbb {X}}$
 a discrete series if
$\pi '\in \hat {\mathbb {X}}$
 a discrete series if 
 $\pi '$
 appears discretely in the spectral decomposition of
$\pi '$
 appears discretely in the spectral decomposition of 
 $L^2(\mathbb {X})$
. The elements of
$L^2(\mathbb {X})$
. The elements of 
 $\pi '$
 are square-integrable automorphic forms for
$\pi '$
 are square-integrable automorphic forms for 
 $G(\mathbb {Q})$
. Mœglin–Waldspurger classified the discrete series for
$G(\mathbb {Q})$
. Mœglin–Waldspurger classified the discrete series for 
 $G(\mathbb {Q})$
 via the iterated residues of generic automorphic forms; see [Reference Mœglin and Waldspurger28]. The Langlands description of
$G(\mathbb {Q})$
 via the iterated residues of generic automorphic forms; see [Reference Mœglin and Waldspurger28]. The Langlands description of 
 $\hat {\mathbb {X}}$
 says that every element in
$\hat {\mathbb {X}}$
 says that every element in 
 $\hat {\mathbb {X}}$
 is isomorphic to an isobaric sum
$\hat {\mathbb {X}}$
 is isomorphic to an isobaric sum 
 $\boxplus _{j=1}^{k'}\pi ^{\prime }_j$
 for some partition
$\boxplus _{j=1}^{k'}\pi ^{\prime }_j$
 for some partition 
 $r=\sum _{j=1}^{k'}r^{\prime }_j$
 and some discrete series representation
$r=\sum _{j=1}^{k'}r^{\prime }_j$
 and some discrete series representation 
 $\pi ^{\prime }_j$
 of
$\pi ^{\prime }_j$
 of 
 $\mathrm {GL}(r^{\prime }_j)$
.
$\mathrm {GL}(r^{\prime }_j)$
.
 We fix an automorphic Plancherel measure 
 $d\mu _{\mathrm {aut}}$
 on
$d\mu _{\mathrm {aut}}$
 on 
 $\hat {\mathbb {X}}$
 compatible with the invariant probability measure on
$\hat {\mathbb {X}}$
 compatible with the invariant probability measure on 
 $\mathbb {X}$
. If
$\mathbb {X}$
. If 
 $\pi $
 is a discrete series, then
$\pi $
 is a discrete series, then 
 $d\mu _{\mathrm {aut}}(\pi )$
 is absolutely continuous to the counting measure at
$d\mu _{\mathrm {aut}}(\pi )$
 is absolutely continuous to the counting measure at 
 $\pi $
. On the other hand, if
$\pi $
. On the other hand, if 
 $\pi $
 is an Eisenstein series induced from a twisted discrete series
$\pi $
 is an Eisenstein series induced from a twisted discrete series 
 $\pi '|.|^\lambda $
, where
$\pi '|.|^\lambda $
, where 
 $\pi '$
 is a discrete series on a Levi subgroup M and
$\pi '$
 is a discrete series on a Levi subgroup M and 
 $\lambda $
 lies in the purely imaginary dual of the Cartan subalgebra of M, then
$\lambda $
 lies in the purely imaginary dual of the Cartan subalgebra of M, then 
 $d\mu _{\mathrm {aut}}(\pi )$
 is absolute continuous to the product of the counting measure at
$d\mu _{\mathrm {aut}}(\pi )$
 is absolute continuous to the product of the counting measure at 
 $\pi '$
 and the Lebesgue measure at
$\pi '$
 and the Lebesgue measure at 
 $\lambda $
.
$\lambda $
.
 For any 
 $\pi \in \hat {\mathbb {X}}$
, we denote the pth component of
$\pi \in \hat {\mathbb {X}}$
, we denote the pth component of 
 $\pi $
 by
$\pi $
 by 
 $\pi _p$
 for
$\pi _p$
 for 
 $p\le \infty $
. The generalised Ramanujan conjecture predicts that if
$p\le \infty $
. The generalised Ramanujan conjecture predicts that if 
 $\pi $
 is cuspidal, then
$\pi $
 is cuspidal, then 
 $\pi _p$
 is tempered for all
$\pi _p$
 is tempered for all 
 $p\le \infty $
. In this paper, we assume that certain cuspidal representations are
$p\le \infty $
. In this paper, we assume that certain cuspidal representations are 
 $\vartheta $
-tempered at the archimedean place, whose definition we recall below.
$\vartheta $
-tempered at the archimedean place, whose definition we recall below.
 First we describe the Langlands description of the generic representations of 
 $G(\mathbb {R})$
. Let
$G(\mathbb {R})$
. Let 
 $r'\in \{1,2\}$
 and
$r'\in \{1,2\}$
 and 
 $\sigma $
 be an essentially square integrable (square integrable mod centre) representation of
$\sigma $
 be an essentially square integrable (square integrable mod centre) representation of 
 $\mathrm {GL}_{r'}(\mathbb {R})$
. That is, if
$\mathrm {GL}_{r'}(\mathbb {R})$
. That is, if 
 $r'=2$
, then
$r'=2$
, then 
 $\sigma $
 is a discrete series of
$\sigma $
 is a discrete series of 
 $\mathrm {GL}_2(\mathbb {R})$
; and if
$\mathrm {GL}_2(\mathbb {R})$
; and if 
 $r'=1$
, then
$r'=1$
, then 
 $\sigma $
 is a unitary character of
$\sigma $
 is a unitary character of 
 $\mathrm {GL}_1(\mathbb {R})$
. By the Langlands classification, we know that any generic unitary irreducible representation
$\mathrm {GL}_1(\mathbb {R})$
. By the Langlands classification, we know that any generic unitary irreducible representation 
 $\xi $
 of
$\xi $
 of 
 $G(\mathbb {R})$
 is isomorphic to a normalised parabolic induction of
$G(\mathbb {R})$
 is isomorphic to a normalised parabolic induction of 
 $$ \begin{align*}\sigma_1|\det|^{s_1}\otimes\dots\otimes\sigma_k|\det|^{s_k},\end{align*} $$
$$ \begin{align*}\sigma_1|\det|^{s_1}\otimes\dots\otimes\sigma_k|\det|^{s_k},\end{align*} $$
from a Levi subgroup attached to a partition of 
 $r=\sum _{j=1}^k r_j$
 with
$r=\sum _{j=1}^k r_j$
 with 
 $r_j\in \{1,2\}$
, where
$r_j\in \{1,2\}$
, where 
 $\sigma _j$
 is an essentially square integrable representation of
$\sigma _j$
 is an essentially square integrable representation of 
 $\mathrm {GL}(r_j)$
 and
$\mathrm {GL}(r_j)$
 and 
 $s_j\in \mathbb {C}$
 with
$s_j\in \mathbb {C}$
 with 
 $\sum _{j=1}^k r_js_j=0$
 and
$\sum _{j=1}^k r_js_j=0$
 and 
 $\Re (s_1)\ge \dots \ge \Re (s_k)$
.
$\Re (s_1)\ge \dots \ge \Re (s_k)$
.
 Let 
 $\vartheta \geq 0$
. We say that
$\vartheta \geq 0$
. We say that 
 $\xi $
 is
$\xi $
 is 
 $\vartheta $
-tempered if all such
$\vartheta $
-tempered if all such 
 $s_i$
 have real parts in
$s_i$
 have real parts in 
 $[-\vartheta ,\vartheta ]$
. By [Reference Müller and Speh26], if
$[-\vartheta ,\vartheta ]$
. By [Reference Müller and Speh26], if 
 $\pi $
 is cuspidal, then
$\pi $
 is cuspidal, then 
 $\pi _\infty $
 is
$\pi _\infty $
 is 
 $\vartheta $
-tempered with
$\vartheta $
-tempered with 
 $\vartheta = 1/2 - 1/(1+r^2)$
.
$\vartheta = 1/2 - 1/(1+r^2)$
.
 We denote the analytic conductor of 
 $\pi $
 by
$\pi $
 by 
 $C(\pi )$
. Note that as
$C(\pi )$
. Note that as 
 $\pi \in \hat {\mathbb {X}}$
 is unramified at all the finite places, we have
$\pi \in \hat {\mathbb {X}}$
 is unramified at all the finite places, we have 
 $C(\pi )=C(\pi _\infty )$
. If
$C(\pi )=C(\pi _\infty )$
. If 
 $\{\mu _i\}\in \mathbb {C}^r$
 are the Langlands parameters of
$\{\mu _i\}\in \mathbb {C}^r$
 are the Langlands parameters of 
 $\pi _\infty $
, then we define (see [Reference Iwaniec and Sarnak15])
$\pi _\infty $
, then we define (see [Reference Iwaniec and Sarnak15]) 
 $C(\pi _\infty ):=\prod _{i=1}^r(1+|\mu _i|)$
.
$C(\pi _\infty ):=\prod _{i=1}^r(1+|\mu _i|)$
.
2.4 Maximal Eisenstein series
 Let P be the standard parabolic subgroup in G attached to the 
 $r=(r-1)+1$
 partition. We choose a generalised principal series vector
$r=(r-1)+1$
 partition. We choose a generalised principal series vector 
 $$ \begin{align*} f_s\in \mathcal{I}_{r-1,1}(s):=\mathrm{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}|\det|^{s}\boxplus |.|^{-(r-1)s},\quad s\in \mathbb{C}, \end{align*} $$
$$ \begin{align*} f_s\in \mathcal{I}_{r-1,1}(s):=\mathrm{Ind}_{P(\mathbb{A})}^{G(\mathbb{A})}|\det|^{s}\boxplus |.|^{-(r-1)s},\quad s\in \mathbb{C}, \end{align*} $$
by
 $$ \begin{align} f_s(g)=f_{s,\Phi}(g):=\int_{\mathbb{A}^\times}\Phi(te_rg)|\det(tg)|^sd^\times t, \end{align} $$
$$ \begin{align} f_s(g)=f_{s,\Phi}(g):=\int_{\mathbb{A}^\times}\Phi(te_rg)|\det(tg)|^sd^\times t, \end{align} $$
where 
 $\Phi \in \mathcal {S}(\mathbb {A}^r)$
 is a Schwartz–Bruhat, factorisable function and
$\Phi \in \mathcal {S}(\mathbb {A}^r)$
 is a Schwartz–Bruhat, factorisable function and 
 $e_r=(0,\dots ,0,1)\in \mathbb {A}^r$
. The integral in equation (2.2) converges for
$e_r=(0,\dots ,0,1)\in \mathbb {A}^r$
. The integral in equation (2.2) converges for 
 $\Re (s)>1/r$
 and then can be extended meromorphically to the whole complex plane. By
$\Re (s)>1/r$
 and then can be extended meromorphically to the whole complex plane. By 
 $\hat {\Phi }$
, we denote Fourier transform of
$\hat {\Phi }$
, we denote Fourier transform of 
 $\Phi $
 that is defined by
$\Phi $
 that is defined by 
 $$ \begin{align*}\hat{\Phi}(x):=\int_{\mathbb{A}^r}\Phi(u)\psi_0(x_1u_1+\dots++x_ru_r)du.\end{align*} $$
$$ \begin{align*}\hat{\Phi}(x):=\int_{\mathbb{A}^r}\Phi(u)\psi_0(x_1u_1+\dots++x_ru_r)du.\end{align*} $$
We abbreviate 
 $f_{s,\hat {\Phi }}$
 as
$f_{s,\hat {\Phi }}$
 as 
 $\hat {f}_s$
. We record the following transformation property of
$\hat {f}_s$
. We record the following transformation property of 
 $f_s$
, which can be seen from equation (2.2):
$f_s$
, which can be seen from equation (2.2): 
 $$ \begin{align} f_s\left[\begin{pmatrix}h&\\&1\end{pmatrix}g\right]=|\det(h)|^sf_s(g),\quad h\in \mathrm{GL}_{r-1}(\mathbb{A}),g\in G(\mathbb{A}). \end{align} $$
$$ \begin{align} f_s\left[\begin{pmatrix}h&\\&1\end{pmatrix}g\right]=|\det(h)|^sf_s(g),\quad h\in \mathrm{GL}_{r-1}(\mathbb{A}),g\in G(\mathbb{A}). \end{align} $$
Finally, we define the maximal Eisenstein series associated to 
 $f_s$
 by
$f_s$
 by 
 $$ \begin{align*} \mathrm{Eis}(f_{s})(g):=\sum_{\gamma\in P(\mathbb{Q})\backslash G(\mathbb{Q})}f_s(\gamma g). \end{align*} $$
$$ \begin{align*} \mathrm{Eis}(f_{s})(g):=\sum_{\gamma\in P(\mathbb{Q})\backslash G(\mathbb{Q})}f_s(\gamma g). \end{align*} $$
The above definition is valid for s in a right half plane and then can be extended to all of 
 $\mathbb {C}$
 by meromorphic continuation. From [Reference Jacquet and Shalika21, §4], [Reference Cogdell11, §2.3.1], we know that for
$\mathbb {C}$
 by meromorphic continuation. From [Reference Jacquet and Shalika21, §4], [Reference Cogdell11, §2.3.1], we know that for 
 $f_{s,\Phi }\in \mathcal {I}_{r-1,1}(s)$
 with some
$f_{s,\Phi }\in \mathcal {I}_{r-1,1}(s)$
 with some 
 $\Phi \in \mathcal {S}(\mathbb {A}^r)$
, the maximal parabolic Eisenstein series
$\Phi \in \mathcal {S}(\mathbb {A}^r)$
, the maximal parabolic Eisenstein series 
 $\mathrm {Eis}(f_{s,\Phi })$
 has at most simple poles at
$\mathrm {Eis}(f_{s,\Phi })$
 has at most simple poles at 
 $s=0$
 and
$s=0$
 and 
 $s=1$
. The residues at these poles are independent of g.
$s=1$
. The residues at these poles are independent of g.
 Let 
 $\tilde {P}$
 be the maximal parabolic subgroup in G attached to the partition
$\tilde {P}$
 be the maximal parabolic subgroup in G attached to the partition 
 $r=1+(r-1)$
 (the associate parabolic to P). We can similarly construct an associated Eisenstein series from a vector
$r=1+(r-1)$
 (the associate parabolic to P). We can similarly construct an associated Eisenstein series from a vector 
 $\tilde {f}_s\in \mathcal {I}_{1,r-1}(s)$
 defined analogously. All of the properties of an Eisenstein series associated to P hold analogously for the same associated to
$\tilde {f}_s\in \mathcal {I}_{1,r-1}(s)$
 defined analogously. All of the properties of an Eisenstein series associated to P hold analogously for the same associated to 
 $\tilde {P}$
.
$\tilde {P}$
.
2.5 Genericity and Kirillov model
 We briefly review the Whittaker and Kirillov models of a generic representation of G over a local field; see [Reference Jacquet16] for details. In this subsection, we only work locally, without mentioning the underlying local field. Fix a nondegenerate additive character 
 $\psi $
 of
$\psi $
 of 
 $N<G$
. Consider the space of Whittaker functions on G by
$N<G$
. Consider the space of Whittaker functions on G by 
 $$ \begin{align*}\mathcal{W}(G):=\left\lbrace W\in C^\infty(G)\middle| \begin{aligned} & W(ng)=\psi(n)W(g),n\in N, g\in G;\\& W \text{ grows at most polynomially in }g \end{aligned}\right\rbrace,\end{align*} $$
$$ \begin{align*}\mathcal{W}(G):=\left\lbrace W\in C^\infty(G)\middle| \begin{aligned} & W(ng)=\psi(n)W(g),n\in N, g\in G;\\& W \text{ grows at most polynomially in }g \end{aligned}\right\rbrace,\end{align*} $$
on which G acts by right translation.
 We call an irreducible representation 
 $\pi $
 of G generic if there exists a G-equivariant embedding
$\pi $
 of G generic if there exists a G-equivariant embedding 
 $\pi \hookrightarrow \mathcal {W}(G)$
. For generic
$\pi \hookrightarrow \mathcal {W}(G)$
. For generic 
 $\pi $
, we identify
$\pi $
, we identify 
 $\pi $
 with its image in
$\pi $
 with its image in 
 $\mathcal {W}(G)$
, which we call the Whittaker model of
$\mathcal {W}(G)$
, which we call the Whittaker model of 
 $\pi $
 under this embedding.
$\pi $
 under this embedding.
 It is known (for example, see [Reference Jacquet16] for the case of an archimedean local field) from the theory of the Kirillov model that if 
 $\pi $
 is an irreducible generic representation of
$\pi $
 is an irreducible generic representation of 
 $\mathrm {PGL}(r)$
, then
$\mathrm {PGL}(r)$
, then 
 $$ \begin{align*}\pi\ni W\mapsto \left\lbrace\mathrm{GL}(r-1)\ni g\mapsto W\left[\begin{pmatrix}g&\\&1\end{pmatrix}\right]\right\rbrace\end{align*} $$
$$ \begin{align*}\pi\ni W\mapsto \left\lbrace\mathrm{GL}(r-1)\ni g\mapsto W\left[\begin{pmatrix}g&\\&1\end{pmatrix}\right]\right\rbrace\end{align*} $$
is injective and the space of the restricted Whittaker functions in the right-hand side, which is called the Kirillov model, is isomorphic to 
 $\pi $
 as well. It is also known that the space
$\pi $
 as well. It is also known that the space 
 $C_c^\infty (N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R}),\psi )$
 is contained in
$C_c^\infty (N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R}),\psi )$
 is contained in 
 $\pi $
 under this realisation; see [Reference Jacquet16, Proposition 5].
$\pi $
 under this realisation; see [Reference Jacquet16, Proposition 5].
 If 
 $\pi $
 is also unitary, then we can give a unitary structure on its Whittaker model by the inner product
$\pi $
 is also unitary, then we can give a unitary structure on its Whittaker model by the inner product 
 $$ \begin{align*}\langle W_1,W_2\rangle :=\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}W_1\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\overline{W_2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]}dh;\end{align*} $$
$$ \begin{align*}\langle W_1,W_2\rangle :=\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}W_1\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\overline{W_2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]}dh;\end{align*} $$
that is, we have 
 $\langle W_1(.g),W_2(.g)\rangle =\langle W_1,W_2\rangle $
 for
$\langle W_1(.g),W_2(.g)\rangle =\langle W_1,W_2\rangle $
 for 
 $g\in G$
.
$g\in G$
.
2.6 Zeta integrals
 We review the theory of the 
 $\mathrm {GL}(r)\times \mathrm {GL}(r)$
 Rankin–Selberg integral. We refer to [Reference Cogdell11] for details. We choose
$\mathrm {GL}(r)\times \mathrm {GL}(r)$
 Rankin–Selberg integral. We refer to [Reference Cogdell11] for details. We choose 
 $\phi _0\in \pi _0$
 with a factorisable Whittaker function
$\phi _0\in \pi _0$
 with a factorisable Whittaker function 
 $W_{0}$
 and a maximal Eisenstein series
$W_{0}$
 and a maximal Eisenstein series 
 $\mathrm {Eis}(f_s)$
 attached to some vector
$\mathrm {Eis}(f_s)$
 attached to some vector 
 $f_s$
 in the generalised Principal series
$f_s$
 in the generalised Principal series 
 $\mathcal {I}_{r-1,1}(s)$
, as defined in Section 2.4. Let
$\mathcal {I}_{r-1,1}(s)$
, as defined in Section 2.4. Let 
 $\pi \in \hat {\mathbb {X}}$
 and
$\pi \in \hat {\mathbb {X}}$
 and 
 $\phi \in \pi $
 be any automorphic form. One defines the global Rankin–Selberg integral [Reference Cogdell11, §2.3.2] of
$\phi \in \pi $
 be any automorphic form. One defines the global Rankin–Selberg integral [Reference Cogdell11, §2.3.2] of 
 $\phi _0$
 and
$\phi _0$
 and 
 $\phi $
 by
$\phi $
 by 
 $$ \begin{align*} \Psi(f_s,\phi_0,\bar{\phi}):=\int_{G(\mathbb{Q})\backslash G(\mathbb{A})}\phi_0(g)\overline{\phi(g)}\mathrm{Eis}(f_s)(g)dg, \end{align*} $$
$$ \begin{align*} \Psi(f_s,\phi_0,\bar{\phi}):=\int_{G(\mathbb{Q})\backslash G(\mathbb{A})}\phi_0(g)\overline{\phi(g)}\mathrm{Eis}(f_s)(g)dg, \end{align*} $$
where 
 $s\in \mathbb {C}$
 is such that
$s\in \mathbb {C}$
 is such that 
 $\mathrm {Eis}(f_s)$
 is regular. As
$\mathrm {Eis}(f_s)$
 is regular. As 
 $\phi _0$
 is cuspidal, the above integral converges absolutely. For s in a right half plane performing a standard unfolding-folding, one gets
$\phi _0$
 is cuspidal, the above integral converges absolutely. For s in a right half plane performing a standard unfolding-folding, one gets 
 $$ \begin{align*}\Psi(f_s,\phi_0,\bar{\phi})=\int_{P(\mathbb{Q})\backslash G(\mathbb{A})}\phi_0(g)\overline{\phi(g)}f_s(g)dg.\end{align*} $$
$$ \begin{align*}\Psi(f_s,\phi_0,\bar{\phi})=\int_{P(\mathbb{Q})\backslash G(\mathbb{A})}\phi_0(g)\overline{\phi(g)}f_s(g)dg.\end{align*} $$
The above integral representation of 
 $\Psi (f_s,\phi _0,\bar {\phi })$
 has a meromorphic continuation to all
$\Psi (f_s,\phi _0,\bar {\phi })$
 has a meromorphic continuation to all 
 $s\in \mathbb {C}$
. It is known that if
$s\in \mathbb {C}$
. It is known that if 
 $\pi $
 and
$\pi $
 and 
 $\pi _0$
 are cuspidal, then the only possible poles of
$\pi _0$
 are cuspidal, then the only possible poles of 
 $\Psi $
 are simple and can occur at
$\Psi $
 are simple and can occur at 
 $\Re (s)=0,1$
.
$\Re (s)=0,1$
.
 We may choose 
 $f_s$
 to be factorisable, which can be done by choosing
$f_s$
 to be factorisable, which can be done by choosing 
 $\Phi \in \mathcal {S}(\mathbb {A}^r)$
, as in Section 2.4, to be factorisable. Furthermore, if we assume that
$\Phi \in \mathcal {S}(\mathbb {A}^r)$
, as in Section 2.4, to be factorisable. Furthermore, if we assume that 
 $\pi $
 is generic and
$\pi $
 is generic and 
 $\phi \in \pi $
 has a factorisable Whittaker function
$\phi \in \pi $
 has a factorisable Whittaker function 
 $W_\phi $
, then for all
$W_\phi $
, then for all 
 $s\in \mathbb {C}$
, the global zeta integral is Eulerian – that is, factors in local zeta integrals
$s\in \mathbb {C}$
, the global zeta integral is Eulerian – that is, factors in local zeta integrals 
 $$ \begin{align*} \Psi(f_s,\phi,\bar{\phi})=\Psi_\infty(f_{s,\infty},W_{0,\infty},\overline{W_{\phi,\infty}})\prod_{p<\infty}\Psi_p(f_{s,p},W_{0,p},\overline{W_{\phi,p}}), \end{align*} $$
$$ \begin{align*} \Psi(f_s,\phi,\bar{\phi})=\Psi_\infty(f_{s,\infty},W_{0,\infty},\overline{W_{\phi,\infty}})\prod_{p<\infty}\Psi_p(f_{s,p},W_{0,p},\overline{W_{\phi,p}}), \end{align*} $$
where the local zeta integral 
 $\Psi _\infty $
 is defined by
$\Psi _\infty $
 is defined by 
 $$ \begin{align*} \Psi_\infty(f_{s,\infty},W_{0,\infty}, \overline{W_{\phi,\infty}}):&=\int_{N(\mathbb{R})\backslash G(\mathbb{R})}W_{0,\infty}(g)\overline{W_{\phi,\infty}(g)}f_{s,\infty}(g) dg\\ &=\int_{N(\mathbb{R})\backslash \mathrm{GL}_r(\mathbb{R})}W_{0,\infty}(g)\overline{W_{\phi,\infty}(g)}\Phi_{\infty}(e_rg)|\det(g)|^sdg, \end{align*} $$
$$ \begin{align*} \Psi_\infty(f_{s,\infty},W_{0,\infty}, \overline{W_{\phi,\infty}}):&=\int_{N(\mathbb{R})\backslash G(\mathbb{R})}W_{0,\infty}(g)\overline{W_{\phi,\infty}(g)}f_{s,\infty}(g) dg\\ &=\int_{N(\mathbb{R})\backslash \mathrm{GL}_r(\mathbb{R})}W_{0,\infty}(g)\overline{W_{\phi,\infty}(g)}\Phi_{\infty}(e_rg)|\det(g)|^sdg, \end{align*} $$
for s being in some right half plane and then can be meromorphically continued to the whole complex plane. Similarly, the nonarchimedean zeta integral 
 $\Psi _p$
 is defined by replacing
$\Psi _p$
 is defined by replacing 
 $\infty $
 with p and
$\infty $
 with p and 
 $\mathbb {R}$
 with
$\mathbb {R}$
 with 
 $\mathbb {Q}_p$
. It is known that if
$\mathbb {Q}_p$
. It is known that if 
 $\pi _{0,p}$
 and
$\pi _{0,p}$
 and 
 $\pi _p$
 are unitary and
$\pi _p$
 are unitary and 
 $\vartheta _0$
 and
$\vartheta _0$
 and 
 $\vartheta $
 tempered, respectively, then the above integral representation of
$\vartheta $
 tempered, respectively, then the above integral representation of 
 $\Psi _p$
 is valid for
$\Psi _p$
 is valid for 
 $\Re (s)\ge 1/2$
 if
$\Re (s)\ge 1/2$
 if 
 $\vartheta +\vartheta _0 < 1/2$
 and
$\vartheta +\vartheta _0 < 1/2$
 and 
 $p\le \infty $
 (this can be seen in the archimedean case from the bounds of the Whittaker functions in Lemma 7.2).
$p\le \infty $
 (this can be seen in the archimedean case from the bounds of the Whittaker functions in Lemma 7.2).
 We record the local functional equation satisfied by 
 $\Psi _\infty $
. From [Reference Cogdell11, Theorem 3.2], we have
$\Psi _\infty $
. From [Reference Cogdell11, Theorem 3.2], we have 
 $$ \begin{align*} \int_{N(\mathbb{R})\backslash \mathrm{GL}_r(\mathbb{R})} &\tilde{W}_{0,\infty}(g){\tilde{W}_{\phi,\infty}(g)}\hat{\Phi}_{\infty}(e_rg)|\det(g)|^{1-s}dg\\&\quad=\gamma_\infty(s,\pi_{0,\infty}\otimes{\pi}_\infty,\psi)\int_{N(\mathbb{R})\backslash \mathrm{GL}_r(\mathbb{R})}W_{0,\infty}(g){W_{\phi,\infty}(g)}\Phi_{\infty}(e_rg)|\det(g)|^sdg. \end{align*} $$
$$ \begin{align*} \int_{N(\mathbb{R})\backslash \mathrm{GL}_r(\mathbb{R})} &\tilde{W}_{0,\infty}(g){\tilde{W}_{\phi,\infty}(g)}\hat{\Phi}_{\infty}(e_rg)|\det(g)|^{1-s}dg\\&\quad=\gamma_\infty(s,\pi_{0,\infty}\otimes{\pi}_\infty,\psi)\int_{N(\mathbb{R})\backslash \mathrm{GL}_r(\mathbb{R})}W_{0,\infty}(g){W_{\phi,\infty}(g)}\Phi_{\infty}(e_rg)|\det(g)|^sdg. \end{align*} $$
Here 
 $\tilde {W}$
 denotes the contragredient Whittaker function of W defined by
$\tilde {W}$
 denotes the contragredient Whittaker function of W defined by 
 $\tilde {W}(g):=W(wg^{-t})$
, where w is the long Weyl element in
$\tilde {W}(g):=W(wg^{-t})$
, where w is the long Weyl element in 
 $G(\mathbb {R})$
 and
$G(\mathbb {R})$
 and 
 $\gamma _\infty (.,.,\psi )$
 denotes the local archimedean
$\gamma _\infty (.,.,\psi )$
 denotes the local archimedean 
 $\gamma $
-factor. As the additive character
$\gamma $
-factor. As the additive character 
 $\psi $
 is fixed throughout the paper, we drop
$\psi $
 is fixed throughout the paper, we drop 
 $\psi $
 from the notation of
$\psi $
 from the notation of 
 $\gamma _\infty $
. Folding the above integrals over
$\gamma _\infty $
. Folding the above integrals over 
 $\mathbb {R}^\times $
, we can also rewrite the local functional equation as
$\mathbb {R}^\times $
, we can also rewrite the local functional equation as 
 $$ \begin{align} \Psi_\infty(\hat{f}_{1-s,\infty}, \tilde{W}_{0,\infty},\overline{\tilde{W}_{\infty}})=\gamma_\infty(s,\pi_{0,\infty}\otimes\bar{\pi}_{\infty})\Psi_\infty(f_{s,\infty},W_{0,\infty},\overline{W_{\infty}}), \end{align} $$
$$ \begin{align} \Psi_\infty(\hat{f}_{1-s,\infty}, \tilde{W}_{0,\infty},\overline{\tilde{W}_{\infty}})=\gamma_\infty(s,\pi_{0,\infty}\otimes\bar{\pi}_{\infty})\Psi_\infty(f_{s,\infty},W_{0,\infty},\overline{W_{\infty}}), \end{align} $$
for any 
 $W_\infty \in \pi _\infty $
, and f is related to
$W_\infty \in \pi _\infty $
, and f is related to 
 $\Phi $
 according to equation (2.2). From the definition of the
$\Phi $
 according to equation (2.2). From the definition of the 
 $\gamma $
-factors (see [Reference Cogdell11, p. 120]), one can check that
$\gamma $
-factors (see [Reference Cogdell11, p. 120]), one can check that 
 $|\gamma _\infty (1/2,\Pi )|=1$
 if
$|\gamma _\infty (1/2,\Pi )|=1$
 if 
 $\Pi $
 is unitary.
$\Pi $
 is unitary.
2.7 Plancherel formula
We refer to [Reference Michel and Venkatesh27, §2.2] for a more detailed discussion of the Plancherel formula.
 Recall the automorphic Plancherel measure 
 $d\mu _{\mathrm {aut}}$
 on
$d\mu _{\mathrm {aut}}$
 on 
 $\hat {\mathbb {X}}$
 from Section 2.3. Let
$\hat {\mathbb {X}}$
 from Section 2.3. Let 
 $\phi _1,\phi _2\in C^\infty (\mathbb {X})$
 with rapid decay at all cusps. We record a Plancherel formula (i.e., a spectral decomposition) of the inner product between
$\phi _1,\phi _2\in C^\infty (\mathbb {X})$
 with rapid decay at all cusps. We record a Plancherel formula (i.e., a spectral decomposition) of the inner product between 
 $\phi _1$
 and
$\phi _1$
 and 
 $\phi _2$
,
$\phi _2$
, 
 $$ \begin{align} \langle \phi_1,\phi_2\rangle = \int_{\hat{\mathbb{X}}}\sum_{\phi\in\mathcal{B}(\pi)}\langle \phi_1,\phi\rangle\langle \phi,\phi_2\rangle d\mu_{\mathrm{aut}}(\pi), \end{align} $$
$$ \begin{align} \langle \phi_1,\phi_2\rangle = \int_{\hat{\mathbb{X}}}\sum_{\phi\in\mathcal{B}(\pi)}\langle \phi_1,\phi\rangle\langle \phi,\phi_2\rangle d\mu_{\mathrm{aut}}(\pi), \end{align} $$
where 
 $\mathcal {B}(\pi )$
 is an orthonormal basis of
$\mathcal {B}(\pi )$
 is an orthonormal basis of 
 $\pi $
 and
$\pi $
 and 
 $$ \begin{align*}\langle f_1,f_2\rangle:=\int_{\mathbb{X}}f_1(g)\overline{f_2(g)}dg.\end{align*} $$
$$ \begin{align*}\langle f_1,f_2\rangle:=\int_{\mathbb{X}}f_1(g)\overline{f_2(g)}dg.\end{align*} $$
The identity equation (2.5) is independent of choice of 
 $\mathcal {B}(\pi )$
.
$\mathcal {B}(\pi )$
.
 Rapid decay properties of 
 $\phi _i$
 imply that all the inner products on the right-hand side of equation (2.5) converge. One can show by the trace class property in
$\phi _i$
 imply that all the inner products on the right-hand side of equation (2.5) converge. One can show by the trace class property in 
 $L^2(\mathbb {X})$
 of some inverse Laplacian that the right-hand side of equation (2.5) converges absolutely.
$L^2(\mathbb {X})$
 of some inverse Laplacian that the right-hand side of equation (2.5) converges absolutely.
2.8 Spectral weights
 Let 
 $\pi ,\pi _0\in \hat {\mathbb {X}}_{\mathrm {gen}}$
 with
$\pi ,\pi _0\in \hat {\mathbb {X}}_{\mathrm {gen}}$
 with 
 $W_{0,\infty }\in \pi _{0,\infty }$
 and
$W_{0,\infty }\in \pi _{0,\infty }$
 and 
 $f_s\in \mathcal {I}_{r-1,1}(s)$
. We define the spectral weight
$f_s\in \mathcal {I}_{r-1,1}(s)$
. We define the spectral weight 
 $$ \begin{align} J({f_{s,\infty}W_{0,\infty}},\pi_\infty):=\sum_{W_\infty\in\mathcal{B}(\pi_\infty)}|\Psi_\infty(f_{s,\infty},W_{0,\infty}, \overline{W_\infty})|^2. \end{align} $$
$$ \begin{align} J({f_{s,\infty}W_{0,\infty}},\pi_\infty):=\sum_{W_\infty\in\mathcal{B}(\pi_\infty)}|\Psi_\infty(f_{s,\infty},W_{0,\infty}, \overline{W_\infty})|^2. \end{align} $$
Here 
 $\mathcal {B}(\pi _\infty )$
 is an orthonormal basis of
$\mathcal {B}(\pi _\infty )$
 is an orthonormal basis of 
 $\pi _\infty $
. The sum in the right-hand side of equation (2.6) is absolutely convergent and is independent of choice of
$\pi _\infty $
. The sum in the right-hand side of equation (2.6) is absolutely convergent and is independent of choice of 
 $\mathcal {B}(\pi _\infty )$
; see [Reference Baruch and Mao5, Appendix 4].
$\mathcal {B}(\pi _\infty )$
; see [Reference Baruch and Mao5, Appendix 4].
 The definition of J involves only the archimedean components of the representations and functions. In fact, one can define J for any irreducible generic unitary representation 
 $\sigma $
 of
$\sigma $
 of 
 $G(\mathbb {R})$
 and
$G(\mathbb {R})$
 and 
 $\beta \in C^\infty (N(\mathbb {R})\backslash G(\mathbb {R}),\psi _\infty )$
 with sufficient decay at infinity, by
$\beta \in C^\infty (N(\mathbb {R})\backslash G(\mathbb {R}),\psi _\infty )$
 with sufficient decay at infinity, by 
 $$ \begin{align*} J(\beta,\sigma):=\sum_{W\in\mathcal{B}(\sigma)}\left|\int_{N(\mathbb{R})\backslash G(\mathbb{R})}\beta(g)\overline{W(g)}dg\right|^2. \end{align*} $$
$$ \begin{align*} J(\beta,\sigma):=\sum_{W\in\mathcal{B}(\sigma)}\left|\int_{N(\mathbb{R})\backslash G(\mathbb{R})}\beta(g)\overline{W(g)}dg\right|^2. \end{align*} $$
Then, using the Whittaker–Plancherel formula (see [Reference Wallach33, Chapter 15]), one can obtain that
 $$ \begin{align} \int_{\widehat{G(\mathbb{R})}}J(\beta,\sigma)d\mu_{\mathrm{loc}}(\sigma)=\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|\beta(g)|^2dg=:\|\beta\|^2_{L^2(N(\mathbb{R})\backslash G(\mathbb{R}))}. \end{align} $$
$$ \begin{align} \int_{\widehat{G(\mathbb{R})}}J(\beta,\sigma)d\mu_{\mathrm{loc}}(\sigma)=\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|\beta(g)|^2dg=:\|\beta\|^2_{L^2(N(\mathbb{R})\backslash G(\mathbb{R}))}. \end{align} $$
Here 
 $\widehat {G(\mathbb {R})}$
 is the tempered unitary dual of
$\widehat {G(\mathbb {R})}$
 is the tempered unitary dual of 
 $G(\mathbb {R})$
 equipped with the local Plancherel measure
$G(\mathbb {R})$
 equipped with the local Plancherel measure 
 $d\mu _{\mathrm {loc}}$
 compatible with the chosen Haar measure on
$d\mu _{\mathrm {loc}}$
 compatible with the chosen Haar measure on 
 $G(\mathbb {R})$
 (see [Reference Brumley and Milićević6, §4.13.2]).
$G(\mathbb {R})$
 (see [Reference Brumley and Milićević6, §4.13.2]).
2.9 Analytic newvectors
 Analytic newvectors are certain approximate archimedean analogues of the classical nonarchimedean newvectors pioneered by Casselman [Reference Casselmann8] and Jacquet–Piatetski-Shapiro–Shalika [Reference Jacquet, Piatetski-Shapiro and Shalika20]. Let 
 $K_0(p^N)\subset \mathrm {PGL}_r(\mathbb {Z}_p)$
 be the subgroup of matrices whose last rows are congruent to
$K_0(p^N)\subset \mathrm {PGL}_r(\mathbb {Z}_p)$
 be the subgroup of matrices whose last rows are congruent to 
 $(0,\dots ,0,*)\mod p^N$
. Let
$(0,\dots ,0,*)\mod p^N$
. Let 
 $\sigma $
 be a generic irreducible representation of
$\sigma $
 be a generic irreducible representation of 
 $\mathrm {PGL}_r(\mathbb {Q}_p)$
, and let
$\mathrm {PGL}_r(\mathbb {Q}_p)$
, and let 
 $N_0$
 be the minimal nonnegative integer such that
$N_0$
 be the minimal nonnegative integer such that 
 $\sigma $
 contains a nonzero vector v that is invariant by
$\sigma $
 contains a nonzero vector v that is invariant by 
 $K_0(p^{N_0})$
. Let
$K_0(p^{N_0})$
. Let 
 $C(\sigma )$
 be the conductor of
$C(\sigma )$
 be the conductor of 
 $\sigma $
, which can be defined in terms of the local gamma factor attached to
$\sigma $
, which can be defined in terms of the local gamma factor attached to 
 $\sigma $
. Then the main theorem of [Reference Casselmann8, Reference Jacquet, Piatetski-Shapiro and Shalika20] states that the real number
$\sigma $
. Then the main theorem of [Reference Casselmann8, Reference Jacquet, Piatetski-Shapiro and Shalika20] states that the real number 
 $p^{N_0}$
 is equal to
$p^{N_0}$
 is equal to 
 $C(\sigma )$
. One calls such a v a newvector of
$C(\sigma )$
. One calls such a v a newvector of 
 $\sigma $
. In [Reference Jacquet, Piatetski-Shapiro and Shalika20], the authors call newvectors essential vectors; and in some literature, the authors call them newforms.
$\sigma $
. In [Reference Jacquet, Piatetski-Shapiro and Shalika20], the authors call newvectors essential vectors; and in some literature, the authors call them newforms.
 In [Reference Jana and Nelson19] the authors produce an approximate analogue of this theorem at the archimedean place. Let 
 $X>1$
 be tending to infinity and
$X>1$
 be tending to infinity and 
 $\tau>0$
 be sufficiently small but fixed. We define an approximate congruence subgroup
$\tau>0$
 be sufficiently small but fixed. We define an approximate congruence subgroup 
 $K_0(X,\tau )\subseteq \mathrm {PGL}_r(\mathbb {R})$
, which is an archimedean analogue of the subgroup
$K_0(X,\tau )\subseteq \mathrm {PGL}_r(\mathbb {R})$
, which is an archimedean analogue of the subgroup 
 $K_0(p^N)$
, in the following way: it is the image in
$K_0(p^N)$
, in the following way: it is the image in 
 $\mathrm {PGL}_r(\mathbb {R})$
 of
$\mathrm {PGL}_r(\mathbb {R})$
 of 
 $$ \begin{align} \left\{\begin{pmatrix} a&b\\c&d \end{pmatrix}\in\mathrm{GL}_{r}(\mathbb{R})\middle| \begin{aligned} & a \in \mathrm{GL}_{r-1}(\mathbb{R}),\quad |a - 1_{r-1}| < \tau, \quad |b|<\tau, \\ & d \in \mathrm{GL}_1(\mathbb{R}),\quad |c|<\frac{\tau}{X}, \quad |d-1|<\tau \end{aligned} \right\}. \end{align} $$
$$ \begin{align} \left\{\begin{pmatrix} a&b\\c&d \end{pmatrix}\in\mathrm{GL}_{r}(\mathbb{R})\middle| \begin{aligned} & a \in \mathrm{GL}_{r-1}(\mathbb{R}),\quad |a - 1_{r-1}| < \tau, \quad |b|<\tau, \\ & d \in \mathrm{GL}_1(\mathbb{R}),\quad |c|<\frac{\tau}{X}, \quad |d-1|<\tau \end{aligned} \right\}. \end{align} $$
Here, 
 $|.|$
 denotes an arbitrary fixed norm on the corresponding spaces of matrices. Fix
$|.|$
 denotes an arbitrary fixed norm on the corresponding spaces of matrices. Fix 
 $0\le \vartheta <1/2$
. Then in [Reference Jana and Nelson19, Theorem 1], the authors show that for all
$0\le \vartheta <1/2$
. Then in [Reference Jana and Nelson19, Theorem 1], the authors show that for all 
 $\epsilon>0$
, there is a
$\epsilon>0$
, there is a 
 $\tau>0$
 such that for all generic irreducible unitary
$\tau>0$
 such that for all generic irreducible unitary 
 $\vartheta $
-tempered representation
$\vartheta $
-tempered representation 
 $\pi $
 of
$\pi $
 of 
 $\mathrm {PGL}_r(\mathbb {R})$
, there is a unit vector
$\mathrm {PGL}_r(\mathbb {R})$
, there is a unit vector 
 $v\in \pi $
 such that
$v\in \pi $
 such that 
 $$ \begin{align*}\|\pi(g)v-v\|_\pi<\epsilon\quad \text{ for all } g\in K_0(C(\pi),\tau),\end{align*} $$
$$ \begin{align*}\|\pi(g)v-v\|_\pi<\epsilon\quad \text{ for all } g\in K_0(C(\pi),\tau),\end{align*} $$
where 
 $C(\pi )$
 is the analytic conductor of
$C(\pi )$
 is the analytic conductor of 
 $\pi $
. We call such a vector v an analytic newvector of
$\pi $
. We call such a vector v an analytic newvector of 
 $\pi $
.
$\pi $
.
 The authors also prove that [Reference Jana and Nelson19, Theorem 7] any unit vector v in the Kirillov model of 
 $\pi $
 that can be given by a function in
$\pi $
 that can be given by a function in 
 $C_c^\infty (N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R}),\psi _\infty )^{\mathrm {O}_{r-1}(\mathbb {R})}$
 is a newvector. Moreover, v can be chosen in a way such that if W is the image of v in the corresponding Whittaker model, then also
$C_c^\infty (N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R}),\psi _\infty )^{\mathrm {O}_{r-1}(\mathbb {R})}$
 is a newvector. Moreover, v can be chosen in a way such that if W is the image of v in the corresponding Whittaker model, then also 
 $$ \begin{align*}|W(g)-W(1)|<\epsilon\end{align*} $$
$$ \begin{align*}|W(g)-W(1)|<\epsilon\end{align*} $$
for all 
 $g\in K_0(C(\pi ),\tau )$
 and
$g\in K_0(C(\pi ),\tau )$
 and 
 $W(1)\asymp 1$
.
$W(1)\asymp 1$
.
2.10 Main theorem
Theorem 2.1. Let 
 $r\ge 3$
 and X be tending to infinity. Let
$r\ge 3$
 and X be tending to infinity. Let 
 $\pi _0$
 be a fixed cuspidal representation in
$\pi _0$
 be a fixed cuspidal representation in 
 $\hat {\mathbb {X}}$
 such that
$\hat {\mathbb {X}}$
 such that 
 $\pi _{0,\infty }$
 is
$\pi _{0,\infty }$
 is 
 $\vartheta _0$
-tempered for some
$\vartheta _0$
-tempered for some 
 $0\le \vartheta _0< 1/(r^2+1)$
. We define a weight function
$0\le \vartheta _0< 1/(r^2+1)$
. We define a weight function 
 $$ \begin{align*}J_X:\hat{\mathbb{X}}_{\mathrm{gen}}\to\mathbb{R}_{\ge 0},\end{align*} $$
$$ \begin{align*}J_X:\hat{\mathbb{X}}_{\mathrm{gen}}\to\mathbb{R}_{\ge 0},\end{align*} $$
as in equation (4.5), which satisfies the following properties:
- 
○  $J_X(\pi )$
 only depends on the archimedean component of $J_X(\pi )$
 only depends on the archimedean component of $\pi $
 (with an abuse of notation, we write $\pi $
 (with an abuse of notation, we write $J_X(\pi )=J_X(\pi _\infty )$
). $J_X(\pi )=J_X(\pi _\infty )$
).
- 
○ If  $\pi _\infty $
 is $\pi _\infty $
 is $\vartheta $
-tempered such that $\vartheta $
-tempered such that $\vartheta +\vartheta _0<1/2$
 and $\vartheta +\vartheta _0<1/2$
 and $C(\pi _\infty )<X$
, then $C(\pi _\infty )<X$
, then $J_X(\pi _\infty )\gg _{\pi _0} 1$
. $J_X(\pi _\infty )\gg _{\pi _0} 1$
.
- 
○  $\int _{\widehat {G(\mathbb {R})}}J_X(\pi _\infty )d\mu _{\mathrm {loc}}(\pi _\infty )=X^{r-1}$
. $\int _{\widehat {G(\mathbb {R})}}J_X(\pi _\infty )d\mu _{\mathrm {loc}}(\pi _\infty )=X^{r-1}$
.
And finally, we have
 $$ \begin{align*}\int_{\hat{\mathbb{X}}_{\mathrm{gen}}}\frac{|L(1/2,\tilde{\pi}\otimes \pi_0)|^2}{\ell(\pi)}{J_X(\pi)}d\mu_{\mathrm{aut}}(\pi)= X^{r-1}\left(r\frac{\zeta(r/2)^2}{\zeta(r)}L(1,\pi_0,\mathrm{Ad})\log X + O_{\pi_0}(1)\right),\end{align*} $$
$$ \begin{align*}\int_{\hat{\mathbb{X}}_{\mathrm{gen}}}\frac{|L(1/2,\tilde{\pi}\otimes \pi_0)|^2}{\ell(\pi)}{J_X(\pi)}d\mu_{\mathrm{aut}}(\pi)= X^{r-1}\left(r\frac{\zeta(r/2)^2}{\zeta(r)}L(1,\pi_0,\mathrm{Ad})\log X + O_{\pi_0}(1)\right),\end{align*} $$
where 
 $\tilde {\pi }$
 is the contragredient of
$\tilde {\pi }$
 is the contragredient of 
 $\pi $
. Here
$\pi $
. Here 
 $\ell (\pi )$
 is defined as in equation (4.3) and only depends on the nonarchimedean data of
$\ell (\pi )$
 is defined as in equation (4.3) and only depends on the nonarchimedean data of 
 $\pi $
.
$\pi $
.
If 
 $\pi $
 is cuspidal, then
$\pi $
 is cuspidal, then 
 $\ell (\pi )\asymp L(1,\pi ,\mathrm {Ad})$
 with an absolute implied constant and thus
$\ell (\pi )\asymp L(1,\pi ,\mathrm {Ad})$
 with an absolute implied constant and thus 
 $\ell (\pi ) \ll _\epsilon C(\pi )^\epsilon $
, which follows from [Reference Li25].
$\ell (\pi ) \ll _\epsilon C(\pi )^\epsilon $
, which follows from [Reference Li25].
 We note that if 
 $\pi \in \hat {\mathbb {X}}_{\mathrm {gen}}$
, then
$\pi \in \hat {\mathbb {X}}_{\mathrm {gen}}$
, then 
 $\pi _\infty $
 is
$\pi _\infty $
 is 
 $\vartheta $
-tempered for
$\vartheta $
-tempered for 
 $\vartheta <1/2-1/(r^2+1)$
, which is a result in [Reference Müller and Speh26]. Thus the
$\vartheta <1/2-1/(r^2+1)$
, which is a result in [Reference Müller and Speh26]. Thus the 
 $\vartheta _0$
-temperedness assumption of
$\vartheta _0$
-temperedness assumption of 
 $\pi _{0,\infty }$
 in Theorem 2.1 implies that
$\pi _{0,\infty }$
 in Theorem 2.1 implies that 
 $J_X(\pi )\gg 1$
 for all
$J_X(\pi )\gg 1$
 for all 
 $\pi \in \hat {\mathbb {X}}_{\mathrm {gen}}$
 with
$\pi \in \hat {\mathbb {X}}_{\mathrm {gen}}$
 with 
 $C(\pi )<X$
. Moreover, the family
$C(\pi )<X$
. Moreover, the family 
 $$ \begin{align*}\mathcal{F}_X^{\,\mathrm{gen}}:=\{\text{generic automorphic representations }\pi\text{ of }\mathrm{PGL}_r(\mathbb{Z})\text{ with }C(\pi)<X\}\end{align*} $$
$$ \begin{align*}\mathcal{F}_X^{\,\mathrm{gen}}:=\{\text{generic automorphic representations }\pi\text{ of }\mathrm{PGL}_r(\mathbb{Z})\text{ with }C(\pi)<X\}\end{align*} $$
has 
 $\ell (\pi )^{-1}$
-weighted cardinality
$\ell (\pi )^{-1}$
-weighted cardinality 
 $\asymp X^{r-1}$
. This is essentially contained in the proof of [Reference Jana and Nelson19, Theorem 9]. Hence,
$\asymp X^{r-1}$
. This is essentially contained in the proof of [Reference Jana and Nelson19, Theorem 9]. Hence, 
 $J_X$
 can be realised as a smoothened characteristic function of the
$J_X$
 can be realised as a smoothened characteristic function of the 
 $\ell (\pi )^{-1}$
-weighted family
$\ell (\pi )^{-1}$
-weighted family 
 $\mathcal {F}_X^{\,\mathrm {gen}}$
.
$\mathcal {F}_X^{\,\mathrm {gen}}$
.
Consequently, we have an immediate corollary of Theorem 2.1.
Corollary 2.2. Let 
 $\pi _0$
 be as in Theorem 2.1. Then
$\pi _0$
 be as in Theorem 2.1. Then 
 $$ \begin{align*}\sum_{\substack{{C(\pi)<X}\\{\hat{\mathbb{X}}\ni\pi\mathrm{ cuspidal}}}}\frac{|L(1/2,\pi\otimes \pi_0)|^2}{L(1,\pi,\mathrm{Ad})}\ll_{\pi_0} X^{r-1}\log X\end{align*} $$
$$ \begin{align*}\sum_{\substack{{C(\pi)<X}\\{\hat{\mathbb{X}}\ni\pi\mathrm{ cuspidal}}}}\frac{|L(1/2,\pi\otimes \pi_0)|^2}{L(1,\pi,\mathrm{Ad})}\ll_{\pi_0} X^{r-1}\log X\end{align*} $$
as X tends to infinity.
This is the sharpest possible (Lindelöf on average) second-moment estimate of the cuspidal Rankin–Selberg central L-values.
3 The Fourier expansion of maximal Eisenstein series
We recall some useful information about the Fourier expansion of maximal Eisenstein series. The computation is essentially done in [Reference Langlands24], but we extract the relevant computation for completeness.
 Let 
 $f_s$
 be a holomorphic section in the generalised principal series
$f_s$
 be a holomorphic section in the generalised principal series 
 $\mathcal {I}_{r-1,1}(s)$
 such that
$\mathcal {I}_{r-1,1}(s)$
 such that 
 $f_s$
 is constructed from a Schwartz–Bruhat function
$f_s$
 is constructed from a Schwartz–Bruhat function 
 $\Phi \in \mathcal {S}(\mathbb {A}^r)$
, as described in Section 2.4. Let
$\Phi \in \mathcal {S}(\mathbb {A}^r)$
, as described in Section 2.4. Let 
 $\mathrm {Eis}(f_s)$
 be the Eisenstein series attached to
$\mathrm {Eis}(f_s)$
 be the Eisenstein series attached to 
 $f_s$
.
$f_s$
.
 We want to understand the Fourier expansion of 
 $\mathrm {Eis}(f_s)$
. It is a straightforward calculation using the Bruhat decomposition. We sketch out the essential details for completeness. Let
$\mathrm {Eis}(f_s)$
. It is a straightforward calculation using the Bruhat decomposition. We sketch out the essential details for completeness. Let 
 $\Re (s)$
 be sufficiently large. We temporarily allow
$\Re (s)$
 be sufficiently large. We temporarily allow 
 $\psi $
 to be a possibly degenerate character of N. Then
$\psi $
 to be a possibly degenerate character of N. Then 
 $$ \begin{align} \int_{N(\mathbb{Q})\backslash N(\mathbb{A})}\mathrm{Eis}(f_s)(ng)\overline{\psi(n)}dn=\sum_{\gamma\in P(\mathbb{Q})\backslash G(\mathbb{Q})}\int_{N(\mathbb{Q})\backslash N(\mathbb{A})}f_s(\gamma ng)\overline{\psi(n)}dn. \end{align} $$
$$ \begin{align} \int_{N(\mathbb{Q})\backslash N(\mathbb{A})}\mathrm{Eis}(f_s)(ng)\overline{\psi(n)}dn=\sum_{\gamma\in P(\mathbb{Q})\backslash G(\mathbb{Q})}\int_{N(\mathbb{Q})\backslash N(\mathbb{A})}f_s(\gamma ng)\overline{\psi(n)}dn. \end{align} $$
 We start with the Bruhat decomposition of 
 $G(\mathbb {Q})$
 with respect to
$G(\mathbb {Q})$
 with respect to 
 $P(\mathbb {Q})$
. The Bruhat cells are indexed by a subset of the Weyl group, namely, the subset of Weyl elements w such that
$P(\mathbb {Q})$
. The Bruhat cells are indexed by a subset of the Weyl group, namely, the subset of Weyl elements w such that 
 $w\alpha>0$
 for all simple roots
$w\alpha>0$
 for all simple roots 
 $\alpha $
 other than
$\alpha $
 other than 
 $\alpha _0$
 that determines P.
$\alpha _0$
 that determines P.
Lemma 3.1. We define the Weyl elements
 $$ \begin{align*} w_i:=\begin{pmatrix}I_{i-1}&&\\&&I_{r-i}\\&1&\end{pmatrix},\quad 1\le i\le r. \end{align*} $$
$$ \begin{align*} w_i:=\begin{pmatrix}I_{i-1}&&\\&&I_{r-i}\\&1&\end{pmatrix},\quad 1\le i\le r. \end{align*} $$
Also let 
 $N_i$
 be the subgroup of N of the form
$N_i$
 be the subgroup of N of the form 
 $$ \begin{align*} N_i:=\left\lbrace n:=\begin{pmatrix}I_{i-1}&&\\&1&x\\&&I_{r-i}\end{pmatrix}\mid x:=(x_1,\dots, x_{r-i})\right\rbrace. \end{align*} $$
$$ \begin{align*} N_i:=\left\lbrace n:=\begin{pmatrix}I_{i-1}&&\\&1&x\\&&I_{r-i}\end{pmatrix}\mid x:=(x_1,\dots, x_{r-i})\right\rbrace. \end{align*} $$
Then
 $$ \begin{align*}G(\mathbb{Q})=\bigsqcup_{i=1}^r P(\mathbb{Q})w_iN_i(\mathbb{Q}),\end{align*} $$
$$ \begin{align*}G(\mathbb{Q})=\bigsqcup_{i=1}^r P(\mathbb{Q})w_iN_i(\mathbb{Q}),\end{align*} $$
where the union is disjoint.
Proof. Any 
 $\gamma \in G(\mathbb {Q})$
 has the bottom row of the form
$\gamma \in G(\mathbb {Q})$
 has the bottom row of the form 
 $(0,\dots ,0,d,*,\dots ,*)$
, where
$(0,\dots ,0,d,*,\dots ,*)$
, where 
 $d\neq 0$
 and occurs at the ith position for some
$d\neq 0$
 and occurs at the ith position for some 
 $1\le i\le r$
. There exists an element
$1\le i\le r$
. There exists an element 
 $x\in N_i$
 such that
$x\in N_i$
 such that 
 $\gamma =d\gamma 'x$
 with
$\gamma =d\gamma 'x$
 with 
 $\gamma '$
 having bottom row of the form
$\gamma '$
 having bottom row of the form 
 $(0,\dots ,0,1,0,\dots ,0)$
 with
$(0,\dots ,0,1,0,\dots ,0)$
 with 
 $1$
 at the ith position. It can readily be checked that
$1$
 at the ith position. It can readily be checked that 
 $\gamma 'w_i^{-1}\in P(\mathbb {Q})$
. Clearly, the union is disjoint.
$\gamma 'w_i^{-1}\in P(\mathbb {Q})$
. Clearly, the union is disjoint.
 Using Lemma 3.1 and the left-
 $P(\mathbb {Q})$
 invariance of
$P(\mathbb {Q})$
 invariance of 
 $f_s$
, we can rewrite the right-hand side of equation (3.1) as
$f_s$
, we can rewrite the right-hand side of equation (3.1) as 
 $$ \begin{align*} \sum_{i=1}^r\sum_{\gamma\in N_i(\mathbb{Q})}\int_{N(\mathbb{Q})\backslash N(\mathbb{A})}f_s(w_i\gamma ng)\overline{\psi(n)}dn. \end{align*} $$
$$ \begin{align*} \sum_{i=1}^r\sum_{\gamma\in N_i(\mathbb{Q})}\int_{N(\mathbb{Q})\backslash N(\mathbb{A})}f_s(w_i\gamma ng)\overline{\psi(n)}dn. \end{align*} $$
Note that 
 $N_i:=N\cap w_i^{-1}N^tw_i$
. Hence,
$N_i:=N\cap w_i^{-1}N^tw_i$
. Hence, 
 $N=N_i\bar {N}_i$
, where
$N=N_i\bar {N}_i$
, where 
 $\bar {N}_i:=N\cap w_i^{-1}N w_i$
. It can be checked that
$\bar {N}_i:=N\cap w_i^{-1}N w_i$
. It can be checked that 
 $$ \begin{align*}\bar{N}_i=\{n\in N\mid e_in=e_i\},\end{align*} $$
$$ \begin{align*}\bar{N}_i=\{n\in N\mid e_in=e_i\},\end{align*} $$
where 
 $e_i=(0,\dots ,0,1,0,\dots ,0)$
 with
$e_i=(0,\dots ,0,1,0,\dots ,0)$
 with 
 $1$
 at the ith place.
$1$
 at the ith place.
 We write an element 
 $n\in N$
 as
$n\in N$
 as 
 $n_1n_2$
 with
$n_1n_2$
 with 
 $n_1\in N_i$
 and
$n_1\in N_i$
 and 
 $n_2\in \bar {N}_i$
. Unfolding the
$n_2\in \bar {N}_i$
. Unfolding the 
 $N_i(\mathbb {Q})$
 sum, we obtain that the right-hand side of equation (3.1) is equal to
$N_i(\mathbb {Q})$
 sum, we obtain that the right-hand side of equation (3.1) is equal to 
 $$ \begin{align*} \sum_{i=1}^r\int_{\bar{N}_i(\mathbb{Q})\backslash \bar{N}_i(\mathbb{A})}\overline{\psi(n_2)}\int_{N_i(\mathbb{A})}f_s(w_in_1n_2g)\overline{\psi(n_1)}dn_1dn_2. \end{align*} $$
$$ \begin{align*} \sum_{i=1}^r\int_{\bar{N}_i(\mathbb{Q})\backslash \bar{N}_i(\mathbb{A})}\overline{\psi(n_2)}\int_{N_i(\mathbb{A})}f_s(w_in_1n_2g)\overline{\psi(n_1)}dn_1dn_2. \end{align*} $$
There exist 
 $n_2'\in \bar {N}_i$
 and
$n_2'\in \bar {N}_i$
 and 
 $n_1'\in N_i$
 such that
$n_1'\in N_i$
 such that 
 $n_2'n_1'=n_1n_2$
 and and
$n_2'n_1'=n_1n_2$
 and and 
 $n_2''\in N$
 such that
$n_2''\in N$
 such that 
 $n_2''w_i=w_in_2'$
. Appealing to the left-
$n_2''w_i=w_in_2'$
. Appealing to the left-
 $N(\mathbb {A})$
 invariance of
$N(\mathbb {A})$
 invariance of 
 $f_s$
, we conclude that the above expression is
$f_s$
, we conclude that the above expression is 
 $$ \begin{align*} \sum_{i=1}^r\int_{\bar{N}_i(\mathbb{Q})\backslash \bar{N}_i(\mathbb{A})}\overline{\psi(n_2)}\int_{N_i(\mathbb{A})}f_s(w_in_1'g)\overline{\psi(n_1)}dn_1dn_2. \end{align*} $$
$$ \begin{align*} \sum_{i=1}^r\int_{\bar{N}_i(\mathbb{Q})\backslash \bar{N}_i(\mathbb{A})}\overline{\psi(n_2)}\int_{N_i(\mathbb{A})}f_s(w_in_1'g)\overline{\psi(n_1)}dn_1dn_2. \end{align*} $$
We check that if 
 $e_in_1=(0,1,x)$
 for some
$e_in_1=(0,1,x)$
 for some 
 $x\in \mathbb {A}^{r-i}$
, then
$x\in \mathbb {A}^{r-i}$
, then 
 $n_1'=(0,1,xu)$
 for some upper triangular unipotent matrix u in
$n_1'=(0,1,xu)$
 for some upper triangular unipotent matrix u in 
 $\mathrm {GL}_{r-i}(\mathbb {A})$
. Also,
$\mathrm {GL}_{r-i}(\mathbb {A})$
. Also, 
 $\psi (n_1)$
 is equal to
$\psi (n_1)$
 is equal to 
 $\psi (n_1')$
. Thus, making the change of variables
$\psi (n_1')$
. Thus, making the change of variables 
 $xu\mapsto x$
, we obtain that
$xu\mapsto x$
, we obtain that 
 $$ \begin{align} \int_{N(\mathbb{Q})\backslash N(\mathbb{A})}\mathrm{Eis}(f_s)(ng)\overline{\psi(n)}dn=\sum_{i=1}^r\int_{\bar{N}_i(\mathbb{Q})\backslash \bar{N}_i(\mathbb{A})}\overline{\psi(n')}dn'\int_{N_i(\mathbb{A})}f_s(w_ing)\overline{\psi(n)}dn. \end{align} $$
$$ \begin{align} \int_{N(\mathbb{Q})\backslash N(\mathbb{A})}\mathrm{Eis}(f_s)(ng)\overline{\psi(n)}dn=\sum_{i=1}^r\int_{\bar{N}_i(\mathbb{Q})\backslash \bar{N}_i(\mathbb{A})}\overline{\psi(n')}dn'\int_{N_i(\mathbb{A})}f_s(w_ing)\overline{\psi(n)}dn. \end{align} $$
Clearly, if 
 $\psi $
 is nondegenerate, the above is zero. In particular, if
$\psi $
 is nondegenerate, the above is zero. In particular, if 
 $\psi $
 is of the form
$\psi $
 is of the form 
 $\psi _{\tilde {q}}$
 for some
$\psi _{\tilde {q}}$
 for some 
 $\tilde {q}:=(q_j)_j\in \mathbb {Q}^{r-1}$
, then the ith summand, for
$\tilde {q}:=(q_j)_j\in \mathbb {Q}^{r-1}$
, then the ith summand, for 
 $i<r$
, on the right-hand side of equation (3.2) does not identically vanish only if
$i<r$
, on the right-hand side of equation (3.2) does not identically vanish only if 
 $q_j=0$
 for all
$q_j=0$
 for all 
 $j\neq i$
. For
$j\neq i$
. For 
 $i=r$
, the same happens only if
$i=r$
, the same happens only if 
 $\tilde {q}=0$
, in which case the summand is equal to
$\tilde {q}=0$
, in which case the summand is equal to 
 $f_s(g)$
. For
$f_s(g)$
. For 
 $q\in \mathbb {Q}$
, we denote
$q\in \mathbb {Q}$
, we denote 
 $(0,\dots ,0,q,0,\dots ,0)$
, where q is at the ith place, by
$(0,\dots ,0,q,0,\dots ,0)$
, where q is at the ith place, by 
 $i(q)$
.
$i(q)$
.
 We define (again on a right half plane, and extend by meromorphic continuation) twisted intertwining operators on 
 $\mathcal {I}_{r-1,1}(s)\ni f_s$
 attached to the Weyl element
$\mathcal {I}_{r-1,1}(s)\ni f_s$
 attached to the Weyl element 
 $w_i$
 by
$w_i$
 by 
 $$ \begin{align} M_i^qf_s(g):=\int_{N_i(\mathbb{A})} f_s(wng)\overline{\psi_{i(q)}(n)}dn. \end{align} $$
$$ \begin{align} M_i^qf_s(g):=\int_{N_i(\mathbb{A})} f_s(wng)\overline{\psi_{i(q)}(n)}dn. \end{align} $$
Thus we obtain the following Fourier expansion of 
 $\mathrm {Eis}(f_s)(g)$
.
$\mathrm {Eis}(f_s)(g)$
.
Lemma 3.2. Let 
 $f_s$
 and
$f_s$
 and 
 $\mathrm {Eis}(f_s)(g)$
 be as above. Then
$\mathrm {Eis}(f_s)(g)$
 be as above. Then 
 $$ \begin{align*}\mathrm{Eis}(f_s)(g)=f_s(g)+\sum_{i=1}^{r-1}\sum_{q\in \mathbb{Q}}M_i^qf_s(g).\end{align*} $$
$$ \begin{align*}\mathrm{Eis}(f_s)(g)=f_s(g)+\sum_{i=1}^{r-1}\sum_{q\in \mathbb{Q}}M_i^qf_s(g).\end{align*} $$
The terms 
 $f_s$
 and
$f_s$
 and 
 $M_i^0f_s$
 are the constant terms of
$M_i^0f_s$
 are the constant terms of 
 $\mathrm {Eis}(f_s)(g)$
.
$\mathrm {Eis}(f_s)(g)$
.
 Let us write 
 $g\in G(\mathbb {A})$
 in its Iwasawa coordinates
$g\in G(\mathbb {A})$
 in its Iwasawa coordinates 
 $g=nak$
, where
$g=nak$
, where 
 $a:=\begin {pmatrix}a(y)&\\&1\end {pmatrix}$
. Then for
$a:=\begin {pmatrix}a(y)&\\&1\end {pmatrix}$
. Then for 
 $i<r$
, we have
$i<r$
, we have 
 $$ \begin{align*} M_{i}^qf_s(g) &=\int_{N_{i}(\mathbb{A})}f_s(w_in'nak)\overline{\psi_{i(q)}(n)}dn', \end{align*} $$
$$ \begin{align*} M_{i}^qf_s(g) &=\int_{N_{i}(\mathbb{A})}f_s(w_in'nak)\overline{\psi_{i(q)}(n)}dn', \end{align*} $$
which is defined for 
 $\Re (s)$
 large enough and can be meromorphically continued.
$\Re (s)$
 large enough and can be meromorphically continued.
 We work exactly as before to compute the above integral. We write 
 $n=n_1n_2$
 with
$n=n_1n_2$
 with 
 $n_1\in N_i$
 and
$n_1\in N_i$
 and 
 $n_2\in \bar {N}_i$
 and make the change of variables
$n_2\in \bar {N}_i$
 and make the change of variables 
 $n'\mapsto n'n_1^{-1}$
. Then we write
$n'\mapsto n'n_1^{-1}$
. Then we write 
 $w_in'n_2=n_2'w_in''$
 for some
$w_in'n_2=n_2'w_in''$
 for some 
 $n_2'\in N$
 and
$n_2'\in N$
 and 
 $n''$
 that is related to
$n''$
 that is related to 
 $n'$
 as before, and we make the change of variables
$n'$
 as before, and we make the change of variables 
 $n''\mapsto n'$
. We use the left
$n''\mapsto n'$
. We use the left 
 $N(\mathbb {A})$
-invariance of
$N(\mathbb {A})$
-invariance of 
 $f_s$
 and the fact that
$f_s$
 and the fact that 
 $\psi (n')=\psi (n'')$
.
$\psi (n')=\psi (n'')$
.
 Finally, we make the change of variables 
 $n'\mapsto an'a^{-1}$
 and use the transformation property of
$n'\mapsto an'a^{-1}$
 and use the transformation property of 
 $f_s$
 as in equation (2.3) to obtain
$f_s$
 as in equation (2.3) to obtain 
 $$ \begin{align} M_{i}^qf_s(g)=\psi_{i(q)}(n_1)\prod_{j=1}^{i-1}|y_j|^{sj}\prod_{j=i}^{r-1}|y_j|^{(1-s)(r-j)}\int_{N_i(\mathbb{A})}f_s(w_ink)\overline{\psi_{i(q)}(ana^{-1})}dn. \end{align} $$
$$ \begin{align} M_{i}^qf_s(g)=\psi_{i(q)}(n_1)\prod_{j=1}^{i-1}|y_j|^{sj}\prod_{j=i}^{r-1}|y_j|^{(1-s)(r-j)}\int_{N_i(\mathbb{A})}f_s(w_ink)\overline{\psi_{i(q)}(ana^{-1})}dn. \end{align} $$
 We first study the integral on the right-hand side of equation (3.4) for 
 $q=0$
. We use the construction of
$q=0$
. We use the construction of 
 $f_s$
 using
$f_s$
 using 
 $\Phi \in \mathcal {S}(\mathbb {A}^r)$
 as in Section 2.4. We also parametrise n so that
$\Phi \in \mathcal {S}(\mathbb {A}^r)$
 as in Section 2.4. We also parametrise n so that 
 $e_in=(0,1,x)$
 with
$e_in=(0,1,x)$
 with 
 $x\in \mathbb {A}^{r-i}$
 and make the change of variables
$x\in \mathbb {A}^{r-i}$
 and make the change of variables 
 $x\mapsto x/t$
 to write the integral as
$x\mapsto x/t$
 to write the integral as 
 $$ \begin{align*} \int_{\mathbb{A}^{r-i}}\int_{\mathbb{A}^\times}(k.\Phi)(0,t,x)|t|^{rs-r+i}d^\times tdx. \end{align*} $$
$$ \begin{align*} \int_{\mathbb{A}^{r-i}}\int_{\mathbb{A}^\times}(k.\Phi)(0,t,x)|t|^{rs-r+i}d^\times tdx. \end{align*} $$
Here 
 $(k.\Phi )(x):=\Phi (xk)$
. Using Tate’s functional equation (see [Reference Bump7, Proposition 3.1.6]), we can rewrite the above as
$(k.\Phi )(x):=\Phi (xk)$
. Using Tate’s functional equation (see [Reference Bump7, Proposition 3.1.6]), we can rewrite the above as 
 $$ \begin{align*} \int_{\mathbb{A}^\times}\widehat{(k.\Phi)}^i(te_i)|t|^{r-i+1-rs}d^\times t, \end{align*} $$
$$ \begin{align*} \int_{\mathbb{A}^\times}\widehat{(k.\Phi)}^i(te_i)|t|^{r-i+1-rs}d^\times t, \end{align*} $$
where the partial Fourier transform 
 $\hat {\Phi }^i$
 is defined by
$\hat {\Phi }^i$
 is defined by 
 $$ \begin{align*} \hat{\Phi}^i(x_1,\dots,x_r):=\int_{\mathbb{A}^{r-i+1}}\Phi(x_1,\dots,x_{i-1}, u_1,\dots,u_{r-i+1})\psi(x_iu_1+\dots+x_ru_{r-i+1})du. \end{align*} $$
$$ \begin{align*} \hat{\Phi}^i(x_1,\dots,x_r):=\int_{\mathbb{A}^{r-i+1}}\Phi(x_1,\dots,x_{i-1}, u_1,\dots,u_{r-i+1})\psi(x_iu_1+\dots+x_ru_{r-i+1})du. \end{align*} $$
In particular, it can be seen that
 $$ \begin{align} M_{1}f_s(g)=f_{1-s,\hat{\Phi}}(wg^{-t})=:\tilde{f}_s(g), \end{align} $$
$$ \begin{align} M_{1}f_s(g)=f_{1-s,\hat{\Phi}}(wg^{-t})=:\tilde{f}_s(g), \end{align} $$
where w is the long Weyl element. It can be checked that 
 $\tilde {f}$
 lies in the principal series
$\tilde {f}$
 lies in the principal series 
 $\mathcal {I}_{1,r-1}(1-s)$
 arising from the associate parabolic
$\mathcal {I}_{1,r-1}(1-s)$
 arising from the associate parabolic 
 $\tilde {P}$
.
$\tilde {P}$
.
 Now, for 
 $q\neq 0$
, the integral on the right-hand side of equation (3.4) gives rise to a degenerate Whittaker function. Parametrising
$q\neq 0$
, the integral on the right-hand side of equation (3.4) gives rise to a degenerate Whittaker function. Parametrising 
 $n\in N_i(\mathbb {A})$
 as in Lemma 3.1, one can see that
$n\in N_i(\mathbb {A})$
 as in Lemma 3.1, one can see that 
 $\psi _{i(q)}(ana^{-1})=\psi _0(qy_ix_1)$
: that is, the value
$\psi _{i(q)}(ana^{-1})=\psi _0(qy_ix_1)$
: that is, the value 
 $\psi _{i(q)}(ana^{-1})$
 depends on a only through
$\psi _{i(q)}(ana^{-1})$
 depends on a only through 
 $y_i$
. We define
$y_i$
. We define 
 $$ \begin{align*} W^i_{f_s}(qy_i,k):=\int_{N_i(\mathbb{A})}f_s(w_ink)\overline{\psi_{i(q)}(ana^{-1})}dn. \end{align*} $$
$$ \begin{align*} W^i_{f_s}(qy_i,k):=\int_{N_i(\mathbb{A})}f_s(w_ink)\overline{\psi_{i(q)}(ana^{-1})}dn. \end{align*} $$
Again, the above is defined for 
 $\Re (s)$
 sufficiently large and can be extended analytically to all of
$\Re (s)$
 sufficiently large and can be extended analytically to all of 
 $\mathbb {C}$
, and it can be shown that
$\mathbb {C}$
, and it can be shown that 
 $W^i_{f_s}(t,k)$
 decays rapidly as
$W^i_{f_s}(t,k)$
 decays rapidly as 
 $t\to \infty $
. We prove these claims in Lemma 6.3 (although these results are implicitly done in [Reference Jacquet17]). In particular, we have
$t\to \infty $
. We prove these claims in Lemma 6.3 (although these results are implicitly done in [Reference Jacquet17]). In particular, we have 
 $$ \begin{align*}M^q_if_s(g)=W^i_{f_s}(qy_i,k)\psi_0(qx_{i,i+1})\end{align*} $$
$$ \begin{align*}M^q_if_s(g)=W^i_{f_s}(qy_i,k)\psi_0(qx_{i,i+1})\end{align*} $$
for 
 $q\neq 0$
.
$q\neq 0$
.
We summarise the above results and rewrite Lemma 3.2 in the following proposition to record the Fourier expansion of a maximal Eisenstein series.
Proposition 3.3. Let 
 $f_s\in \mathcal {I}_{r-1,1}(s)$
 be a holomorphic section and
$f_s\in \mathcal {I}_{r-1,1}(s)$
 be a holomorphic section and 
 $\mathrm {Eis}(f_s)(g)$
 be the corresponding maximal Eisenstein series. Let
$\mathrm {Eis}(f_s)(g)$
 be the corresponding maximal Eisenstein series. Let 
 $g=n(x)\begin {pmatrix}a(y)&\\&1\end {pmatrix}k$
 be its Iwasawa decomposition. Then
$g=n(x)\begin {pmatrix}a(y)&\\&1\end {pmatrix}k$
 be its Iwasawa decomposition. Then 
 $$ \begin{align*}\mathrm{Eis}(f_s)(g)=f_s(g)+\sum_{i=1}^{r-1}\prod_{j=1}^{i-1}|y_j|^{sj}\prod_{j=i}^{r-1}|y_j|^{(1-s)(r-j)}\left[M_i^0f_s(k)+\sum_{q\in\mathbb{Q}^\times}W^i_{f_s}(qy_i,k)\psi_0(qx_{i,i+1})\right].\end{align*} $$
$$ \begin{align*}\mathrm{Eis}(f_s)(g)=f_s(g)+\sum_{i=1}^{r-1}\prod_{j=1}^{i-1}|y_j|^{sj}\prod_{j=i}^{r-1}|y_j|^{(1-s)(r-j)}\left[M_i^0f_s(k)+\sum_{q\in\mathbb{Q}^\times}W^i_{f_s}(qy_i,k)\psi_0(qx_{i,i+1})\right].\end{align*} $$
The terms containing 
 $M_i^0$
 are the constant terms of
$M_i^0$
 are the constant terms of 
 $\mathrm {Eis}(f_s)(g)$
, and the terms containing
$\mathrm {Eis}(f_s)(g)$
, and the terms containing 
 $W^i_{f_s}$
 are holomorphic in s. The above sum converges absolutely and uniformly on compacta.
$W^i_{f_s}$
 are holomorphic in s. The above sum converges absolutely and uniformly on compacta.
4 Proof of the main theorem
4.1 Choices of the local components
 We start by choosing various vectors and auxiliary test functions. Let 
 $\pi _0\in \hat {\mathbb {X}}_{\mathrm {gen}}$
 be the fixed cuspidal representation as in Theorem 2.1. Let
$\pi _0\in \hat {\mathbb {X}}_{\mathrm {gen}}$
 be the fixed cuspidal representation as in Theorem 2.1. Let 
 $\phi _0\in \pi _0$
 with Whittaker function
$\phi _0\in \pi _0$
 with Whittaker function 
 $W_0=\bigotimes _{p\le \infty }W_{0,p}$
, such that
$W_0=\bigotimes _{p\le \infty }W_{0,p}$
, such that 
 $$ \begin{align*}W_{0,p}\text{ are unramified for }p<\infty\text{ with } W_{0,p}(1)=1.\\[-15pt]\end{align*} $$
$$ \begin{align*}W_{0,p}\text{ are unramified for }p<\infty\text{ with } W_{0,p}(1)=1.\\[-15pt]\end{align*} $$
Here and elsewhere in the paper, the index set 
 $\{p\le \infty \}$
 denotes the set of places
$\{p\le \infty \}$
 denotes the set of places 
 $\{\infty \}\cup \{p\text { prime in }\mathbb {Z}\}$
.
$\{\infty \}\cup \{p\text { prime in }\mathbb {Z}\}$
.
 We choose 
 $W_{0,\infty }\in \pi _{0,\infty }$
 so that
$W_{0,\infty }\in \pi _{0,\infty }$
 so that 
 $$ \begin{align*}\|W_{0,\infty}\|_{\pi_{0,\infty}}=1,\text{ and }W_{0,\infty}\left[\begin{pmatrix}.&\\&1\end{pmatrix}\right]\in C_c^\infty(N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R}),\psi_\infty)^{\mathrm{O}_{r-1}(\mathbb{R})},\\[-15pt]\end{align*} $$
$$ \begin{align*}\|W_{0,\infty}\|_{\pi_{0,\infty}}=1,\text{ and }W_{0,\infty}\left[\begin{pmatrix}.&\\&1\end{pmatrix}\right]\in C_c^\infty(N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R}),\psi_\infty)^{\mathrm{O}_{r-1}(\mathbb{R})},\\[-15pt]\end{align*} $$
whose existence is guaranteed by the theory of Kirillov model. We choose 
 $\mathcal {S}(\mathbb {A}^r)\ni \Phi =\bigotimes _{p\le \infty }\Phi _p$
 with
$\mathcal {S}(\mathbb {A}^r)\ni \Phi =\bigotimes _{p\le \infty }\Phi _p$
 with 
 $$ \begin{align*}\Phi_p:=\mathrm{char}({\mathbb{Z}_p^r})=\hat{\Phi}_p\text{ for }p<\infty,\\[-15pt]\end{align*} $$
$$ \begin{align*}\Phi_p:=\mathrm{char}({\mathbb{Z}_p^r})=\hat{\Phi}_p\text{ for }p<\infty,\\[-15pt]\end{align*} $$
and for 
 $\tau>0$
 sufficiently small but fixed
$\tau>0$
 sufficiently small but fixed 
 $$ \begin{align*}\Phi_\infty\in C_c^\infty(B_\tau(0,\dots,0,1)),\\[-15pt]\end{align*} $$
$$ \begin{align*}\Phi_\infty\in C_c^\infty(B_\tau(0,\dots,0,1)),\\[-15pt]\end{align*} $$
such that 
 $\Phi _\infty $
 is nonnegative and has values sufficiently concentrated near
$\Phi _\infty $
 is nonnegative and has values sufficiently concentrated near 
 $1$
. Here
$1$
. Here 
 $B_\tau $
 denotes the ball of radius
$B_\tau $
 denotes the ball of radius 
 $\tau $
. Thus
$\tau $
. Thus 
 $\Phi _\infty $
 can be thought as a smoothened characteristic function of
$\Phi _\infty $
 can be thought as a smoothened characteristic function of 
 $B_\tau (0,\dots ,0,1)$
.
$B_\tau (0,\dots ,0,1)$
.
 Let 
 $f_s:=f_{s,\Phi }\in \mathcal {I}_{r-1,1}(s)$
 be associated to
$f_s:=f_{s,\Phi }\in \mathcal {I}_{r-1,1}(s)$
 be associated to 
 $\Phi $
 according to equation (2.2). The choice of
$\Phi $
 according to equation (2.2). The choice of 
 $\Phi _\infty $
 ensures that there exist sufficiently small
$\Phi _\infty $
 ensures that there exist sufficiently small 
 $\tau _1,\tau _2>0$
 (depending on
$\tau _1,\tau _2>0$
 (depending on 
 $\tau $
 and
$\tau $
 and 
 $\Phi _\infty $
) such that
$\Phi _\infty $
) such that 
 $f_{1/2,\infty }\left [\begin {pmatrix}\mathrm {I}_{r-1}&\\c&1\end {pmatrix}\right ]$
 is supported on
$f_{1/2,\infty }\left [\begin {pmatrix}\mathrm {I}_{r-1}&\\c&1\end {pmatrix}\right ]$
 is supported on 
 $|c|\le \tau _1$
 and has values
$|c|\le \tau _1$
 and has values 
 $\asymp 1$
 for
$\asymp 1$
 for 
 $|c|\le \tau _2$
. This implies that
$|c|\le \tau _2$
. This implies that 
 $$ \begin{align*}\int_{\mathbb{R}^{r-1}}\left|f_{1/2,\infty}\right|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\asymp 1,\\[-15pt]\end{align*} $$
$$ \begin{align*}\int_{\mathbb{R}^{r-1}}\left|f_{1/2,\infty}\right|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\asymp 1,\\[-15pt]\end{align*} $$
with an absolute implied constant. We renormalise 
 $\Phi _\infty $
 by an absolute constant so that the above integral is
$\Phi _\infty $
 by an absolute constant so that the above integral is 
 $1$
.
$1$
.
4.2 Computation of the spectral side
 Let 
 $\mathrm {Eis}(f_s):=\mathrm {Eis}(f_{s,\Phi })$
 be the maximal Eisenstein series attached to
$\mathrm {Eis}(f_s):=\mathrm {Eis}(f_{s,\Phi })$
 be the maximal Eisenstein series attached to 
 $f_{s,\Phi }\in \mathcal {I}_{r-1,1}(s)$
, which is defined in Section 4.1. Let
$f_{s,\Phi }\in \mathcal {I}_{r-1,1}(s)$
, which is defined in Section 4.1. Let 
 $X>1$
 be a large number tending to infinity and
$X>1$
 be a large number tending to infinity and 
 $$ \begin{align*}A(\mathbb{A})\ni x:=(x_p)_p,\quad x_\infty:=\mathrm{diag}(X,\dots,X,1)\in A(\mathbb{R})\text{ and }x_p=1 \text{ for all } p<\infty.\\[-15pt]\end{align*} $$
$$ \begin{align*}A(\mathbb{A})\ni x:=(x_p)_p,\quad x_\infty:=\mathrm{diag}(X,\dots,X,1)\in A(\mathbb{R})\text{ and }x_p=1 \text{ for all } p<\infty.\\[-15pt]\end{align*} $$
Our point of departure is the following period, which we write in two different ways:
 $$ \begin{align} \int_{\mathbb{X}}|\phi_0(g)|^2|\mathrm{Eis}(f_s)(gx)|^2dg=\langle \phi_0 \mathrm{Eis}(f_s)(.x),\phi_0\mathrm{Eis}(f_s)(.x)\rangle.\\[-15pt]\nonumber \end{align} $$
$$ \begin{align} \int_{\mathbb{X}}|\phi_0(g)|^2|\mathrm{Eis}(f_s)(gx)|^2dg=\langle \phi_0 \mathrm{Eis}(f_s)(.x),\phi_0\mathrm{Eis}(f_s)(.x)\rangle.\\[-15pt]\nonumber \end{align} $$
We use the Parseval relation in equation (2.5) and the notations in Section 2.6 to write the right-hand side of equation (4.1) as
 $$ \begin{align} \int_{\hat{\mathbb{X}}}\sum_{\phi\in\mathcal{B}(\pi)}|\Psi(f_s(.x),\phi_0,\bar{\phi})|^2d\mu_{\mathrm{aut}}(\pi),\\[-15pt]\nonumber \end{align} $$
$$ \begin{align} \int_{\hat{\mathbb{X}}}\sum_{\phi\in\mathcal{B}(\pi)}|\Psi(f_s(.x),\phi_0,\bar{\phi})|^2d\mu_{\mathrm{aut}}(\pi),\\[-15pt]\nonumber \end{align} $$
where 
 $\mathcal {B}(\pi )$
 is an orthonormal basis of
$\mathcal {B}(\pi )$
 is an orthonormal basis of 
 $\pi $
.
$\pi $
.
Lemma 4.1. Let 
 $\pi \in \hat {\mathbb {X}}\setminus \hat {\mathbb {X}}_{\mathrm {gen}}$
 be a nongeneric representation. Then
$\pi \in \hat {\mathbb {X}}\setminus \hat {\mathbb {X}}_{\mathrm {gen}}$
 be a nongeneric representation. Then 
 $\Psi (f_s,\phi _0,\bar {\phi })=0$
 for all
$\Psi (f_s,\phi _0,\bar {\phi })=0$
 for all 
 $\phi \in \pi $
 and
$\phi \in \pi $
 and 
 $s\in \mathbb {C}$
.
$s\in \mathbb {C}$
.
Proof. For 
 $\Re (s)$
 sufficiently large, we have (see Section 2.6)
$\Re (s)$
 sufficiently large, we have (see Section 2.6) 
 $$ \begin{align*}\Psi(f_s,\phi_0,\bar{\phi})=\int_{P(\mathbb{Q})\backslash G(\mathbb{A})}\phi_0(g)\overline{\phi(g)}f_s(g)dg.\end{align*} $$
$$ \begin{align*}\Psi(f_s,\phi_0,\bar{\phi})=\int_{P(\mathbb{Q})\backslash G(\mathbb{A})}\phi_0(g)\overline{\phi(g)}f_s(g)dg.\end{align*} $$
We follow the computation of [Reference Cogdell11, p.104–105]. We use the Fourier expansion
 $$ \begin{align*}\phi_0(g)=\sum_{\gamma\in N(\mathbb{Q})\backslash P(\mathbb{Q})}W_0(\gamma g)\end{align*} $$
$$ \begin{align*}\phi_0(g)=\sum_{\gamma\in N(\mathbb{Q})\backslash P(\mathbb{Q})}W_0(\gamma g)\end{align*} $$
and the left 
 $P(\mathbb {Q})$
-invariance of
$P(\mathbb {Q})$
-invariance of 
 $f_s$
 and unfold over
$f_s$
 and unfold over 
 $P(\mathbb {Q})$
 to get
$P(\mathbb {Q})$
 to get 
 $$ \begin{align*}\Psi(f_s,\phi_0,\bar{\phi})=\int_{N(\mathbb{Q})\backslash G(\mathbb{A})}W_0(g)\overline{\phi(g)}f_s(g)dg.\end{align*} $$
$$ \begin{align*}\Psi(f_s,\phi_0,\bar{\phi})=\int_{N(\mathbb{Q})\backslash G(\mathbb{A})}W_0(g)\overline{\phi(g)}f_s(g)dg.\end{align*} $$
We fold the last integral over 
 $N(\mathbb {A})$
 and use the left N-equivariance of
$N(\mathbb {A})$
 and use the left N-equivariance of 
 $W_0$
 and the left N-invariance of
$W_0$
 and the left N-invariance of 
 $f_s$
 to obtain
$f_s$
 to obtain 
 $$ \begin{align*}\Psi(f_s,\phi_0,\bar{\phi})=\int_{N(\mathbb{A})\backslash G(\mathbb{A})}W_0(g)f_s(g)\int_{N(\mathbb{Q})\backslash N(\mathbb{A})}\overline{\phi(ng)}\psi(n)dn dg.\end{align*} $$
$$ \begin{align*}\Psi(f_s,\phi_0,\bar{\phi})=\int_{N(\mathbb{A})\backslash G(\mathbb{A})}W_0(g)f_s(g)\int_{N(\mathbb{Q})\backslash N(\mathbb{A})}\overline{\phi(ng)}\psi(n)dn dg.\end{align*} $$
By definition, the inner integral vanishes as 
 $\phi $
 is nongeneric. Finally, by analytic continuation of
$\phi $
 is nongeneric. Finally, by analytic continuation of 
 $\Psi $
, we extend the result for all
$\Psi $
, we extend the result for all 
 $s\in \mathbb {C}$
.
$s\in \mathbb {C}$
.
 Thus Lemma 4.1 allows us to reduce the integral in equation (4.2) only over 
 $\hat {\mathbb {X}}_{\mathrm {gen}}$
. Once we restrict to
$\hat {\mathbb {X}}_{\mathrm {gen}}$
. Once we restrict to 
 $\pi \in \hat {\mathbb {X}}_{\mathrm {gen}}$
, we can use the Eulerian property of the zeta integral
$\pi \in \hat {\mathbb {X}}_{\mathrm {gen}}$
, we can use the Eulerian property of the zeta integral 
 $\Psi $
 as in Section 2.6. If
$\Psi $
 as in Section 2.6. If 
 $\phi \in \pi $
 with
$\phi \in \pi $
 with 
 $\|\phi \|_\pi =1$
 and Whittaker function
$\|\phi \|_\pi =1$
 and Whittaker function 
 $W_\phi =\bigotimes _{p\le \infty }W_{p}$
 such that
$W_\phi =\bigotimes _{p\le \infty }W_{p}$
 such that 
 $W_{p}$
 is unramified and
$W_{p}$
 is unramified and 
 $W_{p}(1)=1$
 for
$W_{p}(1)=1$
 for 
 $p<\infty $
, then by Schur’s lemma, we have
$p<\infty $
, then by Schur’s lemma, we have 
 $$ \begin{align} \|\phi\|^2_\pi=\ell(\pi)\|W_\infty\|^2_{\pi_\infty}, \end{align} $$
$$ \begin{align} \|\phi\|^2_\pi=\ell(\pi)\|W_\infty\|^2_{\pi_\infty}, \end{align} $$
where 
 $\ell (\pi )$
 only depends on the nonarchimedean data of
$\ell (\pi )$
 only depends on the nonarchimedean data of 
 $\pi $
. A standard Rankin–Selberg computationFootnote 
2
 yields that
$\pi $
. A standard Rankin–Selberg computationFootnote 
2
 yields that 
 $\ell (\pi )\asymp L(1,\pi ,\mathrm {Ad})$
 for a cuspidal
$\ell (\pi )\asymp L(1,\pi ,\mathrm {Ad})$
 for a cuspidal 
 $\pi $
. In fact, in our case,
$\pi $
. In fact, in our case, 
 $\ell (\pi )$
 is equal to
$\ell (\pi )$
 is equal to 
 $L(1,\pi ,\mathrm {Ad})$
 up to a positive constant dependent only on n.
$L(1,\pi ,\mathrm {Ad})$
 up to a positive constant dependent only on n.
Another standard computation [Reference Cogdell11, Theorem 3.3] shows that
 $$ \begin{align} \Psi_p(f_{s,p},W_{0,p},\overline{W_p})=L_p(s,\pi_0\otimes\bar{\pi}),\quad p<\infty, \end{align} $$
$$ \begin{align} \Psi_p(f_{s,p},W_{0,p},\overline{W_p})=L_p(s,\pi_0\otimes\bar{\pi}),\quad p<\infty, \end{align} $$
where 
 $f_s$
 is as chosen in Section 4.1 and
$f_s$
 is as chosen in Section 4.1 and 
 $L_p(s,.)$
 denotes the unramified p-adic Euler factor of
$L_p(s,.)$
 denotes the unramified p-adic Euler factor of 
 $L(s,.)$
. Thus by meromorphic continuation, we have
$L(s,.)$
. Thus by meromorphic continuation, we have 
 $$ \begin{align*} \Psi(f_s,\phi_0,\bar{\phi})={L(s,\pi_0\otimes\bar{\pi})}\Psi_\infty(f_{s,\infty},W_{0,\infty},\overline{W_\infty}) \end{align*} $$
$$ \begin{align*} \Psi(f_s,\phi_0,\bar{\phi})={L(s,\pi_0\otimes\bar{\pi})}\Psi_\infty(f_{s,\infty},W_{0,\infty},\overline{W_\infty}) \end{align*} $$
for all 
 $s\in \mathbb {C}$
 whenever both sides of the above are defined. Using the equation above, and recalling the harmonic weight in equation (4.3) and the spectral weight in equation (2.6), we obtain that equation (4.2) is equal to
$s\in \mathbb {C}$
 whenever both sides of the above are defined. Using the equation above, and recalling the harmonic weight in equation (4.3) and the spectral weight in equation (2.6), we obtain that equation (4.2) is equal to 
 $$ \begin{align*} \int_{\hat{\mathbb{X}}_{\mathrm{gen}}}\frac{|L(s,\pi_0\otimes\bar{\pi})|^2}{\ell(\pi)}J(f_{s,\infty}(.x_\infty) W_{0,\infty},\pi_\infty)d\mu_{\mathrm{aut}}(\pi). \end{align*} $$
$$ \begin{align*} \int_{\hat{\mathbb{X}}_{\mathrm{gen}}}\frac{|L(s,\pi_0\otimes\bar{\pi})|^2}{\ell(\pi)}J(f_{s,\infty}(.x_\infty) W_{0,\infty},\pi_\infty)d\mu_{\mathrm{aut}}(\pi). \end{align*} $$
We appeal to the holomorphicity of the zeta integrals to specify 
 $s=1/2$
 and define a normalised spectral weight
$s=1/2$
 and define a normalised spectral weight 
 $J_X(\pi _\infty )$
 by
$J_X(\pi _\infty )$
 by 
 $$ \begin{align} J_X(\pi):=J_X(\pi_\infty):=X^{r-1}J(f_{1/2,\infty}(.x_\infty) W_{0,\infty},\pi_\infty). \end{align} $$
$$ \begin{align} J_X(\pi):=J_X(\pi_\infty):=X^{r-1}J(f_{1/2,\infty}(.x_\infty) W_{0,\infty},\pi_\infty). \end{align} $$
Thus we write the main equation of our proof:
 $$ \begin{align} \int_{\hat{\mathbb{X}}_{\mathrm{gen}}}\frac{|L(1/2,\pi_0\otimes\bar{\pi})|^2}{\ell(\pi)}J_X(\pi)d\mu_{\mathrm{aut}}(\pi)=X^{r-1}\langle |\phi_0|^2, |\mathrm{Eis}(f_{1/2})(.x)|^2\rangle. \end{align} $$
$$ \begin{align} \int_{\hat{\mathbb{X}}_{\mathrm{gen}}}\frac{|L(1/2,\pi_0\otimes\bar{\pi})|^2}{\ell(\pi)}J_X(\pi)d\mu_{\mathrm{aut}}(\pi)=X^{r-1}\langle |\phi_0|^2, |\mathrm{Eis}(f_{1/2})(.x)|^2\rangle. \end{align} $$
4.3 Computation of the period side
 Again recall the choices of the local factors in Section 4.1. We write 
 $f_{s}=\bigotimes _{p\le \infty }f_{s,p}$
; then for
$f_{s}=\bigotimes _{p\le \infty }f_{s,p}$
; then for 
 $k_p\in K_p$
,
$k_p\in K_p$
, 
 $$ \begin{align*} f_{s,p}(k_p)=\int_{\mathbb{Q}_p^\times}\Phi_p(te_rk_p)|\det(tk_p)|^sd^\times t. \end{align*} $$
$$ \begin{align*} f_{s,p}(k_p)=\int_{\mathbb{Q}_p^\times}\Phi_p(te_rk_p)|\det(tk_p)|^sd^\times t. \end{align*} $$
Here we fix Haar measures 
 $d^\times t$
 on
$d^\times t$
 on 
 $\mathbb {Q}_p^\times $
 and (respectively,
$\mathbb {Q}_p^\times $
 and (respectively, 
 $dt$
 on
$dt$
 on 
 $\mathbb {Q}_p$
) such that
$\mathbb {Q}_p$
) such that 
 $\mathrm {vol}(\mathbb {Z}_p^\times )=1$
 (respectively,
$\mathrm {vol}(\mathbb {Z}_p^\times )=1$
 (respectively, 
 $\mathrm {vol}(\mathbb {Z}_p)=1$
).
$\mathrm {vol}(\mathbb {Z}_p)=1$
).
 First, we record that 
 $f_{s,p}$
 is an unramified vector in
$f_{s,p}$
 is an unramified vector in 
 $\mathcal {I}_{r-1,1}(s)_p$
 and
$\mathcal {I}_{r-1,1}(s)_p$
 and 
 $\tilde {f}_{s,p}$
 is an unramified vector in
$\tilde {f}_{s,p}$
 is an unramified vector in 
 $\mathcal {I}_{1,r-1}(1-s)_p$
, which is a generalised principal series attached to the opposite parabolic of P. Note that
$\mathcal {I}_{1,r-1}(1-s)_p$
, which is a generalised principal series attached to the opposite parabolic of P. Note that 
 $te_rk_p\in \mathbb {Z}_p^r$
 if and only if
$te_rk_p\in \mathbb {Z}_p^r$
 if and only if 
 $t\in \mathbb {Z}_p$
. Thus
$t\in \mathbb {Z}_p$
. Thus 
 $$ \begin{align*}f_{s,p}(k_p)=\sum_{m=0}^\infty p^{-mrs}=(1-p^{-rs})^{-1},\end{align*} $$
$$ \begin{align*}f_{s,p}(k_p)=\sum_{m=0}^\infty p^{-mrs}=(1-p^{-rs})^{-1},\end{align*} $$
for 
 $\Re (s)>0$
. Similarly, using equation (3.5), we have
$\Re (s)>0$
. Similarly, using equation (3.5), we have 
 $$ \begin{align*}\tilde{f}_{s,p}(k_p)=f_{1-s,\hat{\Phi}_p}(wk_p^{-t})=(1-p^{-r(1-s)})^{-1}\end{align*} $$
$$ \begin{align*}\tilde{f}_{s,p}(k_p)=f_{1-s,\hat{\Phi}_p}(wk_p^{-t})=(1-p^{-r(1-s)})^{-1}\end{align*} $$
for 
 $\Re (s)<1$
. Thus for g in the fundamental domain of
$\Re (s)<1$
. Thus for g in the fundamental domain of 
 $\mathbb {X}$
, we can write
$\mathbb {X}$
, we can write 
 $$ \begin{align} f_s(g)=\zeta(rs)f_{s,\infty}(g_\infty) \end{align} $$
$$ \begin{align} f_s(g)=\zeta(rs)f_{s,\infty}(g_\infty) \end{align} $$
and
 $$ \begin{align} \tilde{f}_{s}(g)=\zeta(r-rs)\tilde{f}_{s,\infty}(g_\infty), \end{align} $$
$$ \begin{align} \tilde{f}_{s}(g)=\zeta(r-rs)\tilde{f}_{s,\infty}(g_\infty), \end{align} $$
for all 
 $s\in \mathbb {C}$
, which can be achieved by meromorphic continuation.
$s\in \mathbb {C}$
, which can be achieved by meromorphic continuation.
 Let 
 $\Re (s)$
 be sufficiently small. From Proposition 3.3, we can see that among the constant terms of
$\Re (s)$
 be sufficiently small. From Proposition 3.3, we can see that among the constant terms of 
 $\mathrm {Eis}(f_{1/2+s})(g)$
, the terms that do not lie in
$\mathrm {Eis}(f_{1/2+s})(g)$
, the terms that do not lie in 
 $L^2(\mathbb {X})$
 are
$L^2(\mathbb {X})$
 are 
 $f_{1/2+s}(g)$
 and
$f_{1/2+s}(g)$
 and 
 $\tilde {f}_{1/2+s}(g)$
. Similarly, one checks that the constant terms of
$\tilde {f}_{1/2+s}(g)$
. Similarly, one checks that the constant terms of 
 $$ \begin{align*}\overline{\mathrm{Eis}(f_{1/2})}\mathrm{Eis}(f_{1/2+s})-\overline{f_{1/2}}f_{1/2+s}-\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}\end{align*} $$
$$ \begin{align*}\overline{\mathrm{Eis}(f_{1/2})}\mathrm{Eis}(f_{1/2+s})-\overline{f_{1/2}}f_{1/2+s}-\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}\end{align*} $$
are integrable in 
 $L^2(\mathbb {X})$
. Inspired by this, we define a regularised Eisenstein series of the form
$L^2(\mathbb {X})$
. Inspired by this, we define a regularised Eisenstein series of the form 
 $$ \begin{align} \tilde{E}_s:=\overline{\mathrm{Eis}(f_{1/2})}\mathrm{Eis}(f_{1/2+s})-\mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})-\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}). \end{align} $$
$$ \begin{align} \tilde{E}_s:=\overline{\mathrm{Eis}(f_{1/2})}\mathrm{Eis}(f_{1/2+s})-\mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})-\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}). \end{align} $$
Proof of Theorem 2.1
Recall equations (4.6) and (4.9). We write the inner product on the right-hand side of equation (4.6) as
 $$ \begin{align*}\lim_{s\to 0}\langle |\phi_0|^2,\tilde{E}_s(.x)\rangle+\lim_{s\to 0}\left[\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle+\langle |\phi_0|^2,\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle\right].\end{align*} $$
$$ \begin{align*}\lim_{s\to 0}\langle |\phi_0|^2,\tilde{E}_s(.x)\rangle+\lim_{s\to 0}\left[\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle+\langle |\phi_0|^2,\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle\right].\end{align*} $$
The second term is the degenerate term as in equation (5.1). From equation (5.4), Proposition 5.2 and Lemma 5.1, we obtain that the second term above is
 $$ \begin{align*}rL(1,\pi_0,\mathrm{Ad})\frac{\zeta(r/2)^2}{\zeta(r)}\log X + O_{\pi_0}(1).\end{align*} $$
$$ \begin{align*}rL(1,\pi_0,\mathrm{Ad})\frac{\zeta(r/2)^2}{\zeta(r)}\log X + O_{\pi_0}(1).\end{align*} $$
On the other hand, we write the first term above, which is the regularised term, as
 $$ \begin{align*}\lim_{s\to 0}\int_{\mathbb{X}}|\phi_0|^2(gx^{-1})\overline{\tilde{E}_s(g)}dg,\end{align*} $$
$$ \begin{align*}\lim_{s\to 0}\int_{\mathbb{X}}|\phi_0|^2(gx^{-1})\overline{\tilde{E}_s(g)}dg,\end{align*} $$
and bound this by
 $$ \begin{align*}\|\phi_0\|^2_{L^\infty(\mathbb{X})}\int_{\mathbb{X}}|\tilde{E}_s(g)|dg.\end{align*} $$
$$ \begin{align*}\|\phi_0\|^2_{L^\infty(\mathbb{X})}\int_{\mathbb{X}}|\tilde{E}_s(g)|dg.\end{align*} $$
From Proposition 6.1, we know that the last integral is convergent for s being sufficiently small, and 
 $\tilde {E}_s$
 is holomorphic in a sufficiently small neighbourhood of
$\tilde {E}_s$
 is holomorphic in a sufficiently small neighbourhood of 
 $s=0$
. Thus, using Cauchy’s residue theorem, we can write the above limit as
$s=0$
. Thus, using Cauchy’s residue theorem, we can write the above limit as 
 $$ \begin{align*}\int_{|s|=\epsilon}\frac{1}{s}\int_{\mathbb{X}}|\phi_0|^2(gx^{-1})\overline{\tilde{E}_s(g)}dg\frac{ds}{2\pi i}\end{align*} $$
$$ \begin{align*}\int_{|s|=\epsilon}\frac{1}{s}\int_{\mathbb{X}}|\phi_0|^2(gx^{-1})\overline{\tilde{E}_s(g)}dg\frac{ds}{2\pi i}\end{align*} $$
for some arbitrary small but fixed 
 $\epsilon>0$
. Applying Proposition 6.1 once again, we confirm the above integral is
$\epsilon>0$
. Applying Proposition 6.1 once again, we confirm the above integral is 
 $O_{\phi _0,\epsilon }(1)$
.
$O_{\phi _0,\epsilon }(1)$
.
 Now nonnegativity and the first property of the spectral weight 
 $J_X(\pi )$
 follow from the definition in equation (4.5). The second property follows from Proposition 7.1. Finally, the third property follows from equation (2.7) and Lemma 5.1.
$J_X(\pi )$
 follow from the definition in equation (4.5). The second property follows from Proposition 7.1. Finally, the third property follows from equation (2.7) and Lemma 5.1.
5 Analysis of the degenerate terms in the period side
In this section, we analyse the degenerate terms
 $$ \begin{align} \lim_{s\to 0}\left[\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle+\langle |\phi_0|^2,\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle\right]. \end{align} $$
$$ \begin{align} \lim_{s\to 0}\left[\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle+\langle |\phi_0|^2,\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle\right]. \end{align} $$
Note that 
 $\overline {f_{1/2}}f_{1/2+s}\in \mathcal {I}_{r-1,1}(1+s)$
 is such that its local component
$\overline {f_{1/2}}f_{1/2+s}\in \mathcal {I}_{r-1,1}(1+s)$
 is such that its local component 
 $\overline {f_{1/2,p}}f_{1/2+s,p}$
 is unramified for
$\overline {f_{1/2,p}}f_{1/2+s,p}$
 is unramified for 
 $p<\infty $
. Thus by the uniqueness of the spherical vector,
$p<\infty $
. Thus by the uniqueness of the spherical vector, 
 $\overline {f_{1/2,p}}f_{1/2+s,p}\in \mathcal {I}_{r-1,1}(1+s)_p$
 is a multiple of the unramified vector
$\overline {f_{1/2,p}}f_{1/2+s,p}\in \mathcal {I}_{r-1,1}(1+s)_p$
 is a multiple of the unramified vector 
 $$ \begin{align*}g\mapsto\int_{\mathbb{Q}_p^\times}\Phi_p(te_rg)|\det(tg)|^{1+s}d^\times t.\end{align*} $$
$$ \begin{align*}g\mapsto\int_{\mathbb{Q}_p^\times}\Phi_p(te_rg)|\det(tg)|^{1+s}d^\times t.\end{align*} $$
Comparing the values of the functions at the identity as before, we check that the multiple is
 $$ \begin{align*}\frac{(1-p^{-r/2})^{-1}(1-p^{-r/2-rs})^{-1}}{(1-p^{-r-rs})^{-1}}\text{ for }p<\infty.\end{align*} $$
$$ \begin{align*}\frac{(1-p^{-r/2})^{-1}(1-p^{-r/2-rs})^{-1}}{(1-p^{-r-rs})^{-1}}\text{ for }p<\infty.\end{align*} $$
We compute the first term inside the limit in equation (5.1) for 
 $\Re (s)$
 large. Doing a similar computation as in Section 2.6 and using equation (4.4), we obtain
$\Re (s)$
 large. Doing a similar computation as in Section 2.6 and using equation (4.4), we obtain 
 $$ \begin{align} &\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle = \frac{\zeta(r/2)\zeta(r/2+rs)}{\zeta(r+rs)}L(1+s,\pi_0\otimes\tilde{\pi}_0)\nonumber\\ &\qquad\phantom{\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle = \frac{\zeta(r/2)\zeta(r/2+rs)}{\zeta(r+rs)}}\Psi_\infty(\overline{f_{1/2,\infty}}f_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}}). \end{align} $$
$$ \begin{align} &\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle = \frac{\zeta(r/2)\zeta(r/2+rs)}{\zeta(r+rs)}L(1+s,\pi_0\otimes\tilde{\pi}_0)\nonumber\\ &\qquad\phantom{\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle = \frac{\zeta(r/2)\zeta(r/2+rs)}{\zeta(r+rs)}}\Psi_\infty(\overline{f_{1/2,\infty}}f_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}}). \end{align} $$
Finally, we meromorphically continue the above to the whole complex plane.
 Similarly, we compute the second term inside the limit in equation (5.1). Note that in this case, 
 $\tilde {f}$
 lies in
$\tilde {f}$
 lies in 
 $\mathcal {I}_{1,r-1}$
 associated to the parabolic
$\mathcal {I}_{1,r-1}$
 associated to the parabolic 
 $\tilde {P}$
. Working as in Section 2.6, we obtain that
$\tilde {P}$
. Working as in Section 2.6, we obtain that 
 $$ \begin{align*}\langle |\phi_0|^2, \mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle=\int_{\tilde{P}(\mathbb{Q})\backslash G(\mathbb{A})}|\phi_0|^2(g)\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}(gx)dg.\end{align*} $$
$$ \begin{align*}\langle |\phi_0|^2, \mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle=\int_{\tilde{P}(\mathbb{Q})\backslash G(\mathbb{A})}|\phi_0|^2(g)\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}(gx)dg.\end{align*} $$
We recall the definition of 
 $\tilde {f}$
 in equation (3.5) and make the change of variables
$\tilde {f}$
 in equation (3.5) and make the change of variables 
 $g\mapsto wg^{-t}$
 to obtain that the above is equal to
$g\mapsto wg^{-t}$
 to obtain that the above is equal to 
 $$ \begin{align*}\int_{P(\mathbb{Q})\backslash G(\mathbb{A})}|\tilde{\phi}_0|^2(g)\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}(gx^{-1})dg,\end{align*} $$
$$ \begin{align*}\int_{P(\mathbb{Q})\backslash G(\mathbb{A})}|\tilde{\phi}_0|^2(g)\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}(gx^{-1})dg,\end{align*} $$
where 
 $\tilde {\phi }_0(g):=\phi _0(wg^{-t})$
, which lies in the contragredient representation
$\tilde {\phi }_0(g):=\phi _0(wg^{-t})$
, which lies in the contragredient representation 
 $\tilde {\pi }_0$
. Note that
$\tilde {\pi }_0$
. Note that 
 $\hat {\Phi }_p=\Phi _p$
 for
$\hat {\Phi }_p=\Phi _p$
 for 
 $p<\infty $
. Thus, doing a calculation similar to that preceding equation (5.2), we obtain
$p<\infty $
. Thus, doing a calculation similar to that preceding equation (5.2), we obtain 
 $$ \begin{align} &\langle |\phi_0|^2, \mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle = \frac{\zeta(r/2)\zeta(r/2-rs)}{\zeta(r-rs)}L(1-s,\pi_0\otimes\tilde{\pi}_0)\nonumber\\ &\qquad\phantom{\langle |\phi_0|^2, \mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle = \frac{\zeta(r/2)\zeta(r/2-rs)}{\zeta(r-rs)}}\Psi_\infty(\overline{\hat{f}_{1/2,\infty}}\hat{f}_{1/2-s,\infty}(.x_\infty^{-1}),\tilde{W}_{0,\infty},\overline{\tilde{W}_{0,\infty}}). \end{align} $$
$$ \begin{align} &\langle |\phi_0|^2, \mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle = \frac{\zeta(r/2)\zeta(r/2-rs)}{\zeta(r-rs)}L(1-s,\pi_0\otimes\tilde{\pi}_0)\nonumber\\ &\qquad\phantom{\langle |\phi_0|^2, \mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle = \frac{\zeta(r/2)\zeta(r/2-rs)}{\zeta(r-rs)}}\Psi_\infty(\overline{\hat{f}_{1/2,\infty}}\hat{f}_{1/2-s,\infty}(.x_\infty^{-1}),\tilde{W}_{0,\infty},\overline{\tilde{W}_{0,\infty}}). \end{align} $$
Recalling the definition of the contragredient 
 $\tilde {W}_0$
 and making the change of variables
$\tilde {W}_0$
 and making the change of variables 
 $g_\infty \to wg_\infty ^{-t}$
 in the definition of the zeta integral
$g_\infty \to wg_\infty ^{-t}$
 in the definition of the zeta integral 
 $\Psi _\infty $
, we also have
$\Psi _\infty $
, we also have 
 $$ \begin{align*}\Psi_\infty(\overline{\hat{f}_{1/2,\infty}}\hat{f}_{1/2-s,\infty}(.x_\infty^{-1}),\tilde{W}_{0,\infty},\overline{\tilde{W}_{0,\infty}})=\Psi_\infty(\overline{\tilde{f}_{1/2,\infty}}\tilde{f}_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}}).\end{align*} $$
$$ \begin{align*}\Psi_\infty(\overline{\hat{f}_{1/2,\infty}}\hat{f}_{1/2-s,\infty}(.x_\infty^{-1}),\tilde{W}_{0,\infty},\overline{\tilde{W}_{0,\infty}})=\Psi_\infty(\overline{\tilde{f}_{1/2,\infty}}\tilde{f}_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}}).\end{align*} $$
In the following Lemma 5.1, we prove the archimedean factors 
 $\Psi _\infty $
 on the right-hand side of equations (5.2) and (5.3) are equal for
$\Psi _\infty $
 on the right-hand side of equations (5.2) and (5.3) are equal for 
 $s=0$
. We first record that
$s=0$
. We first record that 
 $$ \begin{align*}\Psi_\infty(|h|^2, W_{0,\infty}, \overline{W_{0,\infty}})=\|hW_{0,\infty}\|^2_{L^2(N(\mathbb{R})\backslash G(\mathbb{R}))},\end{align*} $$
$$ \begin{align*}\Psi_\infty(|h|^2, W_{0,\infty}, \overline{W_{0,\infty}})=\|hW_{0,\infty}\|^2_{L^2(N(\mathbb{R})\backslash G(\mathbb{R}))},\end{align*} $$
where h is either 
 $f_{1/2,\infty }(.x_\infty )$
 or
$f_{1/2,\infty }(.x_\infty )$
 or 
 $\tilde {f}_{1/2,\infty }(.x_\infty )$
.
$\tilde {f}_{1/2,\infty }(.x_\infty )$
.
Lemma 5.1. Recall the choices of the local components in Section 4.1. We have
 $$ \begin{align*}\|W_{0,\infty}f_{1/2,\infty}(.x_\infty)\|^2=\|W_{0,\infty}\tilde{f}_{1/2,\infty}(.x_\infty)\|^2=\|W_{0,\infty}f_{1/2,\infty}\|^2=1,\end{align*} $$
$$ \begin{align*}\|W_{0,\infty}f_{1/2,\infty}(.x_\infty)\|^2=\|W_{0,\infty}\tilde{f}_{1/2,\infty}(.x_\infty)\|^2=\|W_{0,\infty}f_{1/2,\infty}\|^2=1,\end{align*} $$
where all the norms are taken in 
 ${L^2(N(\mathbb {R})\backslash G(\mathbb {R}))}$
.
${L^2(N(\mathbb {R})\backslash G(\mathbb {R}))}$
.
Proof. To ease the notations, we drop 
 $\infty $
 from the subscripts in this proof.
$\infty $
 from the subscripts in this proof.
First recall that
 $$ \begin{align*}\tilde{f}_{1/2}(g)=\hat{f}_{1/2}(wg^{-t}),\end{align*} $$
$$ \begin{align*}\tilde{f}_{1/2}(g)=\hat{f}_{1/2}(wg^{-t}),\end{align*} $$
which implies, by a change of variable 
 $g\mapsto wg^{-t}$
, that
$g\mapsto wg^{-t}$
, that 
 $$ \begin{align*}\|W_{0}\tilde{f}_{1/2}(.x)\|^2=\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|W_0(g)|^2|\hat{f}_{1/2}(wg^{-t}x^{-1})|^2dg=\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|\tilde{W}_0(g)|^2|\hat{f}_{1/2}(gx^{-1})|^2dg.\end{align*} $$
$$ \begin{align*}\|W_{0}\tilde{f}_{1/2}(.x)\|^2=\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|W_0(g)|^2|\hat{f}_{1/2}(wg^{-t}x^{-1})|^2dg=\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|\tilde{W}_0(g)|^2|\hat{f}_{1/2}(gx^{-1})|^2dg.\end{align*} $$
We make the change of variables 
 $g\mapsto gx$
 and then employ the Whittaker–Plancherel formula as in equation (2.7) to write the above as
$g\mapsto gx$
 and then employ the Whittaker–Plancherel formula as in equation (2.7) to write the above as 
 $$ \begin{align*}\|\tilde{\pi}_0(x)\tilde{W}_{0}\hat{f}_{1/2}\|^2 =\int_{\widehat{G(\mathbb{R})}}\sum_{W\in \mathcal{B}(\sigma)}|\Psi(\hat{f}_{1/2},\tilde{\pi}_0(x)\tilde{W}_{0},{W})|^2d\mu_{\mathrm{loc}}(\sigma).\end{align*} $$
$$ \begin{align*}\|\tilde{\pi}_0(x)\tilde{W}_{0}\hat{f}_{1/2}\|^2 =\int_{\widehat{G(\mathbb{R})}}\sum_{W\in \mathcal{B}(\sigma)}|\Psi(\hat{f}_{1/2},\tilde{\pi}_0(x)\tilde{W}_{0},{W})|^2d\mu_{\mathrm{loc}}(\sigma).\end{align*} $$
We use the 
 $\mathrm {GL}(r)\times \mathrm {GL}(r)$
 local functional equation as in equation (2.4) and the unitarity of the gamma factor at
$\mathrm {GL}(r)\times \mathrm {GL}(r)$
 local functional equation as in equation (2.4) and the unitarity of the gamma factor at 
 $1/2$
 to obtain that
$1/2$
 to obtain that 
 $$ \begin{align*}|\Psi(\hat{f}_{1/2},\tilde{\pi}_0(x)\tilde{W}_{0},{W})|^2=|\Psi({f}_{1/2},\pi_0(x^{-1})W_{0},\tilde{W})|^2.\end{align*} $$
$$ \begin{align*}|\Psi(\hat{f}_{1/2},\tilde{\pi}_0(x)\tilde{W}_{0},{W})|^2=|\Psi({f}_{1/2},\pi_0(x^{-1})W_{0},\tilde{W})|^2.\end{align*} $$
Consequently, applying the Whittaker–Plancherel again with the orthonormal basis 
 $\mathcal {B}(\sigma ):=\{\sigma (x)\tilde {W}\}$
, we obtain
$\mathcal {B}(\sigma ):=\{\sigma (x)\tilde {W}\}$
, we obtain 
 $$ \begin{align*}\|{W}_{0}\tilde{f}_{1/2}(.x)\|^2=\|\tilde{\pi}_0(x)\tilde{W}_{0}\hat{f}_{1/2}\|^2=\|{\pi}_0(x^{-1}){W}_{0}{f}_{1/2}\|^2=\|W_{0}f_{1/2}(.x)\|^2,\end{align*} $$
$$ \begin{align*}\|{W}_{0}\tilde{f}_{1/2}(.x)\|^2=\|\tilde{\pi}_0(x)\tilde{W}_{0}\hat{f}_{1/2}\|^2=\|{\pi}_0(x^{-1}){W}_{0}{f}_{1/2}\|^2=\|W_{0}f_{1/2}(.x)\|^2,\end{align*} $$
which proves the first equality.
Thus now it is enough to prove that
 $$ \begin{align*}\|W_{0}f_{1/2}\|^2=\|W_{0}f_{1/2}(.x)\|^2.\end{align*} $$
$$ \begin{align*}\|W_{0}f_{1/2}\|^2=\|W_{0}f_{1/2}(.x)\|^2.\end{align*} $$
We use Bruhat coordinates to write
 $$ \begin{align*} &\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|W_{0}|^2(g)|f_{1/2}|^2\left[g\begin{pmatrix}X\mathrm{I}_{r-1}&\\&1\end{pmatrix}\right]dg\\&\quad\phantom{\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|W_{0}|^2(g)|f_{1/2}|^2}=\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|W_{0}|^2\left[\begin{pmatrix}h&\\c&1\end{pmatrix}\right]|f_{1/2}|^2\left[\begin{pmatrix}hX&\\cX&1\end{pmatrix}\right]dc\frac{dh}{|\det(h)|}. \end{align*} $$
$$ \begin{align*} &\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|W_{0}|^2(g)|f_{1/2}|^2\left[g\begin{pmatrix}X\mathrm{I}_{r-1}&\\&1\end{pmatrix}\right]dg\\&\quad\phantom{\int_{N(\mathbb{R})\backslash G(\mathbb{R})}|W_{0}|^2(g)|f_{1/2}|^2}=\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|W_{0}|^2\left[\begin{pmatrix}h&\\c&1\end{pmatrix}\right]|f_{1/2}|^2\left[\begin{pmatrix}hX&\\cX&1\end{pmatrix}\right]dc\frac{dh}{|\det(h)|}. \end{align*} $$
Using the transformation property of 
 $f_{1/2}$
 as in equation (2.3) and making the change of variables
$f_{1/2}$
 as in equation (2.3) and making the change of variables 
 $c\mapsto c/X$
, we obtain that the above is equal to
$c\mapsto c/X$
, we obtain that the above is equal to 
 $$ \begin{align*}\int_{\mathbb{R}^{r-1}}|f_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_{0}|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c/X&1\end{pmatrix}\right]dhdc.\end{align*} $$
$$ \begin{align*}\int_{\mathbb{R}^{r-1}}|f_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_{0}|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c/X&1\end{pmatrix}\right]dhdc.\end{align*} $$
Using the G-invariance of the inner product in the Whittaker model as in Section 2.5, we conclude that the inner integral above is equal to
 $$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_{0}|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]dh=\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_{0}|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dh.\end{align*} $$
$$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_{0}|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]dh=\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_{0}|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dh.\end{align*} $$
Thus, reverse engineering the above manipulation with Bruhat coordinates (that is, taking 
 $X=1$
), we conclude the proof of the first two equalities.
$X=1$
), we conclude the proof of the first two equalities.
From the above proof, we also obtain that
 $$ \begin{align*}\|W_{0}f_{1/2}\|^2=\|W_{0}\|^2_{\pi_0}\int_{\mathbb{R}^{r-1}}\left|f_{1/2}\right|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc.\end{align*} $$
$$ \begin{align*}\|W_{0}f_{1/2}\|^2=\|W_{0}\|^2_{\pi_0}\int_{\mathbb{R}^{r-1}}\left|f_{1/2}\right|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc.\end{align*} $$
We deduce the last equality recalling the normalisations of 
 $W_{0}$
 and
$W_{0}$
 and 
 $f_{1/2}$
.
$f_{1/2}$
.
 It is known that (see [Reference Cogdell11, Theorem 4.2]) if 
 $\pi _0$
 is cuspidal, then
$\pi _0$
 is cuspidal, then 
 $L(s,\pi _0\otimes \tilde {\pi }_0)$
 has a simple pole at
$L(s,\pi _0\otimes \tilde {\pi }_0)$
 has a simple pole at 
 $s=1$
 with residue
$s=1$
 with residue 
 $L(1,\pi _0,\mathrm {Ad})$
. Let us write
$L(1,\pi _0,\mathrm {Ad})$
. Let us write 
 $$ \begin{align*}L(1+s,\pi_0\otimes\tilde{\pi}_0)=\frac{L(1,\pi_0,\mathrm{Ad})}{s}+O_{\pi_0}(1),\end{align*} $$
$$ \begin{align*}L(1+s,\pi_0\otimes\tilde{\pi}_0)=\frac{L(1,\pi_0,\mathrm{Ad})}{s}+O_{\pi_0}(1),\end{align*} $$
as 
 $s\to 0$
. Thus, using equations (5.2) and (5.3) and Lemma 5.1, we can evaluate the limit in equation (5.1) as
$s\to 0$
. Thus, using equations (5.2) and (5.3) and Lemma 5.1, we can evaluate the limit in equation (5.1) as 
 $$ \begin{align} &\lim_{s\to 0}\left[\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle+\langle |\phi_0|^2,\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle\right]=\nonumber\\ &\quad\phantom{\lim_{s\to 0}\left[\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle+\langle |\phi_0|^2,\right.} L(1,\pi_0,\mathrm{Ad})\frac{\zeta(r/2)^2}{\zeta(r)}\Psi'(f_{1/2,\infty},W_{0,\infty})+O_{\pi_0,\Phi}(1), \end{align} $$
$$ \begin{align} &\lim_{s\to 0}\left[\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle+\langle |\phi_0|^2,\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(.x)\rangle\right]=\nonumber\\ &\quad\phantom{\lim_{s\to 0}\left[\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(.x)\rangle+\langle |\phi_0|^2,\right.} L(1,\pi_0,\mathrm{Ad})\frac{\zeta(r/2)^2}{\zeta(r)}\Psi'(f_{1/2,\infty},W_{0,\infty})+O_{\pi_0,\Phi}(1), \end{align} $$
where 
 $\Psi '(f_{1/2,\infty },W_{0,\infty })$
 is defined as
$\Psi '(f_{1/2,\infty },W_{0,\infty })$
 is defined as 
 $$ \begin{align*}\partial_{s=0}\left(\Psi_\infty(\overline{f_{1/2,\infty}}f_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}})- \Psi_\infty(\overline{\tilde{f}_{1/2,\infty}}\tilde{f}_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}})\right).\end{align*} $$
$$ \begin{align*}\partial_{s=0}\left(\Psi_\infty(\overline{f_{1/2,\infty}}f_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}})- \Psi_\infty(\overline{\tilde{f}_{1/2,\infty}}\tilde{f}_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}})\right).\end{align*} $$
Here and elsewhere in the paper, we write 
 $\partial _{s=0}$
 as an abbreviation of
$\partial _{s=0}$
 as an abbreviation of 
 $\left .\frac {\partial }{\partial s}\right \vert {}_{s=0}$
.
$\left .\frac {\partial }{\partial s}\right \vert {}_{s=0}$
.
Proposition 5.2. We have
 $$ \begin{align*}\Psi'(f_{1/2,\infty},W_{0,\infty})=r\log X+O_{W_{0,\infty},\Phi_\infty}(1)\end{align*} $$
$$ \begin{align*}\Psi'(f_{1/2,\infty},W_{0,\infty})=r\log X+O_{W_{0,\infty},\Phi_\infty}(1)\end{align*} $$
as X tends to infinity.
 Proposition 5.2 follows immediately from the following Lemma 5.3, Lemma 5.5 and Lemma 5.1. Again, to ease the notations, we drop 
 $\infty $
 subscripts from the proofs of the next two lemmata.
$\infty $
 subscripts from the proofs of the next two lemmata.
Lemma 5.3. We have
 $$ \begin{align*} \partial_{s=0}\Psi_\infty(\overline{\tilde{f}_{1/2,\infty}}\tilde{f}_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}})=-\log X\|W_{0,\infty}f_{1/2,\infty}\|^2+O_{W_{0,\infty},\Phi_\infty}(1) \end{align*} $$
$$ \begin{align*} \partial_{s=0}\Psi_\infty(\overline{\tilde{f}_{1/2,\infty}}\tilde{f}_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}})=-\log X\|W_{0,\infty}f_{1/2,\infty}\|^2+O_{W_{0,\infty},\Phi_\infty}(1) \end{align*} $$
as X tends to infinity.
Proof. We start by make the change of variables 
 $g\mapsto wg^{-t}$
 in the zeta integral to write
$g\mapsto wg^{-t}$
 in the zeta integral to write 
 $$ \begin{align*}\Psi(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}(.x),W_0,\overline{W_0})=\Psi(\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}(.x^{-1}),\tilde{W}_0,\overline{\tilde{W}_0}).\end{align*} $$
$$ \begin{align*}\Psi(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}(.x),W_0,\overline{W_0})=\Psi(\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}(.x^{-1}),\tilde{W}_0,\overline{\tilde{W}_0}).\end{align*} $$
We use Bruhat coordinates as in the proof of Lemma 5.1 to write the above zeta integral as
 $$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\c&1\end{pmatrix}\right]\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}\left[\begin{pmatrix}h/X&\\c/X&1\end{pmatrix}\right]dc\frac{dh}{|\det(h)|}.\end{align*} $$
$$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\c&1\end{pmatrix}\right]\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}\left[\begin{pmatrix}h/X&\\c/X&1\end{pmatrix}\right]dc\frac{dh}{|\det(h)|}.\end{align*} $$
Again, as in the proof of Lemma 5.1, we use the transformation property of 
 $\overline {\hat {f}_{1/2}}\hat {f}_{1/2-s}$
 as in equation (2.3) and make the change of variables
$\overline {\hat {f}_{1/2}}\hat {f}_{1/2-s}$
 as in equation (2.3) and make the change of variables 
 $c\mapsto cX$
 to obtain that the above is equal to
$c\mapsto cX$
 to obtain that the above is equal to 
 $$ \begin{align*}X^{(r-1)s}\int_{\mathbb{R}^{r-1}}\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\cX&1\end{pmatrix}\right]|\det(h)|^{-s}dhdc.\end{align*} $$
$$ \begin{align*}X^{(r-1)s}\int_{\mathbb{R}^{r-1}}\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\cX&1\end{pmatrix}\right]|\det(h)|^{-s}dhdc.\end{align*} $$
Differentiating at 
 $s=0$
, we obtain that the above is equal to
$s=0$
, we obtain that the above is equal to 
 $$ \begin{align} &(r-1)\log X\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\cX&1\end{pmatrix}\right]dhdc\nonumber\\ &\quad+\int_{\mathbb{R}^{r-1}}\overline{\hat{f}_{1/2}}\partial_{s=0}\hat{f}_{1/2-s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\cX&1\end{pmatrix}\right]dhdc\nonumber\\ &\quad-\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\cX&1\end{pmatrix}\right]\log|\det(h)|dhdc. \end{align} $$
$$ \begin{align} &(r-1)\log X\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\cX&1\end{pmatrix}\right]dhdc\nonumber\\ &\quad+\int_{\mathbb{R}^{r-1}}\overline{\hat{f}_{1/2}}\partial_{s=0}\hat{f}_{1/2-s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\cX&1\end{pmatrix}\right]dhdc\nonumber\\ &\quad-\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}h&\\cX&1\end{pmatrix}\right]\log|\det(h)|dhdc. \end{align} $$
The first summand in equation (5.5) is easy to understand. Using the invariance of the unitary product exactly as in the proof of Lemma 5.1, we can yield that the first summand is equal to
 $$ \begin{align*}(r-1)\log X\|\tilde{W}_0\|_{\tilde{\pi}_0}\|f_{1/2}\|^2.\end{align*} $$
$$ \begin{align*}(r-1)\log X\|\tilde{W}_0\|_{\tilde{\pi}_0}\|f_{1/2}\|^2.\end{align*} $$
From the Whittaker–Plancherel expansion in equation (2.7), the 
 $\mathrm {GL}(r)\times \mathrm {GL}(r-1)$
 local functional equation (see [Reference Cogdell11, Proposition 3.2]), and the unitarity of the
$\mathrm {GL}(r)\times \mathrm {GL}(r-1)$
 local functional equation (see [Reference Cogdell11, Proposition 3.2]), and the unitarity of the 
 $\gamma $
-factor, as in the proof of Lemma 5.1, one also gets that
$\gamma $
-factor, as in the proof of Lemma 5.1, one also gets that 
 $\|\tilde {W}_0\|_{\tilde {\pi }_0}=\|W_0\|_{\pi _0}$
.
$\|\tilde {W}_0\|_{\tilde {\pi }_0}=\|W_0\|_{\pi _0}$
.
 We claim that the second summand in equation (5.5) is of bounded size. Note that again the invariance of the unitary inner product implies that the inner integral is equal to 
 $\|\tilde {W}_0\|^2_{\tilde {\pi }_0}$
. Thus, using Cauchy’s integral formula, we can write the second summand as
$\|\tilde {W}_0\|^2_{\tilde {\pi }_0}$
. Thus, using Cauchy’s integral formula, we can write the second summand as 
 $$ \begin{align*}\|\tilde{W}_0\|^2_{\tilde{\pi}_0}\int_{|s|=\epsilon}\frac{1}{s^2}\int_{\mathbb{R}^{r-1}}\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\frac{ds}{\pi i}\end{align*} $$
$$ \begin{align*}\|\tilde{W}_0\|^2_{\tilde{\pi}_0}\int_{|s|=\epsilon}\frac{1}{s^2}\int_{\mathbb{R}^{r-1}}\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\frac{ds}{\pi i}\end{align*} $$
for some sufficiently small 
 $\epsilon>0$
. To show that the above integrals converge, we start with the Iwasawa decomposition of
$\epsilon>0$
. To show that the above integrals converge, we start with the Iwasawa decomposition of 
 $\begin {pmatrix}\mathrm {I}_{r-1}&\\c&1\end {pmatrix}$
. One can check by induction or otherwise that there exists a
$\begin {pmatrix}\mathrm {I}_{r-1}&\\c&1\end {pmatrix}$
. One can check by induction or otherwise that there exists a 
 $\tilde {z}(c)\in \mathbb {R}^{\times }$
 so that
$\tilde {z}(c)\in \mathbb {R}^{\times }$
 so that 
 $$ \begin{align} &\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}=\tilde{z}(c)\tilde{n}(c)\begin{pmatrix}\tilde{a}(c)&\\&1\end{pmatrix}\tilde{k}(c);\quad \tilde{n}(c)\in N(\mathbb{R}),\tilde{k}(c)\in K_\infty,\nonumber\\&\quad\phantom{\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}=\tilde{z}(c)\tilde{n}}\tilde{a}(c):=\mathrm{diag}(a_1(c),\dots,a_{r-1}(c));\quad a_i(c):=\frac{\sqrt{1+c_1^2+\dots+c_{i-1}^2}}{\sqrt{1+c_1^2+\dots+c_i^2}\sqrt{1+|c|^2}}. \end{align} $$
$$ \begin{align} &\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}=\tilde{z}(c)\tilde{n}(c)\begin{pmatrix}\tilde{a}(c)&\\&1\end{pmatrix}\tilde{k}(c);\quad \tilde{n}(c)\in N(\mathbb{R}),\tilde{k}(c)\in K_\infty,\nonumber\\&\quad\phantom{\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}=\tilde{z}(c)\tilde{n}}\tilde{a}(c):=\mathrm{diag}(a_1(c),\dots,a_{r-1}(c));\quad a_i(c):=\frac{\sqrt{1+c_1^2+\dots+c_{i-1}^2}}{\sqrt{1+c_1^2+\dots+c_i^2}\sqrt{1+|c|^2}}. \end{align} $$
Thus, using the transformation property in equation (2.3), we get
 $$ \begin{align*}\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\le (1+|c|^2)^{-r/2(1+\Re(s))}\|\hat{f}_{1/2}\hat{f}_{1/2-s}\|_{L^\infty(K_\infty)}.\end{align*} $$
$$ \begin{align*}\overline{\hat{f}_{1/2}}\hat{f}_{1/2-s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\le (1+|c|^2)^{-r/2(1+\Re(s))}\|\hat{f}_{1/2}\hat{f}_{1/2-s}\|_{L^\infty(K_\infty)}.\end{align*} $$
Thus the second summand of equation (5.5) is bounded by
 $$ \begin{align*}\ll_{\epsilon, f, W_0}\int_{\mathbb{R}^{r-1}}(1+|c|^2)^{-r/2(1-\epsilon)}dc.\end{align*} $$
$$ \begin{align*}\ll_{\epsilon, f, W_0}\int_{\mathbb{R}^{r-1}}(1+|c|^2)^{-r/2(1-\epsilon)}dc.\end{align*} $$
The above integral is convergent for sufficiently small 
 $\epsilon $
.
$\epsilon $
.
 We now focus on the third summand in equation (5.5). In the inner integral, we use Iwasawa coordinates for 
 $h=ak$
, move the K-integral outside and make the change of variables
$h=ak$
, move the K-integral outside and make the change of variables 
 $c\mapsto ck$
 to rewrite it as
$c\mapsto ck$
 to rewrite it as 
 $$ \begin{align*} &-\int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\ck&1\end{pmatrix}\right]\\&\quad\phantom{-\int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\ck&1\end{pmatrix}\right]}\int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\cX&1\end{pmatrix}\begin{pmatrix}k&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}dcdk. \end{align*} $$
$$ \begin{align*} &-\int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\ck&1\end{pmatrix}\right]\\&\quad\phantom{-\int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\ck&1\end{pmatrix}\right]}\int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\cX&1\end{pmatrix}\begin{pmatrix}k&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}dcdk. \end{align*} $$
We use the Iwasawa decomposition of 
 $\begin {pmatrix}\mathrm {I}_{r-1}&\\cX&1\end {pmatrix}$
 as in equation (5.6) to write it as
$\begin {pmatrix}\mathrm {I}_{r-1}&\\cX&1\end {pmatrix}$
 as in equation (5.6) to write it as 
 $\tilde {n}(cX)\begin {pmatrix}\tilde {a}(cX)&\\&1\end {pmatrix}\tilde {k}(cX)$
. Then, using the left
$\tilde {n}(cX)\begin {pmatrix}\tilde {a}(cX)&\\&1\end {pmatrix}\tilde {k}(cX)$
. Then, using the left 
 $N(\mathbb {R})$
-invariance of
$N(\mathbb {R})$
-invariance of 
 $|\tilde {W}_0|^2$
 and changing variable
$|\tilde {W}_0|^2$
 and changing variable 
 $a\mapsto a\times \tilde {a}(cX)^{-1}$
, we obtain that the above quantity is equal to
$a\mapsto a\times \tilde {a}(cX)^{-1}$
, we obtain that the above quantity is equal to 
 $$ \begin{align*} &\int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\ck&1\end{pmatrix}\right]\log|\det(\tilde{a}(cX))|\delta(\tilde{a}(cX))\\&\qquad\qquad\qquad\int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\tilde{k}(cX)\begin{pmatrix}k&\\&1\end{pmatrix}\right]\frac{da}{\delta(a)}dcdk\\ &\qquad\qquad\qquad\ -\int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\ck&1\end{pmatrix}\right]\delta(\tilde{a}(cX))\\&\qquad\qquad\qquad\qquad\ \int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\tilde{k}(cX)\begin{pmatrix}k&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}dcdk. \end{align*} $$
$$ \begin{align*} &\int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\ck&1\end{pmatrix}\right]\log|\det(\tilde{a}(cX))|\delta(\tilde{a}(cX))\\&\qquad\qquad\qquad\int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\tilde{k}(cX)\begin{pmatrix}k&\\&1\end{pmatrix}\right]\frac{da}{\delta(a)}dcdk\\ &\qquad\qquad\qquad\ -\int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\ck&1\end{pmatrix}\right]\delta(\tilde{a}(cX))\\&\qquad\qquad\qquad\qquad\ \int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\tilde{k}(cX)\begin{pmatrix}k&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}dcdk. \end{align*} $$
We write the above as 
 $A-B$
, where A denotes the first term and B denotes the second term above. To analyse A, we reverse-engineer the above process: make the change of variables
$A-B$
, where A denotes the first term and B denotes the second term above. To analyse A, we reverse-engineer the above process: make the change of variables 
 $a\mapsto a\times \tilde {a}(cX)$
, use the left
$a\mapsto a\times \tilde {a}(cX)$
, use the left 
 $N(\mathbb {R})$
-invariance of
$N(\mathbb {R})$
-invariance of 
 $|\tilde {W}_0|^2$
 and make the change of variables
$|\tilde {W}_0|^2$
 and make the change of variables 
 $c\mapsto ck^{-1}$
 to obtain
$c\mapsto ck^{-1}$
 to obtain 
 $$ \begin{align*} A=\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{\mathrm{O}_{r-1}(\mathbb{R})}&\log|\det(a(ck^{-1}X))|\\&\qquad\qquad \int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}ak&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\cX&1\end{pmatrix}\right]\frac{da}{\delta(a)}dkdc. \end{align*} $$
$$ \begin{align*} A=\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{\mathrm{O}_{r-1}(\mathbb{R})}&\log|\det(a(ck^{-1}X))|\\&\qquad\qquad \int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}ak&\\&1\end{pmatrix}\begin{pmatrix}\mathrm{I}_{r-1}&\\cX&1\end{pmatrix}\right]\frac{da}{\delta(a)}dkdc. \end{align*} $$
But 
 $\det (\tilde {a}(cX))=(1+X^2|c|^2)^{-r/2}=\det (a(ck^{-1}X))$
 for all
$\det (\tilde {a}(cX))=(1+X^2|c|^2)^{-r/2}=\det (a(ck^{-1}X))$
 for all 
 $k\in \mathrm {O}_{r-1}(\mathbb {R})$
. Using that, we can move the integral over
$k\in \mathrm {O}_{r-1}(\mathbb {R})$
. Using that, we can move the integral over 
 $\mathrm {O_{r-1}(\mathbb {R})}$
 to couple with the integral over
$\mathrm {O_{r-1}(\mathbb {R})}$
 to couple with the integral over 
 $A_{r-1}(\mathbb {R})$
 to obtain an integral over
$A_{r-1}(\mathbb {R})$
 to obtain an integral over 
 $N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R})$
. Then, once again appealing to the invariance of the unitary product, we obtain
$N_{r-1}(\mathbb {R})\backslash \mathrm {GL}_{r-1}(\mathbb {R})$
. Then, once again appealing to the invariance of the unitary product, we obtain 
 $$ \begin{align*}A=\|\tilde{W}_0\|^2_{\tilde{\pi}_0}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\log|\det(\tilde{a}(cX))|dc.\end{align*} $$
$$ \begin{align*}A=\|\tilde{W}_0\|^2_{\tilde{\pi}_0}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\log|\det(\tilde{a}(cX))|dc.\end{align*} $$
Note that
 $$ \begin{align*} &\log|\det(\tilde{a}(cX))|=-\frac{r}{2}\log(1+X^2|c|^2)\\ &=-\frac{r}{2}\log(1+X^2)+O(\log(1+|c|^2))=-r\log X+O_\epsilon((1+|c|)^\epsilon). \end{align*} $$
$$ \begin{align*} &\log|\det(\tilde{a}(cX))|=-\frac{r}{2}\log(1+X^2|c|^2)\\ &=-\frac{r}{2}\log(1+X^2)+O(\log(1+|c|^2))=-r\log X+O_\epsilon((1+|c|)^\epsilon). \end{align*} $$
Using the Iwasawa decomposition and transformation property of 
 $\hat {f}_{1/2}$
 as in equation (2.3), similar to the second case, we obtain
$\hat {f}_{1/2}$
 as in equation (2.3), similar to the second case, we obtain 
 $$ \begin{align*} &A+r\log X\|\tilde{W}_0\|^2_{\tilde{\pi}_0}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\\ &\ll_{\tilde{W}_0,\epsilon}\|\hat{f}_{1/2}\|^2_{L^\infty(K_\infty)}\int_{\mathbb{R}^{r-1}}(1+|c|^2)^{-r/2+\epsilon}dc\ll_{\Phi,\tilde{W}_0}1. \end{align*} $$
$$ \begin{align*} &A+r\log X\|\tilde{W}_0\|^2_{\tilde{\pi}_0}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\\ &\ll_{\tilde{W}_0,\epsilon}\|\hat{f}_{1/2}\|^2_{L^\infty(K_\infty)}\int_{\mathbb{R}^{r-1}}(1+|c|^2)^{-r/2+\epsilon}dc\ll_{\Phi,\tilde{W}_0}1. \end{align*} $$
Working as in the proof of Lemma 5.1, we check that
 $$ \begin{align*}\|\tilde{W}_0\|^2_{\tilde{\pi}_0}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc=\|W_0f_{1/2}\|^2.\end{align*} $$
$$ \begin{align*}\|\tilde{W}_0\|^2_{\tilde{\pi}_0}\int_{\mathbb{R}^{r-1}}|\hat{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc=\|W_0f_{1/2}\|^2.\end{align*} $$
Thus we obtain
 $$ \begin{align} A=-r\log X\|W_0f_{1/2}\|^2+O_{W_0,f}(1). \end{align} $$
$$ \begin{align} A=-r\log X\|W_0f_{1/2}\|^2+O_{W_0,f}(1). \end{align} $$
Now we prove that B is of bounded size. To prove that, we first claim that
 $$ \begin{align*}\int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\tilde{k}(cX)\begin{pmatrix}k&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}\ll_{\tilde{W}_0}1\end{align*} $$
$$ \begin{align*}\int_{A_{r-1}(\mathbb{R})}|\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\tilde{k}(cX)\begin{pmatrix}k&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}\ll_{\tilde{W}_0}1\end{align*} $$
uniformly in c. We assume the claim. Now note that
 $$ \begin{align*}\delta(\tilde{a}(cX))=\frac{(1+X^2|c|^2)^{r/2-1}}{\prod_{i=1}^{r-2}(1+c_1^2X^2+\dots+c_i^2X^2)}\ll \frac{X^{r-2}(1+|c|^2)^{r/2-1}}{\prod_{i=1}^{r-2}(1+c_i^2X^2)}.\end{align*} $$
$$ \begin{align*}\delta(\tilde{a}(cX))=\frac{(1+X^2|c|^2)^{r/2-1}}{\prod_{i=1}^{r-2}(1+c_1^2X^2+\dots+c_i^2X^2)}\ll \frac{X^{r-2}(1+|c|^2)^{r/2-1}}{\prod_{i=1}^{r-2}(1+c_i^2X^2)}.\end{align*} $$
We use the Iwasawa decomposition and work as before. Using transformation of 
 $\hat {f}_{1/2}$
 as in equation (2.3), we thus get
$\hat {f}_{1/2}$
 as in equation (2.3), we thus get 
 $$ \begin{align*} B&\ll_{W_0,f} \int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}(1+|ck|^2)^{-r/2}\frac{X^{r-2}(1+|c|^2)^{r/2-1}}{\prod_{i=1}^{r-2}(1+c_i^2X^2)}dcdk\\ &\ll \int_{\mathbb{R}^{r-1}}\prod_{i=1}^{r-1}(1+c_i^2)^{-1}dc, \end{align*} $$
$$ \begin{align*} B&\ll_{W_0,f} \int_{\mathrm{O}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}(1+|ck|^2)^{-r/2}\frac{X^{r-2}(1+|c|^2)^{r/2-1}}{\prod_{i=1}^{r-2}(1+c_i^2X^2)}dcdk\\ &\ll \int_{\mathbb{R}^{r-1}}\prod_{i=1}^{r-1}(1+c_i^2)^{-1}dc, \end{align*} $$
which we obtain by noting that 
 $|ck|=|c|$
 for
$|ck|=|c|$
 for 
 $k\in \mathrm {O}_{r-1}(\mathbb {R})$
 and making the change of variables
$k\in \mathrm {O}_{r-1}(\mathbb {R})$
 and making the change of variables 
 $c_i\mapsto c_i/X$
 for
$c_i\mapsto c_i/X$
 for 
 $i\le r-2$
. It is easy to see that the above integral is convergent, which yields that
$i\le r-2$
. It is easy to see that the above integral is convergent, which yields that 
 $$ \begin{align*}B=O_{W_0,f}(1).\end{align*} $$
$$ \begin{align*}B=O_{W_0,f}(1).\end{align*} $$
 Now, to prove the claim above, let 
 $\omega :=\tilde {k}(cX)\begin {pmatrix}k&\\&1\end {pmatrix}\in K_\infty $
 implicitly depending on
$\omega :=\tilde {k}(cX)\begin {pmatrix}k&\\&1\end {pmatrix}\in K_\infty $
 implicitly depending on 
 $cX$
. Note that from Lemma 7.2, we get that
$cX$
. Note that from Lemma 7.2, we get that 
 $$ \begin{align*}\tilde{\pi}_0(\omega)\tilde{W}_0\left[\begin{pmatrix}a(y)&\\&1\end{pmatrix}\right]\ll_{\epsilon,M,W_0}\delta^{1/2-\epsilon}(a(y))|\det(a(y))|^{1/2-\vartheta_0-\epsilon}\prod_{i=1}^{r-1}\min(1,|y_i|^{-M}).\end{align*} $$
$$ \begin{align*}\tilde{\pi}_0(\omega)\tilde{W}_0\left[\begin{pmatrix}a(y)&\\&1\end{pmatrix}\right]\ll_{\epsilon,M,W_0}\delta^{1/2-\epsilon}(a(y))|\det(a(y))|^{1/2-\vartheta_0-\epsilon}\prod_{i=1}^{r-1}\min(1,|y_i|^{-M}).\end{align*} $$
Thus we obtain
 $$ \begin{align*} &\int_{A_{r-1}(\mathbb{R})}|\tilde{\pi}_0(\omega)\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}\\ &\ll_{W_0,\eta,M}\int_{(\mathbb{R}^\times)^ {r-1}}\prod_{i=1}^{r-1}\min(1,|y_i|^{-M})|\det(a(y))|^{1-2\vartheta_0-\epsilon}(|\det(a(y))|^\epsilon+|\det(a(y))|^{-\epsilon})\prod_{i}d^\times y_i. \end{align*} $$
$$ \begin{align*} &\int_{A_{r-1}(\mathbb{R})}|\tilde{\pi}_0(\omega)\tilde{W}_{0}|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}\\ &\ll_{W_0,\eta,M}\int_{(\mathbb{R}^\times)^ {r-1}}\prod_{i=1}^{r-1}\min(1,|y_i|^{-M})|\det(a(y))|^{1-2\vartheta_0-\epsilon}(|\det(a(y))|^\epsilon+|\det(a(y))|^{-\epsilon})\prod_{i}d^\times y_i. \end{align*} $$
Employing the bound of 
 $\vartheta _0$
 from the statement of Theorem 2.1, we check that the above integral is convergent for large enough M and sufficiently small
$\vartheta _0$
 from the statement of Theorem 2.1, we check that the above integral is convergent for large enough M and sufficiently small 
 $\epsilon>0$
, which yields the claim.
$\epsilon>0$
, which yields the claim.
Remark 5.4. In the very last estimate of the proof of Lemma 5.3, we can only prove that the integral of the Whittaker function is of bounded size. It is not clear to us if or how one can improve the estimate to be a constant plus a power-saving error term. This would potentially explicate the constant term of the asymptotic expansion in Theorem 2.1 with a power-saving error term; see Remark 1.4.
Lemma 5.5. We have
 $$ \begin{align*} \partial_{s=0}\Psi_\infty(\overline{f_{1/2,\infty}}f_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}})=(r-1)\log X\|W_{0,\infty}f_{1/2,\infty}\|^2+O_{W_{0,\infty},\Phi_\infty}(1) \end{align*} $$
$$ \begin{align*} \partial_{s=0}\Psi_\infty(\overline{f_{1/2,\infty}}f_{1/2+s,\infty}(.x_\infty),W_{0,\infty},\overline{W_{0,\infty}})=(r-1)\log X\|W_{0,\infty}f_{1/2,\infty}\|^2+O_{W_{0,\infty},\Phi_\infty}(1) \end{align*} $$
as X tends to infinity.
Proof. The proof of this lemma is very similar to (and easier than) the proof of Lemma 5.3. We first write 
 $\Psi (\overline {f_{1/2}}f_{1/2+s}(.x),W_{0},\overline {W_{0}})$
 as
$\Psi (\overline {f_{1/2}}f_{1/2+s}(.x),W_{0},\overline {W_{0}})$
 as 
 $$ \begin{align*}X^{(r-1)s}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\overline{{f}_{1/2}}{f}_{1/2+s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc|\det(h)|^s{dh}.\end{align*} $$
$$ \begin{align*}X^{(r-1)s}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\overline{{f}_{1/2}}{f}_{1/2+s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc|\det(h)|^s{dh}.\end{align*} $$
Note that the 
 $s=0$
 derivative in the the statement of this lemma can be computed exactly the same as we did in the calculation of equation (5.5) of Lemma 5.3 and can be seen equal to
$s=0$
 derivative in the the statement of this lemma can be computed exactly the same as we did in the calculation of equation (5.5) of Lemma 5.3 and can be seen equal to 
 $$ \begin{align} &(r-1)\log X\int_{\mathbb{R}^{r-1}}|{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]dhdc\nonumber\\ &\qquad\qquad +\int_{\mathbb{R}^{r-1}}\overline{{f}_{1/2}}\partial_{s=0}{f}_{1/2+s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]dhdc\nonumber\\ &\qquad\qquad \quad+\int_{\mathbb{R}^{r-1}}|{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\log|\det(h)|dhdc. \end{align} $$
$$ \begin{align} &(r-1)\log X\int_{\mathbb{R}^{r-1}}|{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]dhdc\nonumber\\ &\qquad\qquad +\int_{\mathbb{R}^{r-1}}\overline{{f}_{1/2}}\partial_{s=0}{f}_{1/2+s}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]dhdc\nonumber\\ &\qquad\qquad \quad+\int_{\mathbb{R}^{r-1}}|{f}_{1/2}|^2\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\log|\det(h)|dhdc. \end{align} $$
Exactly as in the proof of Lemma 5.3, we can check (for example, changing 
 $\hat {f}_{1/2-s}$
 to
$\hat {f}_{1/2-s}$
 to 
 $f_{1/2+s}$
 and
$f_{1/2+s}$
 and 
 $\tilde {W}_0$
 to
$\tilde {W}_0$
 to 
 $W_0$
) that the first and second summands in equation (5.8) are
$W_0$
) that the first and second summands in equation (5.8) are 
 $$ \begin{align*}(r-1)\log X\|W_0f_{1/2}\|^2\end{align*} $$
$$ \begin{align*}(r-1)\log X\|W_0f_{1/2}\|^2\end{align*} $$
and 
 $O_{W_0,f}(1)$
, respectively. We claim that the third summand in equation (5.8) is also
$O_{W_0,f}(1)$
, respectively. We claim that the third summand in equation (5.8) is also 
 $O_{W_0,f}(1)$
, which yields the lemma.
$O_{W_0,f}(1)$
, which yields the lemma.
 From the relation between f and 
 $\Phi $
 from equation (2.2), we write
$\Phi $
 from equation (2.2), we write 
 $$ \begin{align*}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]=\int_{\mathbb{R}^\times}\Phi(t(c,1))|t|^{r/2}d^\times t.\end{align*} $$
$$ \begin{align*}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]=\int_{\mathbb{R}^\times}\Phi(t(c,1))|t|^{r/2}d^\times t.\end{align*} $$
Recall the choice of 
 $\Phi $
 in Section 4.1. Support of
$\Phi $
 in Section 4.1. Support of 
 $\Phi $
 being on
$\Phi $
 being on 
 $B_\tau (0,\dots ,0,1)$
 implies that in the above integral,
$B_\tau (0,\dots ,0,1)$
 implies that in the above integral, 
 $t\asymp 1$
 and hence
$t\asymp 1$
 and hence 
 $c\ll 1$
. Below, we show that
$c\ll 1$
. Below, we show that 
 $$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\log|\det(h)|dh\ll_{W_0} 1,\end{align*} $$
$$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|{W}_{0}|^2\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\log|\det(h)|dh\ll_{W_0} 1,\end{align*} $$
which clearly implies our claim above.
 We write 
 $h=ak$
 in Iwasawa coordinates and let
$h=ak$
 in Iwasawa coordinates and let 
 $\omega :=\begin {pmatrix}k&\\c/X&1\end {pmatrix}$
. Note that as
$\omega :=\begin {pmatrix}k&\\c/X&1\end {pmatrix}$
. Note that as 
 $k\in \mathrm {O}_{r-1}(\mathbb {R})$
 and
$k\in \mathrm {O}_{r-1}(\mathbb {R})$
 and 
 $c/X\ll 1$
, there exists a fixed compact set
$c/X\ll 1$
, there exists a fixed compact set 
 $\Omega \in G(\mathbb {R})$
 such that
$\Omega \in G(\mathbb {R})$
 such that 
 $\omega \in \Omega $
 for all relevant c and k. Thus it is enough to show that
$\omega \in \Omega $
 for all relevant c and k. Thus it is enough to show that 
 $$ \begin{align*}\int_{A_{r-1}(\mathbb{R})}|\pi_0(\omega)W_0|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}\ll_{W_0,\Omega} 1.\end{align*} $$
$$ \begin{align*}\int_{A_{r-1}(\mathbb{R})}|\pi_0(\omega)W_0|^2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\log|\det(a)|\frac{da}{\delta(a)}\ll_{W_0,\Omega} 1.\end{align*} $$
This can be done similarly as we did at the end of the proof of Lemma 5.3.
6 Analysis of the regularised term in the period side
 Let 
 $s\in \mathbb {C}$
 with sufficiently small
$s\in \mathbb {C}$
 with sufficiently small 
 $\Re (s)$
. Recall the regularised Eisenstein series
$\Re (s)$
. Recall the regularised Eisenstein series 
 $\tilde {E}_s$
 from equation (4.9). The main proposition of this section is the following.
$\tilde {E}_s$
 from equation (4.9). The main proposition of this section is the following.
Proposition 6.1. 
 $\tilde {E}_s$
 is holomorphic in a sufficiently small neighbourhood of
$\tilde {E}_s$
 is holomorphic in a sufficiently small neighbourhood of 
 $s=0$
 and is integrable on
$s=0$
 and is integrable on 
 $\mathbb {X}$
.
$\mathbb {X}$
.
 Note from the definition in equation (4.9) that 
 $\tilde {E}_s$
 is holomorphic in a punctured neighbourhood of
$\tilde {E}_s$
 is holomorphic in a punctured neighbourhood of 
 $s=0$
. Thus it is enough to prove that
$s=0$
. Thus it is enough to prove that 
 $\tilde {E}_s$
 is holomorphic at
$\tilde {E}_s$
 is holomorphic at 
 $s=0$
. Recall the description of the poles of the maximal Eisenstein series in Section 2.4. We know, in particular,
$s=0$
. Recall the description of the poles of the maximal Eisenstein series in Section 2.4. We know, in particular, 
 $\overline {\mathrm {Eis}(f_{1/2})}\mathrm {Eis}(f_{1/2+s})$
 is holomorphic at
$\overline {\mathrm {Eis}(f_{1/2})}\mathrm {Eis}(f_{1/2+s})$
 is holomorphic at 
 $s=0$
, and we thus only need to show the following.
$s=0$
, and we thus only need to show the following.
Lemma 6.2. For fixed 
 $g\in \mathbb {X}$
,
$g\in \mathbb {X}$
, 
 $$ \begin{align*}\mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(g)+\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(g)\end{align*} $$
$$ \begin{align*}\mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(g)+\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(g)\end{align*} $$
is holomorphic at 
 $s=0$
.
$s=0$
.
Proof. Our argument is to show that the residues R and 
 $\tilde {R}$
 (which are independent of g) at the simple poles at
$\tilde {R}$
 (which are independent of g) at the simple poles at 
 $s=0$
 of
$s=0$
 of 
 $\mathrm {Eis}(\overline {f_{1/2}}f_{1/2+s})$
 and
$\mathrm {Eis}(\overline {f_{1/2}}f_{1/2+s})$
 and 
 $\mathrm {Eis}(\overline {\tilde {f}_{1/2}}\tilde {f}_{1/2+s})$
, respectively, cancel each other.
$\mathrm {Eis}(\overline {\tilde {f}_{1/2}}\tilde {f}_{1/2+s})$
, respectively, cancel each other.
 Let 
 $\phi _0$
 be the cusp form as we have chosen in Section 4.1. From equation (5.2), we get
$\phi _0$
 be the cusp form as we have chosen in Section 4.1. From equation (5.2), we get 
 $$ \begin{align*} R\|\phi_0\|^2_{2}&=\mathrm{Res}_{s=0}\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})\rangle\\ &=\frac{\zeta(r/2)^2}{\zeta(r)}L(1,\pi_0,\mathrm{Ad}) \Psi_\infty(|f_{1/2,\infty}|^2,W_{0,\infty},\overline{W_{0,\infty}}). \end{align*} $$
$$ \begin{align*} R\|\phi_0\|^2_{2}&=\mathrm{Res}_{s=0}\langle |\phi_0|^2, \mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})\rangle\\ &=\frac{\zeta(r/2)^2}{\zeta(r)}L(1,\pi_0,\mathrm{Ad}) \Psi_\infty(|f_{1/2,\infty}|^2,W_{0,\infty},\overline{W_{0,\infty}}). \end{align*} $$
Similarly, from equation (5.3), we get
 $$ \begin{align*} \tilde{R}\|\phi_0\|^2_{2}&=\mathrm{Res}_{s=0}\langle |\phi_0|^2, \mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})\rangle \\ &= -\frac{\zeta(r/2)^2}{\zeta(r)}L(1,\pi_0,\mathrm{Ad})\Psi_\infty(|\tilde{f}_{1/2,\infty}|^2,W_{0,\infty},\overline{W_{0,\infty}}). \end{align*} $$
$$ \begin{align*} \tilde{R}\|\phi_0\|^2_{2}&=\mathrm{Res}_{s=0}\langle |\phi_0|^2, \mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})\rangle \\ &= -\frac{\zeta(r/2)^2}{\zeta(r)}L(1,\pi_0,\mathrm{Ad})\Psi_\infty(|\tilde{f}_{1/2,\infty}|^2,W_{0,\infty},\overline{W_{0,\infty}}). \end{align*} $$
From Lemma 5.1 with 
 $x_\infty =1$
 (and the equation preceding Lemma 5.1), we conclude that the
$x_\infty =1$
 (and the equation preceding Lemma 5.1), we conclude that the 
 $\Psi _\infty $
 factors in the above expressions of R and
$\Psi _\infty $
 factors in the above expressions of R and 
 $\tilde {R}$
 are equal.
$\tilde {R}$
 are equal.
 Now we prove some preparatory lemmata to prove the integrability of 
 $\tilde {E}_s$
 on
$\tilde {E}_s$
 on 
 $\mathbb {X}$
. We actually show that
$\mathbb {X}$
. We actually show that 
 $\tilde {E}_s$
 is integrable in the Siegel domain
$\tilde {E}_s$
 is integrable in the Siegel domain 
 $\mathbb {S}$
 as in equation (2.1), which contains
$\mathbb {S}$
 as in equation (2.1), which contains 
 $\mathbb {X}$
. Let
$\mathbb {X}$
. Let 
 $g\in \mathbb {S}$
 with
$g\in \mathbb {S}$
 with 
 $g=(g_\infty ,k_f)$
, where
$g=(g_\infty ,k_f)$
, where 
 $g_\infty =n_\infty \begin {pmatrix}a(y_\infty )&\\&1\end {pmatrix}k_\infty \in G(\mathbb {R})$
 in Iwasawa coordinates and
$g_\infty =n_\infty \begin {pmatrix}a(y_\infty )&\\&1\end {pmatrix}k_\infty \in G(\mathbb {R})$
 in Iwasawa coordinates and 
 $k_f\in K_f:=\prod _{p<\infty }K_p$
. As
$k_f\in K_f:=\prod _{p<\infty }K_p$
. As 
 $g\in \mathbb {S}$
, we have
$g\in \mathbb {S}$
, we have 
 $y_{j,\infty }\gg 1$
. We recall the quantities in Proposition 3.3 from Section 3.
$y_{j,\infty }\gg 1$
. We recall the quantities in Proposition 3.3 from Section 3.
Lemma 6.3. Suppose that 
 $i<r$
. Let
$i<r$
. Let 
 $s\in \mathbb {C}$
 be away from a pole of
$s\in \mathbb {C}$
 be away from a pole of 
 $M_i^0f_s$
 with
$M_i^0f_s$
 with 
 $|\Re (s)|<2$
. Then
$|\Re (s)|<2$
. Then 
 $$ \begin{align*}\|M_i^0f_s\|_{L^\infty(K)}\ll 1.\\[-15pt]\end{align*} $$
$$ \begin{align*}\|M_i^0f_s\|_{L^\infty(K)}\ll 1.\\[-15pt]\end{align*} $$
Further, let 
 $\mathbb {R}^\times \times K_f\ni (y_\infty ,1)=:y$
. Then for all
$\mathbb {R}^\times \times K_f\ni (y_\infty ,1)=:y$
. Then for all 
 $k\in K$
 and s with
$k\in K$
 and s with 
 $|\Re (s)|<2$
,
$|\Re (s)|<2$
, 
 $$ \begin{align*}\sum_{q\in\mathbb{Q}^\times}W_{f_s}^i(qy,k)\ll_{N} |y_\infty|^{-N},\\[-15pt]\end{align*} $$
$$ \begin{align*}\sum_{q\in\mathbb{Q}^\times}W_{f_s}^i(qy,k)\ll_{N} |y_\infty|^{-N},\\[-15pt]\end{align*} $$
where the sum in the left-hand side converges absolutely.
Proof. In this proof, we assume that 
 $\Phi \in \mathcal {S}(\mathbb {A}^r)$
 is an arbitrary Schwartz function. We get that for
$\Phi \in \mathcal {S}(\mathbb {A}^r)$
 is an arbitrary Schwartz function. We get that for 
 $k\in K$
,
$k\in K$
, 
 $$ \begin{align*}M_i^0f_s(k)=\int_{\mathbb{A}^{r-i}}\int_{\mathbb{A}^\times}(k.\Phi)(0,t,x)|t|^{rs-r+i}d^\times t\ll\int_{|x|,|t|\ll 1}|t|^{rs-r+i}d^\times t dx\ll_{K,\Re(s)}1,\end{align*} $$
$$ \begin{align*}M_i^0f_s(k)=\int_{\mathbb{A}^{r-i}}\int_{\mathbb{A}^\times}(k.\Phi)(0,t,x)|t|^{rs-r+i}d^\times t\ll\int_{|x|,|t|\ll 1}|t|^{rs-r+i}d^\times t dx\ll_{K,\Re(s)}1,\end{align*} $$
if 
 $\Re (s)$
 is sufficiently large. On the other hand, using the Tate functional equation and working similarly, we obtain
$\Re (s)$
 is sufficiently large. On the other hand, using the Tate functional equation and working similarly, we obtain 
 $$ \begin{align*}M_i^0f_s(k)=\int_{\mathbb{A}^\times}\widehat{(k.\Phi)}^i(te_i)|t|^{r-i+1-rs}\ll_{K,\Re(s)} 1,\\[-15pt]\end{align*} $$
$$ \begin{align*}M_i^0f_s(k)=\int_{\mathbb{A}^\times}\widehat{(k.\Phi)}^i(te_i)|t|^{r-i+1-rs}\ll_{K,\Re(s)} 1,\\[-15pt]\end{align*} $$
if 
 $\Re (s)$
 is sufficiently negative. Using the Phragmén–Lindelöf convexity principle and the compactness of K, we deduce the first claim.
$\Re (s)$
 is sufficiently negative. Using the Phragmén–Lindelöf convexity principle and the compactness of K, we deduce the first claim.
 Let 
 $z\in \mathbb {A}$
 and
$z\in \mathbb {A}$
 and 
 $k\in K$
. Following a similar computation after equation (3.4) in Section 3, we get that
$k\in K$
. Following a similar computation after equation (3.4) in Section 3, we get that 
 $$ \begin{align*}W^i_{f_s}(z,k)=\int_{\mathbb{A}^{r-i}}\int_{\mathbb{A}^\times}(k.\Phi)(0,t,x)\overline{\psi_0(zx_1/t)}|t|^{rs-r+i}d^\times t dx.\\[-15pt]\end{align*} $$
$$ \begin{align*}W^i_{f_s}(z,k)=\int_{\mathbb{A}^{r-i}}\int_{\mathbb{A}^\times}(k.\Phi)(0,t,x)\overline{\psi_0(zx_1/t)}|t|^{rs-r+i}d^\times t dx.\\[-15pt]\end{align*} $$
This converges absolutely if 
 $\Re (s)$
 is sufficiently large.
$\Re (s)$
 is sufficiently large.
 We first concentrate on the 
 $x_1$
 integral. In the archimedean component of this integral, we integrate by parts with respect to the
$x_1$
 integral. In the archimedean component of this integral, we integrate by parts with respect to the 
 $x_{1,\infty }$
 variable. This yields that the archimedean integral is bounded by
$x_{1,\infty }$
 variable. This yields that the archimedean integral is bounded by 
 $\ll _N|z_\infty |^{-N}|t_\infty |^{N}$
 for all large N.
$\ll _N|z_\infty |^{-N}|t_\infty |^{N}$
 for all large N.
 In the p-adic component, we note that compact support of 
 $\Phi _p$
 forces
$\Phi _p$
 forces 
 $x_{1,p}$
 to vary over a compact space. This implies that the p-adic integral vanishes unless
$x_{1,p}$
 to vary over a compact space. This implies that the p-adic integral vanishes unless 
 $|z_p/t_p|\ll 1$
. However, the support condition of
$|z_p/t_p|\ll 1$
. However, the support condition of 
 $\Phi _p$
 ensures that
$\Phi _p$
 ensures that 
 $|t_p|\ll 1$
, which in turn restricts
$|t_p|\ll 1$
, which in turn restricts 
 $z_p$
 to be of bounded size.
$z_p$
 to be of bounded size.
 Thus we can analytically continue the integral representation of 
 $W^i_{f_s}$
 to
$W^i_{f_s}$
 to 
 $\Re (s)$
 sufficiently negative, but fixed. Altogether, estimating the integrals as before, we obtain if
$\Re (s)$
 sufficiently negative, but fixed. Altogether, estimating the integrals as before, we obtain if 
 $\Re (s)\ge -2$
; then for sufficiently large N, we have
$\Re (s)\ge -2$
; then for sufficiently large N, we have 
 $$ \begin{align*}W_{f_s}^i(z,k)\ll_{K,N}|z_\infty|^{-N}\prod_{p<\infty}\mathrm{char}_{|z_p|\ll 1}.\\[-15pt]\end{align*} $$
$$ \begin{align*}W_{f_s}^i(z,k)\ll_{K,N}|z_\infty|^{-N}\prod_{p<\infty}\mathrm{char}_{|z_p|\ll 1}.\\[-15pt]\end{align*} $$
Thus for 
 $q\in \mathbb {Q}^\times $
 and y as in the statement of this lemma, we have
$q\in \mathbb {Q}^\times $
 and y as in the statement of this lemma, we have 
 $$ \begin{align*}W_{f_s}^i(qy,k)\ll_{K,N}|y_\infty q_\infty|^{-N},\\[-15pt]\end{align*} $$
$$ \begin{align*}W_{f_s}^i(qy,k)\ll_{K,N}|y_\infty q_\infty|^{-N},\\[-15pt]\end{align*} $$
if the denominator of q is bounded; otherwise, the above is zero. Thus the sum over 
 $q\in \mathbb {Q}^\times $
 is absolutely convergent for sufficiently large N. We conclude using the compactness of K.
$q\in \mathbb {Q}^\times $
 is absolutely convergent for sufficiently large N. We conclude using the compactness of K.
Lemma 6.4. Let 
 $g\in \mathbb {S}$
 and
$g\in \mathbb {S}$
 and 
 $s\in \mathbb {C}$
 with sufficiently small
$s\in \mathbb {C}$
 with sufficiently small 
 $\Re (s)$
. Then
$\Re (s)$
. Then 
 $$ \begin{align*}\overline{\mathrm{Eis}(f_{1/2})(g)}\mathrm{Eis}(f_{1/2+s})(g)-\overline{f_{1/2}(g)}f_{1/2+s}(g)-\overline{\tilde{f}_{1/2}(g)}\tilde{f}_{1/2+s}(g)\ll\delta^{1-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\\[-15pt]\end{align*} $$
$$ \begin{align*}\overline{\mathrm{Eis}(f_{1/2})(g)}\mathrm{Eis}(f_{1/2+s})(g)-\overline{f_{1/2}(g)}f_{1/2+s}(g)-\overline{\tilde{f}_{1/2}(g)}\tilde{f}_{1/2+s}(g)\ll\delta^{1-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\\[-15pt]\end{align*} $$
for some 
 $\eta>0$
.
$\eta>0$
.
Proof. Recall that
 $$ \begin{align*}\delta\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]=\prod_{j=1}^{r-1}|y_{j,\infty}|^{j(r-j)}.\\[-15pt]\end{align*} $$
$$ \begin{align*}\delta\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]=\prod_{j=1}^{r-1}|y_{j,\infty}|^{j(r-j)}.\\[-15pt]\end{align*} $$
Note that 
 $y_{j,\infty }\gg 1$
 as
$y_{j,\infty }\gg 1$
 as 
 $g\in \mathbb {S}$
. Thus it is enough the show that the exponents of
$g\in \mathbb {S}$
. Thus it is enough the show that the exponents of 
 $|y_{j,\infty }|$
 arising in the left-hand side in the expression in the lemma are less than
$|y_{j,\infty }|$
 arising in the left-hand side in the expression in the lemma are less than 
 $j(r-j)$
.
$j(r-j)$
.
 We recall equation (3.4) and for 
 $1<i<r$
 write
$1<i<r$
 write 
 $$ \begin{align*} H^i_s(g):&=\sum_{q\in\mathbb{Q}}M_i^qf_{1/2+s}(g)\\&=M_i^{0}f_{1/2+s}(g)+\sum_{q\in\mathbb{Q}^\times}\psi_{i(q)}(n_1)\prod_{j=1}^{i-1}|y_j|^{(1/2+s)j}\prod_{j=i}^{r-1}|y_j|^{(1/2-s)(r-j)}W^i_{f_{1/2+s}}(qy_i,k),\\[-15pt] \end{align*} $$
$$ \begin{align*} H^i_s(g):&=\sum_{q\in\mathbb{Q}}M_i^qf_{1/2+s}(g)\\&=M_i^{0}f_{1/2+s}(g)+\sum_{q\in\mathbb{Q}^\times}\psi_{i(q)}(n_1)\prod_{j=1}^{i-1}|y_j|^{(1/2+s)j}\prod_{j=i}^{r-1}|y_j|^{(1/2-s)(r-j)}W^i_{f_{1/2+s}}(qy_i,k),\\[-15pt] \end{align*} $$
where 
 $n_1$
 is a unipotent element as in Section 2.4. Using Lemma 6.3, we obtain that
$n_1$
 is a unipotent element as in Section 2.4. Using Lemma 6.3, we obtain that 
 $$ \begin{align*} H^i_s(g)\ll \prod_{j=1}^{i-1}|y_{j,\infty}|^{(1/2+\Re(s))j}\prod_{j=i}^{r-1}|y_{j,\infty}|^{(1/2-\Re(s))(r-j)}.\\[-15pt] \end{align*} $$
$$ \begin{align*} H^i_s(g)\ll \prod_{j=1}^{i-1}|y_{j,\infty}|^{(1/2+\Re(s))j}\prod_{j=i}^{r-1}|y_{j,\infty}|^{(1/2-\Re(s))(r-j)}.\\[-15pt] \end{align*} $$
On the other hand, we similarly obtain
 $$ \begin{align*} H^1_s(g):=\sum_{q\in\mathbb{Q}^\times}M_1^qf_{1/2+s}(g)\ll_{K,N} \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1/2-\Re(s))(r-j)-N\delta_{j=1}}.\\[-15pt] \end{align*} $$
$$ \begin{align*} H^1_s(g):=\sum_{q\in\mathbb{Q}^\times}M_1^qf_{1/2+s}(g)\ll_{K,N} \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1/2-\Re(s))(r-j)-N\delta_{j=1}}.\\[-15pt] \end{align*} $$
We also record that
 $$ \begin{align*}f_{1/2+s}(g)\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1/2+\Re(s))j}\\[-15pt]\end{align*} $$
$$ \begin{align*}f_{1/2+s}(g)\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1/2+\Re(s))j}\\[-15pt]\end{align*} $$
and
 $$ \begin{align*}\tilde{f}_{1/2+s}(g)\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1/2-\Re(s))(r-j)}.\\[-15pt]\end{align*} $$
$$ \begin{align*}\tilde{f}_{1/2+s}(g)\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1/2-\Re(s))(r-j)}.\\[-15pt]\end{align*} $$
We use Lemma 3.2 to rewrite
 $$ \begin{align*}\mathrm{Eis}(f_{1/2+s})(g)=f_{1/2+s}(g)+\tilde{f}_{1/2+s}(g)+H^1_{s}(g)+\sum_{1<i<r}H_s^i(g).\\[-15pt]\end{align*} $$
$$ \begin{align*}\mathrm{Eis}(f_{1/2+s})(g)=f_{1/2+s}(g)+\tilde{f}_{1/2+s}(g)+H^1_{s}(g)+\sum_{1<i<r}H_s^i(g).\\[-15pt]\end{align*} $$
After multiplying 
 $\overline {\mathrm {Eis}(f_{1/2})}$
 and
$\overline {\mathrm {Eis}(f_{1/2})}$
 and 
 $\mathrm {Eis}(f_{1/2+s})$
 using the above expression and subtracting the terms
$\mathrm {Eis}(f_{1/2+s})$
 using the above expression and subtracting the terms 
 $\overline {f_{1/2}}f_{1/2+s}$
, and
$\overline {f_{1/2}}f_{1/2+s}$
, and 
 $\overline {\tilde {f}_{1/2}}\tilde {f}_{1/2+s}$
, we are left with the following type of terms whose bounds are given below:
$\overline {\tilde {f}_{1/2}}\tilde {f}_{1/2+s}$
, we are left with the following type of terms whose bounds are given below: 
 $$ \begin{align*}\overline{f_{1/2}}\tilde{f}_{1/2+s}(g)\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{r/2-(r-j)\Re(s)}.\\[-15pt]\end{align*} $$
$$ \begin{align*}\overline{f_{1/2}}\tilde{f}_{1/2+s}(g)\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{r/2-(r-j)\Re(s)}.\\[-15pt]\end{align*} $$
If we replace the left-hand side above with 
 $\overline {\tilde {f}_{1/2}}{f}_{1/2+s}(g)$
, then a similar inequality holds, with the exponent in the right-hand side being
$\overline {\tilde {f}_{1/2}}{f}_{1/2+s}(g)$
, then a similar inequality holds, with the exponent in the right-hand side being 
 $r/2+j\Re (s)$
. In any case, for sufficiently small
$r/2+j\Re (s)$
. In any case, for sufficiently small 
 $\Re (s)$
 and
$\Re (s)$
 and 
 $r\ge 3$
, we have
$r\ge 3$
, we have 
 $$ \begin{align*}r/2+r|\Re(s)|<j(r-j),\quad 1\le j<r.\end{align*} $$
$$ \begin{align*}r/2+r|\Re(s)|<j(r-j),\quad 1\le j<r.\end{align*} $$
A similar estimate can be done for 
 $\overline {f_{1/2}}H^1_s(g)$
. Next we check that
$\overline {f_{1/2}}H^1_s(g)$
. Next we check that 
 $$ \begin{align*}\overline{H^1_0(g)}\tilde{f}_{1/2+s}\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1-\Re(s))(r-j)-N\delta_{j=1}}.\end{align*} $$
$$ \begin{align*}\overline{H^1_0(g)}\tilde{f}_{1/2+s}\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1-\Re(s))(r-j)-N\delta_{j=1}}.\end{align*} $$
A similar estimate can be obtained if we replace 
 $\tilde {f}_{1/2+s}$
 by
$\tilde {f}_{1/2+s}$
 by 
 $H^1_s$
 on the left-hand side above. Clearly, for sufficiently small
$H^1_s$
 on the left-hand side above. Clearly, for sufficiently small 
 $\Re (s)$
, we have
$\Re (s)$
, we have 
 $$ \begin{align*}(1-\Re(s))(r-j)-N\delta_{j=1}<j(r-j).\end{align*} $$
$$ \begin{align*}(1-\Re(s))(r-j)-N\delta_{j=1}<j(r-j).\end{align*} $$
Finally, for 
 $1<i<r$
, the exponent of
$1<i<r$
, the exponent of 
 $y_{j,\infty }$
 of
$y_{j,\infty }$
 of 
 $\overline {H^i_0}$
 is
$\overline {H^i_0}$
 is 
 $\le (r-2)/2$
. On the other hand, the same of
$\le (r-2)/2$
. On the other hand, the same of 
 $G_s$
 is
$G_s$
 is 
 $\le (1/2+|\Re (s)|)(r-1)$
 for
$\le (1/2+|\Re (s)|)(r-1)$
 for 
 $G_s$
 being one of
$G_s$
 being one of 
 ${f_{1/2+s}}$
,
${f_{1/2+s}}$
, 
 $\tilde {f}_{1/2+s}$
, or
$\tilde {f}_{1/2+s}$
, or 
 $H^i_s$
 with
$H^i_s$
 with 
 $i<r$
. So the exponent of
$i<r$
. So the exponent of 
 $y_{j,\infty }$
 of the product
$y_{j,\infty }$
 of the product 
 $\overline {H^i_0}G_s$
 for
$\overline {H^i_0}G_s$
 for 
 $1<i<r$
 is
$1<i<r$
 is 
 $$ \begin{align*}\le (r-2+r-1)/2+(r-1)|\Re(s)|<j(r-j)\end{align*} $$
$$ \begin{align*}\le (r-2+r-1)/2+(r-1)|\Re(s)|<j(r-j)\end{align*} $$
for sufficiently small 
 $\Re (s)$
.
$\Re (s)$
.
 Similarly, one estimates remaining terms of the form 
 $\overline {H^1_0}f_{1/2+s}$
,
$\overline {H^1_0}f_{1/2+s}$
, 
 $\overline {G_0}H^i_s$
 and
$\overline {G_0}H^i_s$
 and 
 $\overline {\tilde {f}_{1/2}}H^1_s$
, which we leave for the reader. Hence we conclude the proof.
$\overline {\tilde {f}_{1/2}}H^1_s$
, which we leave for the reader. Hence we conclude the proof.
Lemma 6.5. Let 
 $g\in \mathbb {S}$
 and
$g\in \mathbb {S}$
 and 
 $s\in \mathbb {C}$
 with sufficiently small
$s\in \mathbb {C}$
 with sufficiently small 
 $\Re (s)$
. Then
$\Re (s)$
. Then 
 $$ \begin{align*}\mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(g)-\overline{f_{1/2}(g)}f_{1/2+s}(g)\ll \delta^{1-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\end{align*} $$
$$ \begin{align*}\mathrm{Eis}(\overline{f_{1/2}}f_{1/2+s})(g)-\overline{f_{1/2}(g)}f_{1/2+s}(g)\ll \delta^{1-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\end{align*} $$
and also
 $$ \begin{align*}\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(g)-\overline{\tilde{f}_{1/2}(g)}\tilde{f}_{1/2+s}(g)\ll\delta^{1-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\end{align*} $$
$$ \begin{align*}\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})(g)-\overline{\tilde{f}_{1/2}(g)}\tilde{f}_{1/2+s}(g)\ll\delta^{1-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\end{align*} $$
for some 
 $\eta>0$
.
$\eta>0$
.
Proof. We take a very similar path as in the proof of Lemma 6.4. Let 
 $s\in \mathbb {C}$
 be away from the poles of the relevant Eisenstein series and
$s\in \mathbb {C}$
 be away from the poles of the relevant Eisenstein series and 
 $\Re (s)$
 be sufficiently small.
$\Re (s)$
 be sufficiently small.
 First note that 
 $\overline {\tilde {f}_{1/2}}\tilde {f}_{1/2+s}\in \mathcal {I}_{1,r-1}(1-s)$
. We use the functional equation of the Eisenstein series [Reference Cogdell11, Proposition 2.1]: there exists
$\overline {\tilde {f}_{1/2}}\tilde {f}_{1/2+s}\in \mathcal {I}_{1,r-1}(1-s)$
. We use the functional equation of the Eisenstein series [Reference Cogdell11, Proposition 2.1]: there exists 
 $\tilde {F}_s\in \mathcal {I}_{r-1,1}(s)$
 such that
$\tilde {F}_s\in \mathcal {I}_{r-1,1}(s)$
 such that 
 $$ \begin{align*}\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})=\mathrm{Eis}(\tilde{F}_s).\end{align*} $$
$$ \begin{align*}\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})=\mathrm{Eis}(\tilde{F}_s).\end{align*} $$
In fact, 
 $\tilde {F}_s$
 is the preimage of
$\tilde {F}_s$
 is the preimage of 
 $\overline {\tilde {f}_{1/2}}\tilde {f}_{1/2+s}$
 under the standard intertwiner from
$\overline {\tilde {f}_{1/2}}\tilde {f}_{1/2+s}$
 under the standard intertwiner from 
 $\mathcal {I}_{1,r-1}(1-s)$
 to
$\mathcal {I}_{1,r-1}(1-s)$
 to 
 $\mathcal {I}_{r-1,1}(s)$
: that is,
$\mathcal {I}_{r-1,1}(s)$
: that is, 
 $$ \begin{align*}\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}=M_1^0\tilde{F}_s,\end{align*} $$
$$ \begin{align*}\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s}=M_1^0\tilde{F}_s,\end{align*} $$
and in particular, 
 $\tilde {F}_s$
 is holomorphic in a sufficiently small neighbourhood of
$\tilde {F}_s$
 is holomorphic in a sufficiently small neighbourhood of 
 $s=0$
.
$s=0$
.
From Lemma 3.2, we get that
 $$ \begin{align*} &\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})-\overline{\tilde{f}_{1/2}(g)}\tilde{f}_{1/2+s}(g)=\mathrm{Eis}(\tilde{F}_s)(g)-M_1^0\tilde{F}_s(g)\\ &=\tilde{F}_s(g)+\sum_{q\in\mathbb{Q}^\times}M_1^q\tilde{F}_s(g) +\sum_{1<i<r}\sum_{q\in\mathbb{Q}}M_i^q\tilde{F}_s(g). \end{align*} $$
$$ \begin{align*} &\mathrm{Eis}(\overline{\tilde{f}_{1/2}}\tilde{f}_{1/2+s})-\overline{\tilde{f}_{1/2}(g)}\tilde{f}_{1/2+s}(g)=\mathrm{Eis}(\tilde{F}_s)(g)-M_1^0\tilde{F}_s(g)\\ &=\tilde{F}_s(g)+\sum_{q\in\mathbb{Q}^\times}M_1^q\tilde{F}_s(g) +\sum_{1<i<r}\sum_{q\in\mathbb{Q}}M_i^q\tilde{F}_s(g). \end{align*} $$
We now bound each summand above similarly to the proof of Lemma 6.4. As 
 $\tilde {F}_s\in \mathcal {I}_{r-1,1}(s)$
, we obtain that
$\tilde {F}_s\in \mathcal {I}_{r-1,1}(s)$
, we obtain that 
 $$ \begin{align*}\tilde{F}_s(g)\ll \left|\tilde{F}_s\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\right|\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{j\Re(s)}.\end{align*} $$
$$ \begin{align*}\tilde{F}_s(g)\ll \left|\tilde{F}_s\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\right|\ll \prod_{j=1}^{r-1}|y_{j,\infty}|^{j\Re(s)}.\end{align*} $$
Here we applied 
 $\|\tilde {F}_s\|_{L^\infty (K)}\ll 1$
, which can be deduced similarly to the proof of Lemma 6.3 and applying holomorphicity of
$\|\tilde {F}_s\|_{L^\infty (K)}\ll 1$
, which can be deduced similarly to the proof of Lemma 6.3 and applying holomorphicity of 
 $\tilde {F}_s$
 for small s.
$\tilde {F}_s$
 for small s.
 On the other hand, once again recalling equation (3.4), we obtain for 
 $1<i<r$
 that
$1<i<r$
 that 
 $$ \begin{align*} &\sum_{q\in\mathbb{Q}}M_i^q\tilde{F}_s(g) \ll M_i^0\tilde{F}_s\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right] \\&\qquad\qquad\qquad +\prod_{j=1}^{i-1}|y_{j,\infty}|^{j\Re(s)}\prod_{j=i}^{r-1}|y_{j,\infty}|^{(1-\Re(s))(r-j)}\sum_{q\in\mathbb{Q}^\times}\|W^i_{\tilde{F}_s}(qy_i,.)\|_{L^\infty(K)}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\quad\ll \prod_{j=1}^{i-1}|y_{j,\infty}|^{j\Re(s)}\prod_{j=i}^{r-1}|y_{j,\infty}|^{(1-\Re(s))(r-j)}. \end{align*} $$
$$ \begin{align*} &\sum_{q\in\mathbb{Q}}M_i^q\tilde{F}_s(g) \ll M_i^0\tilde{F}_s\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right] \\&\qquad\qquad\qquad +\prod_{j=1}^{i-1}|y_{j,\infty}|^{j\Re(s)}\prod_{j=i}^{r-1}|y_{j,\infty}|^{(1-\Re(s))(r-j)}\sum_{q\in\mathbb{Q}^\times}\|W^i_{\tilde{F}_s}(qy_i,.)\|_{L^\infty(K)}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\quad\ll \prod_{j=1}^{i-1}|y_{j,\infty}|^{j\Re(s)}\prod_{j=i}^{r-1}|y_{j,\infty}|^{(1-\Re(s))(r-j)}. \end{align*} $$
In the last estimate above, we used that
 $$ \begin{align*}\sum_{q\in\mathbb{Q}^\times}\|W^i_{\tilde{F}_s}(qy_i,.)\|_{L^\infty(K)}\ll_N |y_{i,\infty}|^{-N},\end{align*} $$
$$ \begin{align*}\sum_{q\in\mathbb{Q}^\times}\|W^i_{\tilde{F}_s}(qy_i,.)\|_{L^\infty(K)}\ll_N |y_{i,\infty}|^{-N},\end{align*} $$
which can be deduced similarly to the proof of Lemma 6.3. Similarly, we deduce that
 $$ \begin{align*}\sum_{q\in\mathbb{Q}^\times}M_1^q\tilde{F}_s(g)\ll_N \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1-\Re(s))(r-j)-N\delta_{j=1}}.\end{align*} $$
$$ \begin{align*}\sum_{q\in\mathbb{Q}^\times}M_1^q\tilde{F}_s(g)\ll_N \prod_{j=1}^{r-1}|y_{j,\infty}|^{(1-\Re(s))(r-j)-N\delta_{j=1}}.\end{align*} $$
In each case, the exponent of 
 $y_{j,\infty }$
 is strictly smaller than
$y_{j,\infty }$
 is strictly smaller than 
 $j(r-j)$
, which concludes the proof for the second assertion for sufficiently small
$j(r-j)$
, which concludes the proof for the second assertion for sufficiently small 
 $\Re (s)$
. The first assertion can be proved similarly (and more easily), which we leave for the reader.
$\Re (s)$
. The first assertion can be proved similarly (and more easily), which we leave for the reader.
Proof of Proposition 6.1
 In Lemma 6.2, we have already proved the holomorphicity of 
 $\tilde {E}_s$
 at
$\tilde {E}_s$
 at 
 $s=0$
. From Lemma 6.4 and Lemma 6.5, we conclude by the triangle inequality that for sufficiently small
$s=0$
. From Lemma 6.4 and Lemma 6.5, we conclude by the triangle inequality that for sufficiently small 
 $\Re (s)$
 and
$\Re (s)$
 and 
 $g\in \mathbb {S}$
,
$g\in \mathbb {S}$
, 
 $$ \begin{align*}\tilde{E}_s(g)\ll \delta^{1-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\end{align*} $$
$$ \begin{align*}\tilde{E}_s(g)\ll \delta^{1-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\end{align*} $$
for some 
 $\eta>0$
. Thus
$\eta>0$
. Thus 
 $$ \begin{align*}\int_{\mathbb{X}} |\tilde{E}_s|(g)dg\ll \int_{y_{j,\infty}\gg 1}\delta^{-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\prod_jd^\times y_{j,\infty}.\end{align*} $$
$$ \begin{align*}\int_{\mathbb{X}} |\tilde{E}_s|(g)dg\ll \int_{y_{j,\infty}\gg 1}\delta^{-\eta}\left[\begin{pmatrix}a(y_\infty)&\\&1\end{pmatrix}\right]\prod_jd^\times y_{j,\infty}.\end{align*} $$
The last integral is convergent, and we conclude.
7 Analysis of the spectral side
 Recall the spectral weight 
 $J_X(\pi _\infty )$
 from equation (4.5), the choices of the local components from Section 4.1, and the
$J_X(\pi _\infty )$
 from equation (4.5), the choices of the local components from Section 4.1, and the 
 $\vartheta _0$
-temperedness assumption on
$\vartheta _0$
-temperedness assumption on 
 $\pi _{0,\infty }$
 from the statement of Theorem 2.1. In this section, we prove the remaining second property of the spectral weight as described in Theorem 2.1. That is, we show that
$\pi _{0,\infty }$
 from the statement of Theorem 2.1. In this section, we prove the remaining second property of the spectral weight as described in Theorem 2.1. That is, we show that 
 $J_X(\pi _\infty )$
 is uniformly bounded away from zero if
$J_X(\pi _\infty )$
 is uniformly bounded away from zero if 
 $\pi _\infty $
 is
$\pi _\infty $
 is 
 $\vartheta $
-tempered with
$\vartheta $
-tempered with 
 $\vartheta +\vartheta _0<1/2$
 and
$\vartheta +\vartheta _0<1/2$
 and 
 $C(\pi _\infty )<X$
.
$C(\pi _\infty )<X$
.
Proposition 7.1. Let 
 $\pi \in \hat {\mathbb {X}}_{\mathrm {gen}}$
 be such that
$\pi \in \hat {\mathbb {X}}_{\mathrm {gen}}$
 be such that 
 $\pi _\infty $
 is
$\pi _\infty $
 is 
 $\vartheta $
-tempered with
$\vartheta $
-tempered with 
 $\vartheta +\vartheta _0<1/2$
. Let
$\vartheta +\vartheta _0<1/2$
. Let 
 $\pi _0$
 be the cuspidal automorphic representation as in Theorem 2.1. Then
$\pi _0$
 be the cuspidal automorphic representation as in Theorem 2.1. Then 
 $$ \begin{align*}J_X(\pi_\infty)\gg 1,\quad\text{if }C(\pi_\infty)<X,\end{align*} $$
$$ \begin{align*}J_X(\pi_\infty)\gg 1,\quad\text{if }C(\pi_\infty)<X,\end{align*} $$
where the implied constant possibly depends on 
 $W_{0,\infty },\Phi _\infty $
.
$W_{0,\infty },\Phi _\infty $
.
 For the rest of this section, to ease notations, we drop the 
 $\infty $
-subscript everywhere.
$\infty $
-subscript everywhere.
 We recall the notations and definition of the Sobolev norm 
 $\mathcal {S}_d$
 as in [Reference Michel and Venkatesh27, §2.3.2], [Reference Jana and Nelson19, §3.9]. Let
$\mathcal {S}_d$
 as in [Reference Michel and Venkatesh27, §2.3.2], [Reference Jana and Nelson19, §3.9]. Let 
 $\{H\}$
 be a basis of
$\{H\}$
 be a basis of 
 $\mathrm {Lie}(G(\mathbb {R}))$
. We define a Laplacian on
$\mathrm {Lie}(G(\mathbb {R}))$
. We define a Laplacian on 
 $G(\mathbb {R})$
 by
$G(\mathbb {R})$
 by 
 $$ \begin{align} \mathcal{D}:=1-\sum_{H}H^2, \end{align} $$
$$ \begin{align} \mathcal{D}:=1-\sum_{H}H^2, \end{align} $$
which is positive definite and self-adjoint on any unitary representation 
 $\xi $
 of
$\xi $
 of 
 $G(\mathbb {R})$
. For any
$G(\mathbb {R})$
. For any 
 $v\in \xi $
, we define the dth Sobolev norm of v by
$v\in \xi $
, we define the dth Sobolev norm of v by 
 $$ \begin{align*}\mathcal{S}_d(v):=\|\mathcal{D}^dv\|_\xi.\end{align*} $$
$$ \begin{align*}\mathcal{S}_d(v):=\|\mathcal{D}^dv\|_\xi.\end{align*} $$
We refer to [Reference Michel and Venkatesh27, §2.4] for a collection of useful properties of the Sobolev norm.
 Let 
 $W\in \pi $
 be a unit vector such that in the Kirillov model W is given by
$W\in \pi $
 be a unit vector such that in the Kirillov model W is given by 
 $$ \begin{align} W\left[\begin{pmatrix}g&\\&1\end{pmatrix}\right]:= W_0\left[\begin{pmatrix}g&\\&1\end{pmatrix}\right]. \end{align} $$
$$ \begin{align} W\left[\begin{pmatrix}g&\\&1\end{pmatrix}\right]:= W_0\left[\begin{pmatrix}g&\\&1\end{pmatrix}\right]. \end{align} $$
Note that such a choice is valid due to the choice of 
 $W_0$
 in Section 4.1. In fact,
$W_0$
 in Section 4.1. In fact, 
 $W\in \pi $
 is an analytic newvector in the sense of Section 2.9.
$W\in \pi $
 is an analytic newvector in the sense of Section 2.9.
Lemma 7.2. Let 
 $W_0$
 be as in Section 4.1. Let
$W_0$
 be as in Section 4.1. Let 
 $A_{r-1}(\mathbb {R})\mathrm {O}_{r-1}(\mathbb {R})\ni h=ak$
 as before. If
$A_{r-1}(\mathbb {R})\mathrm {O}_{r-1}(\mathbb {R})\ni h=ak$
 as before. If 
 $c\ll 1$
, then
$c\ll 1$
, then 
 $$ \begin{align*}W_0\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\ll_{\eta,\pi_0} |\det(a)|^{-\vartheta_0}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\min(1,a_{r-1}^{-M})\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M})\end{align*} $$
$$ \begin{align*}W_0\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\ll_{\eta,\pi_0} |\det(a)|^{-\vartheta_0}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\min(1,a_{r-1}^{-M})\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M})\end{align*} $$
for any 
 $\eta>0$
.
$\eta>0$
.
 This lemma is proved in [Reference Jana and Nelson19, Lemma 5.2] for 
 $\pi _0$
 being a tempered representation. Here we modify the proof to accommodate the
$\pi _0$
 being a tempered representation. Here we modify the proof to accommodate the 
 $\vartheta _0$
-tempered case.
$\vartheta _0$
-tempered case.
Proof. Let 
 $W_0':=\pi _0\left [\begin {pmatrix}k&\\c/X&1\end {pmatrix}\right ]W_0$
. Note that
$W_0':=\pi _0\left [\begin {pmatrix}k&\\c/X&1\end {pmatrix}\right ]W_0$
. Note that 
 $k\in \mathrm {O}_{r-1}(\mathbb {R})$
 and
$k\in \mathrm {O}_{r-1}(\mathbb {R})$
 and 
 $|c|\ll 1$
 vary over compact sets. Hence it is enough to show that
$|c|\ll 1$
 vary over compact sets. Hence it is enough to show that 
 $$ \begin{align*}W^{\prime}_0\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\ll_{\eta,M,\pi_0} |\det(a)|^{-\vartheta_0}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\min(1,a_{r-1}^{-M})\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M}).\end{align*} $$
$$ \begin{align*}W^{\prime}_0\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\ll_{\eta,M,\pi_0} |\det(a)|^{-\vartheta_0}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\min(1,a_{r-1}^{-M})\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M}).\end{align*} $$
We take a very similar path as in the proof of [Reference Jana and Nelson19, Lemma 5.2].
 We define 
 $W_1:=d\pi _0(Y^M)(W_0')$
, where Y is a Lie algebra element such that
$W_1:=d\pi _0(Y^M)(W_0')$
, where Y is a Lie algebra element such that 
 $$ \begin{align*}d\pi_0(Y)W_0'\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]=a_{r-1}W_0'\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right].\end{align*} $$
$$ \begin{align*}d\pi_0(Y)W_0'\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]=a_{r-1}W_0'\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right].\end{align*} $$
Thus it is enough to prove that
 $$ \begin{align} W_1\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\ll_{\eta,M,\pi_0} |\det(a)|^{-\vartheta_0}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M}). \end{align} $$
$$ \begin{align} W_1\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\ll_{\eta,M,\pi_0} |\det(a)|^{-\vartheta_0}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M}). \end{align} $$
We use the Dixmier–Malliavin Lemma (see [Reference Dixmier and Malliavin13]) to find finitely many 
 $\alpha _i\in C_c^\infty (G(\mathbb {R}))$
 and
$\alpha _i\in C_c^\infty (G(\mathbb {R}))$
 and 
 $W_i\in \pi _0^\infty $
 such that
$W_i\in \pi _0^\infty $
 such that 
 $$ \begin{align*}W_1=\sum_i \pi_0(\alpha_i)W_i.\end{align*} $$
$$ \begin{align*}W_1=\sum_i \pi_0(\alpha_i)W_i.\end{align*} $$
Thus to prove equation (7.3), it is enough to show equation (7.3) with 
 $W_1$
 replaced by
$W_1$
 replaced by 
 $\pi _0(\alpha _i)W_i=:W_2$
 for each i.
$\pi _0(\alpha _i)W_i=:W_2$
 for each i.
 Let 
 $\sigma \in \mathbb {R}$
. We use the Whittaker–Plancherel formula to expand
$\sigma \in \mathbb {R}$
. We use the Whittaker–Plancherel formula to expand 
 $$ \begin{align} |\det(a)|^{-\sigma}W_2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right] =\int_{\widehat{\mathrm{GL}_{r-1}(\mathbb{R})}}\sum_{W'\in \mathcal{B}(\pi')}W'(a)Z_{W_2,\sigma}(W')d\mu_{\mathrm{loc}}(\pi'), \end{align} $$
$$ \begin{align} |\det(a)|^{-\sigma}W_2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right] =\int_{\widehat{\mathrm{GL}_{r-1}(\mathbb{R})}}\sum_{W'\in \mathcal{B}(\pi')}W'(a)Z_{W_2,\sigma}(W')d\mu_{\mathrm{loc}}(\pi'), \end{align} $$
which is valid for 
 $\sigma $
 in some left half plane. Here
$\sigma $
 in some left half plane. Here 
 $$ \begin{align*} &Z_{W_2,\sigma}(W'):=\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}W_2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\overline{W'(h)}|\det(h)|^{-\sigma}dh\\ &=\gamma(1/2-\sigma,\pi_0\otimes\overline{\pi'})^{-1}\omega_{\pi'}(-1)^{r-1}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\tilde{W}_2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\overline{\tilde{W}'(h)}|\det(h)|^{\sigma}dh. \end{align*} $$
$$ \begin{align*} &Z_{W_2,\sigma}(W'):=\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}W_2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\overline{W'(h)}|\det(h)|^{-\sigma}dh\\ &=\gamma(1/2-\sigma,\pi_0\otimes\overline{\pi'})^{-1}\omega_{\pi'}(-1)^{r-1}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\tilde{W}_2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\overline{\tilde{W}'(h)}|\det(h)|^{\sigma}dh. \end{align*} $$
In the last line, we have used the 
 $\mathrm {GL}(r)\times \mathrm {GL}(r-1)$
 local functional equation. Here
$\mathrm {GL}(r)\times \mathrm {GL}(r-1)$
 local functional equation. Here 
 $\gamma (.)$
 denotes the local gamma factor and
$\gamma (.)$
 denotes the local gamma factor and 
 $\omega _{\pi '}$
 denotes the central character of
$\omega _{\pi '}$
 denotes the central character of 
 $\pi '$
. Finally,
$\pi '$
. Finally, 
 $\tilde {W}$
 denotes the contragredient of W defined by
$\tilde {W}$
 denotes the contragredient of W defined by 
 $\tilde {W}(g):=W(wg^{-t})$
, where w is the long Weyl element of the respective group.
$\tilde {W}(g):=W(wg^{-t})$
, where w is the long Weyl element of the respective group.
 Let 
 $\tilde {\alpha }_i(g):=\alpha _i(g^{-t})$
. Let
$\tilde {\alpha }_i(g):=\alpha _i(g^{-t})$
. Let 
 $N^*$
 be the unipotent radical of upper triangular matrices attached to the partition
$N^*$
 be the unipotent radical of upper triangular matrices attached to the partition 
 $r=(r-1)+1$
. Recalling that
$r=(r-1)+1$
. Recalling that 
 $W_2=\pi _0(\alpha _i)W_i$
, we can write
$W_2=\pi _0(\alpha _i)W_i$
, we can write 
 $$ \begin{align*} \tilde{W}_2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right] &=\int_{G(\mathbb{R})}\tilde{\alpha}_i(g)\tilde{W}_i\left[\begin{pmatrix}h&\\&1\end{pmatrix}g\right]dg\\ &=\int_{N^*\backslash G(\mathbb{R})}\tilde{W}_i\left[\begin{pmatrix}h&\\&1\end{pmatrix}g\right]\int_{N^*}\tilde{\alpha}_i(n^*g)\overline{\psi_{e_{r-1}h}(n^*)}dn^* dg, \end{align*} $$
$$ \begin{align*} \tilde{W}_2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right] &=\int_{G(\mathbb{R})}\tilde{\alpha}_i(g)\tilde{W}_i\left[\begin{pmatrix}h&\\&1\end{pmatrix}g\right]dg\\ &=\int_{N^*\backslash G(\mathbb{R})}\tilde{W}_i\left[\begin{pmatrix}h&\\&1\end{pmatrix}g\right]\int_{N^*}\tilde{\alpha}_i(n^*g)\overline{\psi_{e_{r-1}h}(n^*)}dn^* dg, \end{align*} $$
where 
 $e_{r-1}$
 is the row vector
$e_{r-1}$
 is the row vector 
 $(0,\dots ,0,1)$
. Then we have that
$(0,\dots ,0,1)$
. Then we have that 
 $$ \begin{align*} Z_{W_2,\sigma}(W')&=\gamma(1/2-\sigma,\pi_0\otimes\overline{\pi'})^{-1}\omega_{\pi'}(-1)^{r-1}\\ &\int_{N^*\backslash G(\mathbb{R})}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\tilde{W}_i\left[\begin{pmatrix}h&\\&1\end{pmatrix}g\right]\int_{N^*}\tilde{\alpha}_i(n^*g)\overline{\psi_{e_{r-1}h}(n^*)}dn^* \overline{\tilde{W}'(h)}|\det(h)|^{\sigma}dh dg. \end{align*} $$
$$ \begin{align*} Z_{W_2,\sigma}(W')&=\gamma(1/2-\sigma,\pi_0\otimes\overline{\pi'})^{-1}\omega_{\pi'}(-1)^{r-1}\\ &\int_{N^*\backslash G(\mathbb{R})}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\tilde{W}_i\left[\begin{pmatrix}h&\\&1\end{pmatrix}g\right]\int_{N^*}\tilde{\alpha}_i(n^*g)\overline{\psi_{e_{r-1}h}(n^*)}dn^* \overline{\tilde{W}'(h)}|\det(h)|^{\sigma}dh dg. \end{align*} $$
We choose an orthonormal basis 
 $\mathcal {B}(\pi ')$
 consisting of eigenfunctions of the Laplacian
$\mathcal {B}(\pi ')$
 consisting of eigenfunctions of the Laplacian 
 $\mathcal {D}'$
 on
$\mathcal {D}'$
 on 
 $\mathrm {GL}_{r-1}(\mathbb {R})$
, as defined in equation (7.1), and integrate by parts the h-integral L times with respect to
$\mathrm {GL}_{r-1}(\mathbb {R})$
, as defined in equation (7.1), and integrate by parts the h-integral L times with respect to 
 $\mathcal {D}'$
. We note that
$\mathcal {D}'$
. We note that 
 $W'\otimes |\det |^\sigma $
 is also an eigenfunction of
$W'\otimes |\det |^\sigma $
 is also an eigenfunction of 
 $\mathcal {D}'$
. We recall a bound of the gamma factor from [Reference Jana and Nelson19, Lemma 3.1]:
$\mathcal {D}'$
. We recall a bound of the gamma factor from [Reference Jana and Nelson19, Lemma 3.1]: 
 $$ \begin{align*}\gamma(1/2-\sigma,\pi_0\otimes\overline{\pi'})\ll_{\sigma,\pi_0} C(\pi')^{r\sigma}. \end{align*} $$
$$ \begin{align*}\gamma(1/2-\sigma,\pi_0\otimes\overline{\pi'})\ll_{\sigma,\pi_0} C(\pi')^{r\sigma}. \end{align*} $$
We apply the Cauchy–Schwarz on the above h integral. Then we use the above bound of the gamma factor and unitarity of 
 $\pi _0$
 to obtain that
$\pi _0$
 to obtain that 
 $$ \begin{align*}&Z_{W_2,\sigma}(W')\ll C(\pi')^{r\sigma}\lambda_{\tilde{W}'}^{-L}\int_{N^{*}\backslash G(\mathbb{R})}\left(\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\left|{\mathcal{D}'}^{L}\left(\int_{N^*}\alpha_i(n^*g)\overline{\psi_{e_{r-1}h}(n^*)}dn^*\right)\right.\right.\\ &\left.\left.\phantom{Z_{W_2,\sigma}(W')\ll C(\pi')^{r\sigma}\lambda_{\tilde{W}'}^{-L}\int_{N^{*}\backslash G(\mathbb{R})}\left(\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\left|{\mathcal{D}'}^{L}\right.\right.}\quad\overline{\tilde{W}'(h)}|\det(h)|^{\sigma}\right|^{2dh}\right)^{1/2}dg, \end{align*} $$
$$ \begin{align*}&Z_{W_2,\sigma}(W')\ll C(\pi')^{r\sigma}\lambda_{\tilde{W}'}^{-L}\int_{N^{*}\backslash G(\mathbb{R})}\left(\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\left|{\mathcal{D}'}^{L}\left(\int_{N^*}\alpha_i(n^*g)\overline{\psi_{e_{r-1}h}(n^*)}dn^*\right)\right.\right.\\ &\left.\left.\phantom{Z_{W_2,\sigma}(W')\ll C(\pi')^{r\sigma}\lambda_{\tilde{W}'}^{-L}\int_{N^{*}\backslash G(\mathbb{R})}\left(\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\left|{\mathcal{D}'}^{L}\right.\right.}\quad\overline{\tilde{W}'(h)}|\det(h)|^{\sigma}\right|^{2dh}\right)^{1/2}dg, \end{align*} $$
where 
 $\lambda _{\tilde {W}'}$
 is the
$\lambda _{\tilde {W}'}$
 is the 
 $\mathcal {D}'$
-eigenvalue of
$\mathcal {D}'$
-eigenvalue of 
 $\tilde {W}'$
. The above
$\tilde {W}'$
. The above 
 $N^*$
-integral gives rise to a Schwartz function in
$N^*$
-integral gives rise to a Schwartz function in 
 $e_{r-1}h$
, which can be seen integrating by parts several times in the
$e_{r-1}h$
, which can be seen integrating by parts several times in the 
 $N^*$
-integral. Thus
$N^*$
-integral. Thus 
 $$ \begin{align*}{\mathcal{D}'}^{L}\left(\int_{N^*}\alpha_i(n^*g)\overline{\psi_{e_{r-1}h}(n^*)}dn^*\right)\ll\min(1,|e_{r-1}h|^{-N}).\end{align*} $$
$$ \begin{align*}{\mathcal{D}'}^{L}\left(\int_{N^*}\alpha_i(n^*g)\overline{\psi_{e_{r-1}h}(n^*)}dn^*\right)\ll\min(1,|e_{r-1}h|^{-N}).\end{align*} $$
Noting that g varies over a compact set in 
 $G(\mathbb {R})$
 modulo
$G(\mathbb {R})$
 modulo 
 $N^*$
, we obtain that
$N^*$
, we obtain that 
 $$ \begin{align*}Z_{W_2,\sigma}(W')\ll C(\pi')^{r\sigma}\lambda_{\tilde{W}'}^{-L}\left(\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\min(1,|e_{r-1}h|^{-N}) |{\tilde{W}'(h)}|^2|\det(h)|^{2\sigma}dh\right)^{1/2}.\end{align*} $$
$$ \begin{align*}Z_{W_2,\sigma}(W')\ll C(\pi')^{r\sigma}\lambda_{\tilde{W}'}^{-L}\left(\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\min(1,|e_{r-1}h|^{-N}) |{\tilde{W}'(h)}|^2|\det(h)|^{2\sigma}dh\right)^{1/2}.\end{align*} $$
We use [Reference Jana and Nelson19, Lemma 5.2] on 
 $\tilde {W}'$
 (which is in the tempered representation
$\tilde {W}'$
 (which is in the tempered representation 
 $\tilde {\pi }'$
) to check that the above integral is absolutely convergent for any
$\tilde {\pi }'$
) to check that the above integral is absolutely convergent for any 
 $\sigma>0$
. In particular, from the location of the first pole of
$\sigma>0$
. In particular, from the location of the first pole of 
 $\gamma (1/2-\sigma ,\pi _0\otimes \overline {\pi '})^{-1}$
, we may conclude that one can choose
$\gamma (1/2-\sigma ,\pi _0\otimes \overline {\pi '})^{-1}$
, we may conclude that one can choose 
 $\sigma $
 in
$\sigma $
 in 
 $(0,1/2-\vartheta _0)$
 in the definition of
$(0,1/2-\vartheta _0)$
 in the definition of 
 $Z_{W_2,\sigma }(W')$
.
$Z_{W_2,\sigma }(W')$
.
 Again, we use [Reference Jana and Nelson19, Lemma 5.2] to estimate 
 $W'(a)$
 in equation (7.4) by
$W'(a)$
 in equation (7.4) by 
 $$ \begin{align*}\ll \delta^{1/2-\eta}(a)\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M})\lambda_{W'}^d,\end{align*} $$
$$ \begin{align*}\ll \delta^{1/2-\eta}(a)\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M})\lambda_{W'}^d,\end{align*} $$
where d only depends on M. We choose 
 $\sigma =1/2-\vartheta _0-\eta $
 to obtain that
$\sigma =1/2-\vartheta _0-\eta $
 to obtain that 
 $$ \begin{align*} &W_2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\ll_{\eta,M,\pi_0} |\det(a)|^{-\vartheta_0}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\\ &\phantom{W_2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\ll_{\eta,M,\pi_0}}\qquad\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M})\int_{\widehat{\mathrm{GL}_{r-1}(\mathbb{R})}}C(\pi')^{r\sigma}\sum_{W'\in \mathcal{B}(\pi')}\lambda_{W'}^{d-L}d\mu_{\mathrm{loc}}(\pi'). \end{align*} $$
$$ \begin{align*} &W_2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\ll_{\eta,M,\pi_0} |\det(a)|^{-\vartheta_0}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\\ &\phantom{W_2\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right]\ll_{\eta,M,\pi_0}}\qquad\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M})\int_{\widehat{\mathrm{GL}_{r-1}(\mathbb{R})}}C(\pi')^{r\sigma}\sum_{W'\in \mathcal{B}(\pi')}\lambda_{W'}^{d-L}d\mu_{\mathrm{loc}}(\pi'). \end{align*} $$
We make L sufficiently large and invoke [Reference Jana and Nelson19, Lemma 3.3] to conclude that the above sum and integral are absolutely convergent.
Lemma 7.3. Let W be as in equation (7.2) and 
 $W_0$
 be as in Section 4.1. Let V be W or
$W_0$
 be as in Section 4.1. Let V be W or 
 $W_0$
 and
$W_0$
 and 
 $\xi $
 be
$\xi $
 be 
 $\pi $
 or
$\pi $
 or 
 $\pi _{0}$
, respectively. Also let
$\pi _{0}$
, respectively. Also let 
 $A_{r-1}(\mathbb {R})\mathrm {O}_{r-1}(\mathbb {R})\ni h=ak$
, where
$A_{r-1}(\mathbb {R})\mathrm {O}_{r-1}(\mathbb {R})\ni h=ak$
, where 
 $a=\mathrm {diag}(a_1,\dots ,a_{r-1})$
 and
$a=\mathrm {diag}(a_1,\dots ,a_{r-1})$
 and 
 $|c|\ll 1$
. Then for any sufficiently small
$|c|\ll 1$
. Then for any sufficiently small 
 $\eta>0$
,
$\eta>0$
, 
 $$ \begin{align*}V\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]-V\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\ll_{\eta} |\det(a)|^{-\theta}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right] \frac{C(\xi)|c|}{X}.\end{align*} $$
$$ \begin{align*}V\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]-V\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\ll_{\eta} |\det(a)|^{-\theta}\delta^{1/2-\eta}\left[\begin{pmatrix}a&\\&1\end{pmatrix}\right] \frac{C(\xi)|c|}{X}.\end{align*} $$
Here 
 $\theta $
 is
$\theta $
 is 
 $\vartheta $
 or
$\vartheta $
 or 
 $\vartheta _0$
 depending on whether
$\vartheta _0$
 depending on whether 
 $\xi $
 is
$\xi $
 is 
 $\pi $
 or
$\pi $
 or 
 $\pi _0$
, respectively.
$\pi _0$
, respectively.
This is essentially the main result of analytic newvectors, proved in [Reference Jana and Nelson19, Proposition 4.1], but in a more quantitative form. We need to only modify the proof of [Reference Jana and Nelson19, Proposition 4.1], and we describe that here.
Proof. Let 
 $\sigma \in \mathbb {R}$
 be in some left half plane. As in the proof of [Reference Jana and Nelson19, Proposition 4.1], we write the difference in the lemma as
$\sigma \in \mathbb {R}$
 be in some left half plane. As in the proof of [Reference Jana and Nelson19, Proposition 4.1], we write the difference in the lemma as 
 $$ \begin{align*} &\int_{\widehat{\mathrm{GL}_{r-1}(\mathbb{R})}}\omega_{\bar{\pi'}}((-1)^{r-1}C(\xi)^{-1})C(\xi)^{(r-1)\sigma}\gamma(1/2-\sigma,\xi\otimes\bar{\pi}')^{-1}\sum_{W'\in\mathcal{B}(\pi')}W'(h)|\det(h)|^{\sigma} \\ &\qquad \int_{N_{r-1}(\mathbb{R})\backslash \mathrm{GL}_{r-1}(\mathbb{R})}(e(cw't^{-1}e_1C(\xi)/X)-1)V\left[\begin{pmatrix}C(\xi)&\\&t\end{pmatrix}w\right]\overline{W'(tw')}|\det(t)|^{-\sigma} dtd\mu_{\mathrm{loc}}(\pi'), \end{align*} $$
$$ \begin{align*} &\int_{\widehat{\mathrm{GL}_{r-1}(\mathbb{R})}}\omega_{\bar{\pi'}}((-1)^{r-1}C(\xi)^{-1})C(\xi)^{(r-1)\sigma}\gamma(1/2-\sigma,\xi\otimes\bar{\pi}')^{-1}\sum_{W'\in\mathcal{B}(\pi')}W'(h)|\det(h)|^{\sigma} \\ &\qquad \int_{N_{r-1}(\mathbb{R})\backslash \mathrm{GL}_{r-1}(\mathbb{R})}(e(cw't^{-1}e_1C(\xi)/X)-1)V\left[\begin{pmatrix}C(\xi)&\\&t\end{pmatrix}w\right]\overline{W'(tw')}|\det(t)|^{-\sigma} dtd\mu_{\mathrm{loc}}(\pi'), \end{align*} $$
where 
 $w'$
 is the long Weyl element of
$w'$
 is the long Weyl element of 
 $\mathrm {GL}(r-1)$
. Note that
$\mathrm {GL}(r-1)$
. Note that 
 $\pi '$
 is tempered. We now use [Reference Jana and Nelson19, Lemma 5.2] for tempered representations to estimate
$\pi '$
 is tempered. We now use [Reference Jana and Nelson19, Lemma 5.2] for tempered representations to estimate 
 $$ \begin{align*}W'(h)\ll \delta^{1/2-\eta}(a) S_{d}(W')\end{align*} $$
$$ \begin{align*}W'(h)\ll \delta^{1/2-\eta}(a) S_{d}(W')\end{align*} $$
for any 
 $\eta>0$
 and some
$\eta>0$
 and some 
 $d>0$
. We choose
$d>0$
. We choose 
 $\sigma =1/2-\theta -\eta $
 (which is admissible) and proceed as in the proof of [Reference Jana and Nelson19, Proposition 4.1] to conclude.
$\sigma =1/2-\theta -\eta $
 (which is admissible) and proceed as in the proof of [Reference Jana and Nelson19, Proposition 4.1] to conclude.
Proof of Proposition 7.1
 Recall the definition of 
 $J_X$
 from equations (4.5) and (2.6). In the expression of equation (2.6), we choose a basis
$J_X$
 from equations (4.5) and (2.6). In the expression of equation (2.6), we choose a basis 
 $\mathcal {B}(\pi )$
 containing an analytic newvector W as in equation (7.2). To show the required lower bound of
$\mathcal {B}(\pi )$
 containing an analytic newvector W as in equation (7.2). To show the required lower bound of 
 $J_X$
, it is enough to drop all but the term containing W from the sum in equation (2.6) by positivity and show that
$J_X$
, it is enough to drop all but the term containing W from the sum in equation (2.6) by positivity and show that 
 $$ \begin{align*}X^{r-1}|\Psi(f_{1/2}(.x),W_0,\overline{W})|^2\gg 1\end{align*} $$
$$ \begin{align*}X^{r-1}|\Psi(f_{1/2}(.x),W_0,\overline{W})|^2\gg 1\end{align*} $$
if 
 $C(\pi )<X$
.
$C(\pi )<X$
.
First, using equation (2.2) and the choices of the local components as in Section 4.1, we get
 $$ \begin{align*}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]=\int_{\mathbb{R}^\times}\Phi(t(c,1))|t|^{r/2}d^\times t\ge 0.\end{align*} $$
$$ \begin{align*}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]=\int_{\mathbb{R}^\times}\Phi(t(c,1))|t|^{r/2}d^\times t\ge 0.\end{align*} $$
The support condition of 
 $\Phi $
 in Section 4.1 implies that the above vanishes unless
$\Phi $
 in Section 4.1 implies that the above vanishes unless 
 $|c|< \tau $
. We use Bruhat coordinates and make the change of variables to write
$|c|< \tau $
. We use Bruhat coordinates and make the change of variables to write 
 $X^{\frac {r-1}{2}}\Psi (f_{1/2}(.x),W_0,\overline {W})$
 as
$X^{\frac {r-1}{2}}\Psi (f_{1/2}(.x),W_0,\overline {W})$
 as 
 $$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}W_0\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\overline{W\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc \frac{dh}{|\det(h)|^{1/2}}.\end{align*} $$
$$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\int_{\mathbb{R}^{r-1}}W_0\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]\overline{W\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc \frac{dh}{|\det(h)|^{1/2}}.\end{align*} $$
We use Lemma 7.3 for W, noting that 
 $|c|<\tau $
 and
$|c|<\tau $
 and 
 $C(\pi )<X$
, to obtain that the above integral is
$C(\pi )<X$
, to obtain that the above integral is 
 $$ \begin{align} &\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\overline{W\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]}\int_{\mathbb{R}^{r-1}}W_0\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc \frac{dh}{|\det(h)|^{1/2}}\nonumber\\ &+ O_\eta\left(\tau\int_{N_{r-1}(\mathbb{R})\backslash \mathrm{GL}_{r-1}(\mathbb{R})}\delta^{1/2-\eta}\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\int_{\mathbb{R}^{r-1}}\left|W_0\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\right|dc \frac{dh}{|\det(h)|^{1/2+\vartheta}}\right). \end{align} $$
$$ \begin{align} &\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}\overline{W\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]}\int_{\mathbb{R}^{r-1}}W_0\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc \frac{dh}{|\det(h)|^{1/2}}\nonumber\\ &+ O_\eta\left(\tau\int_{N_{r-1}(\mathbb{R})\backslash \mathrm{GL}_{r-1}(\mathbb{R})}\delta^{1/2-\eta}\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\int_{\mathbb{R}^{r-1}}\left|W_0\left[\begin{pmatrix}h&\\c/X&1\end{pmatrix}\right]f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]\right|dc \frac{dh}{|\det(h)|^{1/2+\vartheta}}\right). \end{align} $$
We use Lemma 7.3 for 
 $W_0$
 and the definition of W in the Kirillov model as in equation (7.2) to obtain that the main term of equation (7.5) is equal to
$W_0$
 and the definition of W in the Kirillov model as in equation (7.2) to obtain that the main term of equation (7.5) is equal to 
 $$ \begin{align} &\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_0|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\frac{dh}{|\det(h)|^{1/2}}\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\nonumber\\ &\qquad\qquad\qquad +O_{\pi_0}\left(\frac{1}{X}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_0|\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\delta^{1/2-\eta}\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\frac{dh}{|\det(h)|^{1/2+\vartheta_0}} \right. \nonumber\\&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\left.\int_{\mathbb{R}^{r-1}}|f_{1/2}|\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\right). \end{align} $$
$$ \begin{align} &\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_0|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\frac{dh}{|\det(h)|^{1/2}}\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\nonumber\\ &\qquad\qquad\qquad +O_{\pi_0}\left(\frac{1}{X}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_0|\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\delta^{1/2-\eta}\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\frac{dh}{|\det(h)|^{1/2+\vartheta_0}} \right. \nonumber\\&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\left.\int_{\mathbb{R}^{r-1}}|f_{1/2}|\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\right). \end{align} $$
From the choice of 
 $\Phi $
 in Section 4.1, we obtain that
$\Phi $
 in Section 4.1, we obtain that 
 $$ \begin{align*}0\le\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\asymp 1.\end{align*} $$
$$ \begin{align*}0\le\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\asymp 1.\end{align*} $$
Also, the choice of 
 $W_0$
 in Section 4.1 ensures that
$W_0$
 in Section 4.1 ensures that 
 $$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_0|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\frac{dh}{|\det(h)|^{1/2}}\asymp_{\pi_0} 1.\end{align*} $$
$$ \begin{align*}\int_{N_{r-1}(\mathbb{R})\backslash\mathrm{GL}_{r-1}(\mathbb{R})}|W_0|^2\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\frac{dh}{|\det(h)|^{1/2}}\asymp_{\pi_0} 1.\end{align*} $$
So the main term of equation (7.6) is
 $$ \begin{align*}\asymp_{\pi_0}\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc.\end{align*} $$
$$ \begin{align*}\asymp_{\pi_0}\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc.\end{align*} $$
On the other hand, the error term in equation (7.6) is trivially 
 $\ll _{\pi _0,\tau }X^{-1}$
, which follows from the support condition of
$\ll _{\pi _0,\tau }X^{-1}$
, which follows from the support condition of 
 $W_0$
 as in Section 4.1. In total, we obtain that equation (7.6), which is the main term of equation (7.5), is
$W_0$
 as in Section 4.1. In total, we obtain that equation (7.6), which is the main term of equation (7.5), is 
 $$ \begin{align*}\asymp_{\pi_0}\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc +O_{\pi_0,\tau}(1/X).\end{align*} $$
$$ \begin{align*}\asymp_{\pi_0}\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc +O_{\pi_0,\tau}(1/X).\end{align*} $$
Now we focus on the error term of equation (7.5). We use Iwasawa coordinates in the integral and use Lemma 7.2 to estimate the error term by
 $$ \begin{align*} &\ll_{M} \tau\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\int_{A_{r-1}(\mathbb{R})}|\det(a)|^{1/2-\vartheta-\vartheta_0}\delta^{-2\eta}\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\\ &\phantom{\ll_{M} \tau\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\int_{A_{r-1}(\mathbb{R})}|\det(a)|}\quad\min(1,a_{r-1}^{-M})\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M}){d^\times a}. \end{align*} $$
$$ \begin{align*} &\ll_{M} \tau\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\int_{A_{r-1}(\mathbb{R})}|\det(a)|^{1/2-\vartheta-\vartheta_0}\delta^{-2\eta}\left[\begin{pmatrix}h&\\&1\end{pmatrix}\right]\\ &\phantom{\ll_{M} \tau\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc\int_{A_{r-1}(\mathbb{R})}|\det(a)|}\quad\min(1,a_{r-1}^{-M})\prod_{i=1}^{r-2}\min(1,(a_i/a_{i+1})^{-M}){d^\times a}. \end{align*} $$
We recall the assumption that 
 $\vartheta +\vartheta _0<1/2$
. Hence, the inner integral is convergent for sufficiently small
$\vartheta +\vartheta _0<1/2$
. Hence, the inner integral is convergent for sufficiently small 
 $\eta $
 and large enough M. Thus we obtain that equation (7.5) is
$\eta $
 and large enough M. Thus we obtain that equation (7.5) is 
 $$ \begin{align*}\asymp_{\pi_0} (1+\tau O_{\pi_0}(1))\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc+O_{\pi_0,\tau}(1/X).\end{align*} $$
$$ \begin{align*}\asymp_{\pi_0} (1+\tau O_{\pi_0}(1))\int_{\mathbb{R}^{r-1}}f_{1/2}\left[\begin{pmatrix}\mathrm{I}_{r-1}&\\c&1\end{pmatrix}\right]dc+O_{\pi_0,\tau}(1/X).\end{align*} $$
We conclude that the above is 
 $\gg 1$
 by making
$\gg 1$
 by making 
 $\tau $
 sufficiently small but fixed.
$\tau $
 sufficiently small but fixed.
Acknowledgements
We generously thank Paul Nelson, who is the author’s doctoral supervisor, for suggesting this problem and for enormous guidance, feedback and encouragement along the way. We also thank Valentin Blomer, Naser Sardari, Ramon Nunes, Gergely Harcos, Farrell Brumley and Djordje Milićević for their interest in this work and much useful feedback on an earlier draft of this paper. We thank ETH Zürich, where the work was started while the author was a doctoral student there. We also thank Max Planck Institute for Mathematics for providing a perfect research environment to complete the project. Finally, we are extremely grateful to the anonymous referees for their valuable time and comments.
Conflicts of Interest
None.
 
 




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
