Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T17:29:40.968Z Has data issue: false hasContentIssue false

A topographical analysis of the post-natal bone growth in the cochlea of the dog

Published online by Cambridge University Press:  29 June 2007

M. Roberto*
Affiliation:
Department of Bioacoustics, University of Bari, Bari, Italy.
A. Favia
Affiliation:
Institute of Human Anatomyt, University of Bari, Bari, Italy.
E. Lozupone
Affiliation:
Institute of Human Anatomyt, University of Bari, Bari, Italy.
*
Address for correspondence: Michele Roberto, M.D., Department of Bioacoustics, University of Bari, Policlinico, 70124 Bari, Italy.

Abstract

The distribution of post-natal bone deposition was examined in the cochlea of 10-, 25-, 50- and 90-day-old dogs that had been intraperitoneally injected with tetracycline (20 mg/kg) five days before sacrifice. The temporal bones were embedded in methylmethacrylate and sectioned in a single mid-modiolar section 30 μm thick. The post-natal bone deposition occurs both on the periosteal surfaces and on the vascular canals of the endochondral layer until the age of 90 days. Scattered bone deposition is also shown on the endosteal layer of the three turns and on the spiral lamina until the age of 25 and 10 days respectively. The percentage extension of the osteogenetic fronts shows a higher value at the periosteal layer than at the endochondral or endosteal layers.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amprino, R., Engstrom, A. (1952) Studies on X-ray absorption and diffraction of bone tissue. Acta Anatomica (Basel) 15: 122.CrossRefGoogle ScholarPubMed
Amprino, R., Marotti, G. (1964) A topographic quantitative study of bone formation and reconstruction. Proceedings of the First European Bone and Tooth Symposium, Oxford pp 21–33.Google Scholar
Bast, T. H., Anson, B. J. (1949) The Temporal Bone and the Ear. Charles C. Thomas, Springfield, Illinois. pp 1540.Google Scholar
Bateman, N. (1954) Bone growth: a study of the gray-lethal and microphthalmic mutants of the mouse. Journal of Anatomy 110: 212230.Google Scholar
Dawson, P. W., Blamey, P. J., Rowland, L. C., Dettman, S. J., Clark, G. M., Busby, P. (1992) Cochlear implants in children, adolescents and prelinguistically deafened adults. Journal of Speech and Hearing Research 35: 401417.CrossRefGoogle ScholarPubMed
Engström, H., Rockert, H. (1962) Normal histology of the labyrinthine capsule and oval window area. Henry Ford Hospital International Symposium. In Otosclerosis. Little, Brown and Company, Philadelphia, pp 313.Google Scholar
Enlow, D. H. (1962) A study of postnatal growth and remodelling of bone. American Journal of Anatomy 110: 7984.5.CrossRefGoogle ScholarPubMed
Godina, G. (1947) Trasformazioni strutturali durante l'accrescimento delle ossa in cani di differente mole somatica. Archivio Italiano di Anatomia ed Embriologia 52: 161175.Google Scholar
Hawke, M., Jahn, A. F. (1975) Bone formation in the normal human otic capsule. Archives of Otolaryngology 101: 462464.CrossRefGoogle ScholarPubMed
Hoyte, D. A. N. (1961) The post-natal growth of the ear capsule in the rabbit. American Journal of Anatomy 108: 112.CrossRefGoogle Scholar
Hoyte, D. A. N. (1971) Mechanisms of growth in the cranial vault and bone. Journal of Dental Research 50: 14471461.CrossRefGoogle Scholar
Kiefer, J., Gall, V., Desloovere, C., Knecht, R., Mikowski, A., von Ilberg, C. (1996) Follow-up study of long-term results after cochlear implantation in children and adolescents. European Archives of Otorhinolaryngology 253: 158166.CrossRefGoogle ScholarPubMed
Lozupone, E. (1979) A quantitative analysis of bone tissue formation in different regions of the spongiosa in the dog skeleton. Anatomischer Anzeiger 145: 425452.Google ScholarPubMed
Marotti, G. (1976) Map of bone formation rate values recorded throughout the skeleton of the dog. In Bone Morphometry. Proceedings of the 1st Workshop on Bone Morphometry. (Jaworski, Z. F. G., ed.), Ottawa Press. Ottowa pp 202207.Google Scholar
Marotti, G., Favia, A. (1973) The rate of primary and secondary bone mineralization. In Calcified Tissue, Proc. 9th European Symposium on calcified tissue, (Czitober, and Eschberger, eds.), Facta-Publication, Vienna pp 343346.Google Scholar
Roberto, M. (1976) A topographic quantitative analysis of the postnatal bone formation in the auditory ossicles of the dog. Acta Otolaryngologica 81: 1625.CrossRefGoogle ScholarPubMed
Roberto, M., Lozupone, E. (1987) Distribution of the remodelling processes in the auditory ossicles of the dog. Bollettino Societa Italiana di Biologia Sperimentale 63: 289295.Google ScholarPubMed
Roberto, M., Pagliarulo, E., Zito, F., Bosco, L. (1987) Postnatal bone formation analysis of the otic capsule of the dog. Anatomische Gesellschaft 81: 589590.Google Scholar
Roberto, M., Favia, A., Lozupone, E. (1993) Bone tissue kinetics in the surgically disarticulated dog incus. Acta Otolaryngologica 113: 181186.CrossRefGoogle ScholarPubMed
Saunders, J. E., Janson, E., McElveen, J. T. Jr. (1992) Triple fluorochrome labelling of cochlear bone growth. Hearing Research 57: 276280.CrossRefGoogle ScholarPubMed
Sølvesten, Sørensen M. (1994) Temporal bone dynamics, the hard way. Formation, growth, modeling, repair and quantum type bone remodeling in the otic capsule. Acta Otolaryngologica (Suppl. 512).Google Scholar
Xu, J., Sheperd, R. K., Xu, S. A., Seldon, L., Clark, G. M. (1993) Pediatric cochlear implantation: radiologic observations of skull growth. Archives of Otolaryngology, Head and Neck Surgery 119: 525534.CrossRefGoogle ScholarPubMed