Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T09:25:22.598Z Has data issue: false hasContentIssue false

The Study of the Formation of Thin SOI Structure by SIMOX with Water Plasma

Published online by Cambridge University Press:  15 March 2011

Chen Jing
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences 865 Changning Road, Shanghai 200050, China
Chen Meng
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences 865 Changning Road, Shanghai 200050, China
Wang Xiang
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences 865 Changning Road, Shanghai 200050, China
Dong Yemin
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences 865 Changning Road, Shanghai 200050, China
Zheng Zhihong
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences 865 Changning Road, Shanghai 200050, China
Wang Xi
Affiliation:
Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Sciences 865 Changning Road, Shanghai 200050, China
Get access

Abstract

The biggest drawback of the widely application of SIMOX-SOI material is the low yield and the high cost which mainly due to the long implantation time by conventional beamline implanter. An implanter without an ion mass analyzer is used to fabricate SOI materials by H2O+, HO+, and O+ ions implantation using water plasma. Based on the consideration that the masses of the three ions of are quite close, their depth profiles in as-implanted wafers will not disperse much, which makes it possible for the formation of a single buried oxide layer by choosing the appropriate energy and dose. The results show that it exits a dose window at fixed implantation energy to form desirable thin or ultra-thin SOI structure with the buried oxide layer free of silicon islands. Compared to conventional SIMOX method, the sample implanted at the same dose and energy has thicker BOX layer. This probably caused by the heavy oxygen damaged region with hydrogen-induced defects in as-implanted wafer appears to be the adsorption center for the outside oxygen to diffuse into the silicon during the high-temperature annealing process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Robinson, A. K., Marsh, C. D., Bussman, U., Kilner, J. A., Li, Y., Vanhellemont, J., Reeson, K. J., Hemment, P. L. F., and Booker, G. R., Nucl. Instrum. Meth. B 55, 555 (1991).Google Scholar
2. Liu, J. B., Iyer, S. S. K., Hu, C. M., Cheung, N. W., Gronsky, R., Min, J., Chu, P., Appl. Phys. Lett. 67(16), 2361 (1995).Google Scholar
3. Matsumura, A., Kawamura, K., Hamaguchi, I., Takayama, S., Yano, Y., Nagatake, Y., J. Mater. Sci: Mater. Eletro., 10, 365 (1999).Google Scholar
4. Reeson, K. J., Robinson, A. K., Hemment, P. L. F., Marsh, C. D., Christensen, K. N., Booker, G. R., Chater, R. J., Kilner, J. A., Harbeke, G., Steigmeir, E. F., and Celler, G. K., Microelectron. Eng. 8, 163 (1988).Google Scholar
5. Ommen, A. H. Van, Koek, B. H., and Viegers, M. P. A., Appl. Phys. Lett. 49, 628 (1986).Google Scholar
6. Jaussaud, C., Margail, J., Stoemenos, J., and Bruel, M., MRS Proc. 107, 17 (1988).Google Scholar
7. Li, Y., Kilner, J. A., Robinson, A. K., Hemment, P. L. F., and Marsh, C. D., J. Appl. Phys., 70 (7), 3605 (1991).Google Scholar
8. Holland, O. W., Fathy, D., and Sadana, D. K., Appl. Phys. Lett., 69, 674 (1996).Google Scholar
9. Ommwn, A. H. V., Koek, B. H., and Viegers, M. P. A., Appl. Phys. Lett., 49, 1062 (1986).Google Scholar
10. Johnson, N. M., Ponce, F. A., Street, R. A., and Nemanich, R. J., Phys. Rev. B, 35 (8), 4166 (1987).Google Scholar