Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T02:11:08.168Z Has data issue: false hasContentIssue false

Development of Rare Earth Niobate Buffer Layer for YBCO Coated Conductor Using Chemical Solution Deposition Approach

Published online by Cambridge University Press:  01 February 2011

M.S. Bhuiyan
Affiliation:
D.B. Beach Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6376, U.S.A.
M. Paranthaman
Affiliation:
D.B. Beach Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6376, U.S.A.
S. Sathyamurthy
Affiliation:
D.B. Beach Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6376, U.S.A.
Get access

Abstract

We have grown epitaxial rare earth niobate (RE3NbO7; RE – La, Ce, Nd, Sm, Eu, Gd, Ho, Y, and Yb) buffer layers on biaxially textured Ni-W substrates using chemical solution deposition approach. Precursor solutions of 0.4 M total cation concentration were spin coated on short samples of Ni-3 at.%W (Ni-W) substrates and heat-treated at 1050 to 1100°C in a gas mixture of Ar-4%H2 for 15 minutes. Effect of solution chemistry and processing atmosphere on texture and microstructure were studied. Detailed X-Ray studies indicated that all the rare earth niobates were grown epitaxially. There was no significant change observed in texture for different precursor chemistry, however, dramatic effect on surface morphology observed. SEM and AFM investigations of RE3NbO7 films reveal noticeable difference in surface morphology and roughness for various processing atmospheres. Processing under a 20% wet Ar-4% H2 gas mixture was found to be the optimum condition for growing Gd3NbO7 films with high quality microstructure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hammerl, G., Schmehl, A., Schulz, R.R., Goetz, B., Bielefeldt, H., Schneider, C.W., Hilgenkamp, H., and Mannhart, J., Nature 407, 162 (2000).Google Scholar
2 Siegal, M.P., Hou, S.Y., Phillips, J.M., Tiefel, T.H., and Marshall, J.H., J. Mater. Res. 7, 2658 (1992).Google Scholar
3 Dimos, D., Chaudari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).Google Scholar
4 Norton, D.P., Goyal, A., Budai, J.D., Christen, D.K., Kroeger, D.M., Specht, E.D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C.E., Lee, D.F., Sales, B.C., and List, F.A., Science 274, 755 (1996).Google Scholar
5 Paranthaman, M., Park, C., Cui, X., Goyal, A., Lee, D.F., Martin, P.M., Chirayil, T.G., Verebelyi, D.T., Norton, D.P., Christen, D.K., and Kroeger, D.M., J. Mater. Res. 15, 2647 (2000).Google Scholar
6 Foltyn, S.R. Arendt, P.N., Dowden, D.C., Paula, R.F.De, Gr;oves, J.R., Coulter, J.K., Jia, Q.X., Maley, M.P., and Peterson, D.E., IEEE Trans. Appl. Supercond. 9, 1519 (1999).Google Scholar
7 Holesinger, T.G., Foltyn, S.R., Arendt, P.N., Jia, Q.X., Dowden, P.C., DePaula, R.F., and Groves, J.R., IEEE Trans. Appl. Supercond. 11, 3359 (2001).Google Scholar
8 Iijima, Y., Kakimoto, K., and Takeda, K., IEEE Trans. Appl. Supercond. 357, 952 (2001).Google Scholar
9 Boyce, J.B., Bridges, F., Claeson, T., Geballe, T.H., and Tarascon, J.M., Supercond. Sci. Technol. 4, S343 (1991).Google Scholar
10 Bhuiyan, M.S., Paranthaman, M., Sathyamurthy, S., Aytug, T., Kang, S., Lee, D.F., Goyal, A., Payzant, E.A. and Salama, K., Supercond. Sci. Technol. 16, 1305 (2003).Google Scholar
11 Paranthaman, M, Lee D, F, Goyal, A, Specht E, D, Martin P, M, Cui, X, Mathis J, E, Feenstra, R, Christen D, K and Kroeger D, M, Supercond. Sci. Technol. 12, 319 (1999).Google Scholar
12 Chirayil, T.G., Paranthaman, M., Beach, D.B., Lee, D.F., Goyal, A., Williams, R.K., Cui, X., Kroeger, D.M., Feenstra, R., Verebelyi, D.T. and Christen, D.K., Physica C 336, 63 (2000).Google Scholar
13 Sathyamurthy, S., Paranthaman, M., Zhai, H.Y., Kang, S., Aytug, T., Cantoni, C., Leonard, K.J., Payzant, E.A., Christen, H.M., Goyal, A., Li, X., Schoop, U., Kodenkandath, T. and Rupich, M.W., J. Mater. Res. 19, 2117 (2004).Google Scholar
14 Aytug, Tolga, Paranthaman, Mariappan P., Kang, Byeongwon W., Beach, David B., Sathyamurthy, Srivatsan, Specht, Eliot D., Lee, Dominic F., Feenstra, Roeland, Goyal, Amit, Kroeger, Donald M., Leonard, Keith J., Martin, Patrick M. and Christen, David K., J. Amer. Ceram. Soc 86, 257 (2003).Google Scholar
15 Dawley, J.T., Ong, R.J., and Clem, P.G.: Chemical solution deposition of (100)-oriented SrTiO3 buffer layers on Ni substrates. J. Mat. Res. 17, 1678 (2002).Google Scholar
16 Paranthaman, M., Bhuiyan, M.S., Sathyamurthy, S., Zhai, H.Y., Goyal, A. and Salama, K., J. Mat. Res. 20, 6 (2005).Google Scholar
17 Bhuiyan, M.S., Paranthaman, M., Sathyamurthy, S., Goyal, A., and Salama, K., J. Mat. Res. 20, 904 (2005).Google Scholar