Einstein's theory of general relativity is a theory of gravity and, as in the earlier Newtonian theory, much can be learnt about the character of gravitation and its effects by investigating particular idealised examples. This book describes the basic solutions of Einstein's equations with a particular emphasis on what they mean, both geometrically and physically. Concepts such as big bang and big crunch-types of singularities, different kinds of horizons and gravitational waves, are described in the context of the particular space-times in which they naturally arise. These notions are initially introduced using the most simple and symmetric cases. Various important coordinate forms of each solution are presented, thus enabling the global structure of the corresponding space-time and its other properties to be analysed. The book is an invaluable resource both for graduate students and academic researchers working in gravitational physics.
Review of the hardback:'The relatively familiar material … covers somewhat more than a third of the book … the rest of the book's contents … is less familiar … I feel that [the authors] have … made a good choice … the exact solutions they discuss are surely important … for a person who wants to work in the field …As a reference on a wide selection of exact solutions, with geometrical and physical detail not found previously in one place, this book is a very useful companion.'
Source: General Relativity and Gravitation
Loading metrics...
* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.
Usage data cannot currently be displayed.
This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.
Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.