Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-19T12:47:46.073Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition Modeling for High Temperature Materials

Published online by Cambridge University Press:  15 February 2011

Suleynaz A. Gokoglu*
Affiliation:
NASA Lewis Research Center, Cleveland, OH 44135
Get access

Abstract

The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/ properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jensen, K.F., in Microelectronics Processing: Chemical Engineering Aspects, edited by Hess, D.W. and Jensen, K.F. (Advances in Chemistry Series, No.221, American Chemical Society, Washington, D.C., 1989) pp. 199263.CrossRefGoogle Scholar
2. Supercomputer Research in Chemistry and Chemical Engineering, edited by Jensen, K.F. and Truhlar, D.G. (American Chemical Soc., Washington, D.C., 1987.)CrossRefGoogle Scholar
3. Gokoglu, S.A., in Chemical Vapor Deposition XI, edited by Spear, K.E. and Cullen, G.W. (The Electrochemical Soc., 1990) pp.19.Google Scholar
4. Gokoglu, S.A., Kuczmarski, M., Veitch, L.C., Tsui, P., and Chait, A., in Chemical Vapor Deposition XI, edited by Spear, K.E. and Cullen, G.W. (The Electrochemical Soc., 1990) pp. 3137.Google Scholar
5. Sholtz, J.H., Gatica, J., Viljoen, H.J., and Hlavacek, V., J. Crystal Growth, 108, 190 (1991).CrossRefGoogle Scholar
6. Gokoglu, S.A., Kuczmarski, M., and Veitch, L.C., J. Materials Research, submitted 1991.Google Scholar
7. Eriksson, G., Chem. Scr., 8, 100 (1975).Google Scholar
8. Gordon, S. and McBride, B.J., NASA SP-273, 1976.Google Scholar
9. Strife, J.R., et al., presented at the First Thermal Structures Conference, Univ. of Virginia, Charlottesville, VA, Nov.15, 1990.Google Scholar
10. Wan, C.F. and Spear, K.E., CALPHAD, 7, 149 (1983).CrossRefGoogle Scholar
11. Ottosson, M., Harsta, A., and Carlsson, J.O., in Chemical Vapor Deposition XI, edited by Spear, K.E. and Cullen, G.W. (The Electrochemical Soc., 1990) pp. 180187.Google Scholar
12. Vahlas, C. and Besmann, T.M., in Chemical Vapor Deposition XI, edited by Spear, K.E. and Cullen, G.W. (The Electrochemical Soc., 1990) pp. 188194.Google Scholar
13. Lackey, W.J., Smith, A.W., Dillard, D.M., and Twait, D.J., in Chemical Vapor Deposition X, edited by Cullen, G.W. (The Electrochemical Soc., 1987) pp. 10081027.Google Scholar
14. Jensen, K.F., Einset, E.O., and Fotiadis, D.I., Annu. Rev. Fluid Mech., 23, 197 (1991).CrossRefGoogle Scholar
15. Fotiadis, D.I., Boekholt, M., Jensen, K.F. and Richter, W., J. Crystal Growth, 100, 577 (1990).CrossRefGoogle Scholar
16. Roksnoer, P.J., Van Opdorp, C., Maes, J.W.F.M., De Keijser, M. and Weber, C., J. Electrochem Soc., 136, 2427 (1989).CrossRefGoogle Scholar
17. Coltrin, M.E., Kee, R.J., Evans, G.H., J. Electrochem. Soc., 136, 819 (1989).CrossRefGoogle Scholar
18. Tirtowidjojo, M. and Pollard, R., J. Crystal Growth, 98, 420 (1989).CrossRefGoogle Scholar
19. Allendorf, M.D. and Kee, R.J., J. Elecrochem. Soc., 138, 841 (1991).CrossRefGoogle Scholar
20. Frenklach, M. and Wang, H., American Physical Soc., Physical Review B, 43, 1520 (1991).CrossRefGoogle Scholar
21. Arora, R. and Pollard, R., J. Electrochem. Soc., 138, 1523 (1991).CrossRefGoogle Scholar
22. Marsden, A.R. Jr., Frenklach, M., and Reible, D.D., J. Air Pollution Control Assoc., 37, 370 (1987).Google Scholar
23. Guinta, C.J., McCurdy, R.J., Chapple-Sokol, J.D., and Gordon, R.G., J. Appl. Phys., 67, 1062 (1990).CrossRefGoogle Scholar
24. Moffat, H.K., Jensen, K.F., and Carr, R.W., J. Phys. Chem., 95, 145 (1991).CrossRefGoogle Scholar
25. Kleijn, C.R., J. Electrochem. Soc., 138, 2190 (1991).CrossRefGoogle Scholar
26. Comfort, J.H. and Reif, R., J. Electrochem. Soc., 136, 2386 (1989).CrossRefGoogle Scholar
27. Breiland, W.G. and Coltrin, M.E., J. Electrochem. Soc., 137, 2313 (1990).CrossRefGoogle Scholar
28. Gokoglu, S.A., J. Electrochem. Soc., 135, 1562 (1988).CrossRefGoogle Scholar
29. Collins, J., Rosner, D.E., and Castillo, J., J. Electrochem. Soc., 135, 1562 (1991).Google Scholar
30. Ning, X.J. and Pirouz, P., J. Mater. Res., 6, 2234 (1991).CrossRefGoogle Scholar
31. Kassemi, M., Gokoglu, S.A., Panzerella, C., and Veitch, L., National Heat Transfer Conf., San Diego, CA, 1992, submitted.Google Scholar
32. Rosner, D.E. and Collins, J., in Chemical Vapor Deposition XI, edited by Spear, K.E. and Cullen, G.W. (The Electrochemical Soc.,1990) pp. 4960.Google Scholar
33. Thornton, J.A., Ann. Rev. Mater. Sci., 7, 239 (1977).CrossRefGoogle Scholar