Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T22:44:55.728Z Has data issue: false hasContentIssue false

A Shubnikov-De Haas Study of Tilted Magnetic Field in the HgTe/CdTe Superlattice

Published online by Cambridge University Press:  15 February 2011

Ikai Lo
Affiliation:
WL/MI O, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433–6533
W. C. Mitchel
Affiliation:
WL/MI O, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433–6533
D. Boeringer
Affiliation:
WL/MI O, Wright Laboratory, Wright-Patterson Air Force Base, OH 45433–6533
K.A. Harris
Affiliation:
Electronics Laboratory, General Electric Company, Syracuse, New York 13221
R.W. Yanka
Affiliation:
Electronics Laboratory, General Electric Company, Syracuse, New York 13221
L.M. Mohnkern
Affiliation:
Electronics Laboratory, General Electric Company, Syracuse, New York 13221
A.R. Reisinger
Affiliation:
Electronics Laboratory, General Electric Company, Syracuse, New York 13221
T.H. Myers
Affiliation:
Electronics Laboratory, General Electric Company, Syracuse, New York 13221
Get access

Abstract

We have measured the Shubnikov-de Haas (SdH) effect in a HgTe/CdTe superlattice (SL) with a tilted magnetic field in the absence of an external electric field. We found that the peaks of the SdH oscillation changed with Bcosθ, indicating the two-dimensional character of the electron gas. The carrier concentration of the two-dimensional electron gas (2DEG) is equal to 2.95×1011 cm−2. The 2DEG shows the existence of a Stark ladder, which is caused by the internal electrostatic field, near the interface between the substrate and the SL. From the temperature dependence of the SdH measurements, we also show that the 3DEG in the SL miniband contributes to the non-oscillatory magnetoresistance and that the mobility of 3DEG in the miniband is lower than that of 2DEG in the Stark ladder.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Hwang, S., Lansari, Y., Yang, Z., Cook, J. W. Jr. and Schetzina, J. F., J.Vac.Sci.Technol. B 9, 1799 (1991).CrossRefGoogle Scholar
[2] Mendez, E. E., Agullo-Rueda, F. and Hong, J. M., Phys. Rev. Lett. 60, 2426 (1988).Google Scholar
[3] Hoffman, C. A. et al. J. Voc. Sci. Technol. A 8, 1200 (1990).CrossRefGoogle Scholar
[4] Ikai, Lo, Mitchel, W. C., Harris, K. A., Yanka, R. W., Mohnkern, L. M., Reisinger, A. R. and Myers, T. H., Appl. Phys. Lett 62, in press (29 March 1993).Google Scholar
[5] Ikai, Lo, Mitchel, W. C., Perrin, R. E., Messham, R. L. and Yen, M. Y., Phys. Rev. B 43. 11787 (1991).Google Scholar
[6] Fang, F. F. and Stiles, P. J., Phys. Rev. 174, 823 (1968).Google Scholar
[7] Landwehr, G. in the “Physics of Solids in Intense Magnetic Fields”, p.415, Chapter 22, ed. by Haidemenakis, E. D. (Plenum Press, New York 1969).Google Scholar
[8] Myers, T. H., Yanka, R. W., Harris, K. A., Reisinger, A. R. et al. J. Voc. Sci. Technol. A 7, 300 (1989).Google Scholar
[9] Harris, K. A., Myers, T. H., Yanka, R. W., Mohnkern, L. M., Endres, D. W., Reisinger, A. R. and Schetzina, J. F. (unpublished)Google Scholar
[10] Nasir, F., Singleton, J. and Nicholas, R. J., Semicon. Sci. Technol. 3, 654663 (1988); N. J. Bassom and R. J. Nicholas, Semicond. Sci. Technol.7, 810–817 (1992).CrossRefGoogle Scholar