Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T14:43:59.141Z Has data issue: false hasContentIssue false

Hydrogen-Nitrogen Tailors Semiconductor Optoelectronics: The Case of Dilute Nitride III-V Alloys

Published online by Cambridge University Press:  17 March 2011

A. Janotti*
Affiliation:
Metals and Ceramics Division, Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
Get access

Abstract

Hydrogen is an omnipresent impurity in semiconductors, often associated with other impurities and native defects, strongly affecting their electronic properties by passivating deep and shallow levels, or activating isoelectronic centers, and can be intentionally or unintentionally incorporated. On the other hand, nitrogen has profound effects on the electronic structure of conventional III-V compounds: just a few percent of N can drastically lower the band gap of GaAs making it suitable for long-wavelength optical devices; isovalent doping of GaP by N leads to a quasidirect band gap with enhanced optical functionality. The large difference in electronegativity between N and other group V elements is expected to couple with the high chemical activity of H, raising crucial questions about the behavior of H in dilute nitride alloys that theories of hydrogen in conventional semiconductors or in commom-anion nitrides are unable to answer. Here we show that N can qualitatively alter the electronic behavior of hydrogen: In GaAsN, an H atom bonds to N and can act as a donor in its own right, whereas in GaAs and GaN, H is amphoteric; Nitrogen also stabilizes the complex, that is otherwise unstable against the formation of interstitial H2 molecules, reversing the effect of N on the band gap of GaAs, allowing us to interpret several recent experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Weyers, M., Sato, M., and Ando, H., Jpn. J. Appl. Phys. (Part 1) 31, L853 (1992).Google Scholar
[2] Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. B 51, 10568 (1995).Google Scholar
[3] Wei, S.-H. and Zunger, A., Phys. Rev. Lett. 76, 664 (1996).Google Scholar
[4] Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S., and Yazawa, Y., Jpn. J. Appl. Phys. (Part 1) 35, 1273 (1996).Google Scholar
[5] Kurtz, S. R., Allerman, A. A., Jones, E. D., Gee, J. M., Banas, J. J., and Hammons, B. E., Appl. Phys. Lett. 74, 729 (1999).Google Scholar
[6] Friedman, D. J., Geisz, J. F., Kurtz, S. R., and Olson, J. M., J. Cryst. Growth 195, 409 (1998).Google Scholar
[7] Singh, M. and Weber, J., Appl. Phys. Lett. 54, 424 (1989).Google Scholar
[8] Sato, M., in GaN and related Materials, edited by Pearton, Stephen J. (Gordon and Breach Science Publishers, The Netherlands, 1997), Vol. 32.Google Scholar
[9] Kurtz, S., Webb, J., Gedvilas, L., Friedman, D., Geisz, J., Olson, J., King, R., Joslin, D., and Karam, N., Appl. Phys. Lett. 78, 748 (2001).Google Scholar
[10] Xin, H. P., Tu, C. W., and Geva, M., Appl. Phys. Lett. 75, 1416 (1999).Google Scholar
[11] Xin, H. P., Tu, C. W., and Geva, M., J. Vac. Sci. Technol. B 18, 1476 (2000).Google Scholar
[12] Estreicher, S. K., Mat. Sci. Engr. Reports 14, 319 (1995).Google Scholar
[13] Limpijumnong, S. and Walle, C. G. Van de, Phys. Stat. Sol. (b) 228, 303 (2001).Google Scholar
[14] Clerjaud, B., Cote, D., Hahn, W.-S., Lebkiri, A., Ulrici, W., and Wasik, D., Phys. Rev. Lett. 77, 4930 (1996).Google Scholar
[15] Clerjaud, B., Cote, D., Hahn, W.-S., Lebkiri, A., Ulrici, W., and Wasik, D., Phys. Stat. Sol. (a) 159, 121 (1997).Google Scholar
[16] Murakami, K., Fukata, N., Sasaki, S., Ishioka, K., Kitajima, M., Fujimura, S., and Kikuchi, J., and Haneda, H., Phys. Rev. Lett. 77, 3161 (1996).Google Scholar
[17] Vetterhöffer, J., Wagner, J., and Weber, J., Phys. Rev. Lett. 77, 5409 (1996).Google Scholar
[18] Pavesi, L. and Giannozzi, P., Phys. Rev. B 46, 4621 (1992).Google Scholar
[19] v, G. Baldassarri H., Bissiri, H. M., Polimeni, A., Capizzi, M., Fischer, M., Reinhardt, M., and Forchel, A., Appl. Phys. Lett. 78, 3472 (2001).Google Scholar
[20] Polimeni, A., v, G. Baldassarri H., Bissiri, H. M., Capizzi, M., Fischer, M., Reinhardt, M., and Forchel, A., Phys. Rev. B 63, 201304(R) (2001).Google Scholar
[21] Janotti, A., Zhang, S. B., and Wei, Su-Huai, Phys. Rev. Lett. 88, 125506 (2002).Google Scholar
[22] Janotti, A., Zhang, S. B., Wei, Su-Huai, and Walle, C. G. van de, Phys. Rev. Lett. 89, 86403 (2002).Google Scholar
[23] Janotti, A., Zhang, S. B., Wei, Su-Huai, and Walle, C. G. van de, Optical Materials 25, 261 (2004).Google Scholar
[24] Kim, Yong-Sung and Chang, K. J., Phys. Rev. B 66, 155402 (2002).Google Scholar
[25] Orellana, W. and Ferraz, A. C., Appl. Phys. Lett. 81, 481 (2002).Google Scholar
[26] Bonapasta, A. Amore, Filippone, F., Giannozzi, P., Capizzi, M., and Polimeni, A., Phys. Rev. Lett. 89, 216401 (2002).Google Scholar
[27] Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964). W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).Google Scholar
[28] Kresse, G. and Furthmüller, J., Phys. Rev. B. 54, 11169 (1996); G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996).Google Scholar
[29] Zhang, Q.-M. and Bernholc, J., Phys. Rev. B. 47, 1667 (1993).Google Scholar
[30] Hybertsen, M. S. and Louie, S. G., Phys. Rev. B 34, 5390 (1986); S. B. Zhang, et al., Phys. Rev. B 40, 3162 (1989); E. L. Shirley, et al. Phys. Rev. Lett. 69, 2955 (1992).Google Scholar
[31] Janotti, A., Zhang, S. B., Wei, S.-H., and Walle, C. G. Van de, unpublished.Google Scholar
[32] Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. Lett. 75, 4452 (1995).Google Scholar
[33] Wei, S.-H. and Zunger, A., Appl. Phys. Lett. 72, 2011 (1998).Google Scholar
[34] Walle, C. G. Van de, Phys. Rev. Lett. 85, 1012 (2000).Google Scholar
[35] Walle, C. G. Van de and Neugebauer, J., Nature 423, 626 (2003).Google Scholar
[36] Johnson, N. M., in Pankove, J. I. and Johnson, N. M., Eds., Hydrogen in Semiconductors, Semiconductors and Semimetals, Vol. 34, (Academic Press, Boston, 1991), p. 113; J. Chevallier, B. Clerjaud, and B. Pajot, ibid., p. 447.Google Scholar
[37] Chang, K. J. and Chadi, D. J., Phys. Rev. Lett. 62, 937 (1989); Phys. Rev. B 42, 7651 (1990).Google Scholar
[38] Northrup, John E., Phys. Rev. B. 39, 1434 (1989).Google Scholar
[39] The anharmonic effect (AE) is calculated following the procedure proposed by Chris G. Van de Walle (Ref. 40). For α-, the AE lowers the frequency by 168 and 42 cmand Mode-2, respectively, but increases the frequency by 2 cmthe AE for Mode-1 is significantly larger than for Mode-2 and -3.Google Scholar
[40] Walle, Chris G. Van de, Phys. Rev. Lett. 80, 2177 (1998).Google Scholar