Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T14:19:48.480Z Has data issue: false hasContentIssue false

Accurate Radiocarbon Dating of Archaeological Ash Using Pyrogenic Aragonite

Published online by Cambridge University Press:  16 March 2017

Michael B Toffolo*
Affiliation:
Institut für Naturwissenschaftliche Archäologie, Eberhard-Karls-Universität Tübingen, Tübingen 72070, Germany
Lior Regev
Affiliation:
Max Planck-Weizmann Center for Integrative Archaeology and Anthropology, D-REAMS Radiocarbon Dating Laboratory, Weizmann Institute of Science, Rehovot 76100, Israel
Eugenia Mintz
Affiliation:
Max Planck-Weizmann Center for Integrative Archaeology and Anthropology, D-REAMS Radiocarbon Dating Laboratory, Weizmann Institute of Science, Rehovot 76100, Israel
Kristin M Poduska
Affiliation:
Department of Physics and Physical Oceanography, Memorial University Newfoundland, St. John’s NL A1B 3X7, Canada
Ruth Shahack-Gross
Affiliation:
Department of Maritime Civilizations, University of Haifa, Haifa 3498838, Israel
Christoph Berthold
Affiliation:
Competence Center Archaeometry – Baden-Württemberg (CCA-BW), Angewandte Mineralogie, Fachbereich Geowissenschaften, Eberhard-Karls-Universität Tübingen, Tübingen 72074, Germany
Christopher E Miller
Affiliation:
Institut für Naturwissenschaftliche Archäologie, Eberhard-Karls-Universität Tübingen, Tübingen 72070, Germany Senckenberg Centre for Human Evolution and Palaeoenvironment, Eberhard-Karls-Universität Tübingen, Tübingen 72070, Germany
Elisabetta Boaretto*
Affiliation:
Max Planck-Weizmann Center for Integrative Archaeology and Anthropology, D-REAMS Radiocarbon Dating Laboratory, Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

Obtaining accurate age determinations from minerals in archaeological ash is a major unsolved issue in radiocarbon (14C) dating. This is because the original 14C content of calcite, the main component of ash, is altered by isotopic exchange. Pyrogenic aragonite, another mineral phase recently discovered in ash, might preserve its 14C signature through time. Using a new method based on density separation and step combustion, we were able to isolate and date aragonitic ash from an archaeological destruction horizon of known age. Here we show that the 14C age of aragonite matches the age of the destruction horizon. Our results demonstrate that pyrogenic aragonite is a short-lived material suitable for 14C dating and directly related to human activities involving the use of fire, thus bearing major implications for the establishment of absolute chronologies for the past 50,000 yr.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, DS, Bar-Yosef, O, Belfer-Cohen, A, Tushabramishvili, N, Boaretto, E, Mercier, N, Valladas, H, Rink, WJ. 2008. Dating the demise: Neandertal extinction and the establishment of modern humans in the southern Caucasus. Journal of Human Evolution 55:817833.CrossRefGoogle ScholarPubMed
Albert, RM, Ruíz, JA, Sans, A. 2016. PhytCore ODB: a new tool to improve efficiency in the management and exchange of information on phytoliths. Journal of Archaeological Science 68:98105.CrossRefGoogle Scholar
Asscher, Y, Lehmann, G, Rosen, SA, Weiner, S, Boaretto, E. 2015a. Absolute dating of the Late Bronze to Iron Age transition and the appearance of Philistine culture in Qubur el-Walaydah, southern Levant. Radiocarbon 57(1):7797.CrossRefGoogle Scholar
Asscher, Y, Cabanes, D, Hitchcock, LA, Maeir, AM, Weiner, S, Boaretto, E. 2015b. Radiocarbon dating shows an early appearance of Philistine material culture in Tell es-Safi/Gath, Philistia. Radiocarbon 57:825850.CrossRefGoogle Scholar
Berna, F, Goldberg, P, Kolska Horwitz, L, Brink, J, Holt, S, Bamford, M, Chazan, M. 2012. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. PNAS 109:E1215E20.CrossRefGoogle ScholarPubMed
Boaretto, E, Poduska, KM. 2013. Materials science challenges in radiocarbon dating: the case of archaeological plasters. Journal of the Minerals, Metals & Materials Society (TMS) 65:481488.Google Scholar
Bowman, S. 1990. Radiocarbon Dating. London: British Museum Press.Google Scholar
Boynton, RS. 1980. Chemistry and Technology of Lime and Limestone. New York: John Wiley & Sons, Inc.Google Scholar
Cohen-Ofri, I, Weiner, L, Boaretto, E, Mintz, G, Weiner, S. 2006. Modern and fossil charcoal: aspects of structure and diagenesis. Journal of Archaeological Science 33(3):428439.CrossRefGoogle Scholar
Courty, MA, Goldberg, P, Macphail, RI. 1989. Soils and Micromorphology in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Cuif, J-P, Dauphin, Y, Berthet, P, Jegoudez, J. 2004. Associated water and organic compounds in coral skeletons: quantitative thermogravimetry coupled to infrared absorption spectrometry. Geochemistry, Geophysics, Geosystems 5:Q11011.CrossRefGoogle Scholar
Douka, K, Hedges, REM, Higham, TFG. 2010. Improved AMS 14C dating of shell carbonates using high-precision X-ray diffraction and a novel density separation protocol (CarDS). Radiocarbon 52:735751.CrossRefGoogle Scholar
Farmer, VC, editor. 1974. The Infrared Spectra of Minerals. London: Mineralogical Society.CrossRefGoogle Scholar
Finkelstein, I, Ussishkin, D, Halpern, B, editors. 2000. Megiddo III. The 1992–1996 Seasons. Tel Aviv: Emery and Claire Yass Publications in Archaeology.Google Scholar
Finkelstein, I, Ussishkin, D, Halpern, B, editors. 2006. Megiddo IV. The 1998–2002 Seasons. Tel Aviv: Emery and Claire Yass Publications in Archaeology.Google Scholar
Finkelstein, I, Ussishkin, D, Cline, EH, editors. 2013. Megiddo V. The 2004–2008 Seasons. Tel Aviv: Emery and Claire Yass Publications in Archaeology.CrossRefGoogle Scholar
Forget, MCL, Regev, L, Friesem, DE, Shahack-Gross, R. 2015. Physical and mineralogical properties of experimentally heated chaff-tempered mud bricks: implications for reconstruction of environmental factors influencing the appearance of mud bricks in archaeological conflagration events. Journal of Archaeological Science: Reports 2:8093.Google Scholar
Franceschi, VR, Nakata, PA. 2005. Calcium oxalate in plants: formation and function. Annual Review of Plant Biology 56:4171.CrossRefGoogle ScholarPubMed
Frost, RL, Weier, ML. 2004. Thermal treatment of whewellite – a thermal analysis and Raman spectroscopic study. Thermochimica Acta 409:7985.CrossRefGoogle Scholar
Gowlett, JAJ, Wrangham, RW. 2013. Earliest fire in Africa: towards the convergence of archaeological evidence and the cooking hypothesis. Azania: Archaeological Research in Africa 48:530.CrossRefGoogle Scholar
Karkanas, P, Bar-Yosef, O, Goldberg, P, Weiner, S. 2000. Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeological Science 27(10):915929.CrossRefGoogle Scholar
Katz, O, Cabanes, D, Weiner, S, Maeir, AM, Boaretto, E, Shahack-Gross, R. 2010. Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: an application at Tell es-Safi/Gath, Israel. Journal of Archaeological Science 37(7):15571563.CrossRefGoogle Scholar
Koumouzelis, M, Ginter, B, Kozlowski, JK, Pawlikowski, M, Bar-Yosef, O, Albert, RM, Litynska-Zajac, M, Stworzewicz, E, Wojtal, P, Lipecki, G, Tomek, T, Bochenski, ZM, Pazdur, A. 2001. The early Upper Palaeolithic in Greece: the excavations in Klisoura Cave. Journal of Archaeological Science 28:515539.CrossRefGoogle Scholar
Kuhn, SL, Stiner, MC, Güleç, E, Özer, I, Yılmaz, H, Baykara, I, Açıkkol, A, Goldberg, P, Molina, KM, Ünay, E, Suata-Alpaslan, F. 2009. The early Upper Paleolithic occupations at Üçağızlı Cave (Hatay, Turkey). Journal of Human Evolution 56(2):87113.CrossRefGoogle ScholarPubMed
Lee, MR, Lindgren, P. 2015. 4.6-billion-year-old aragonite and its implications for understanding the geological record of Ca-carbonate. Carbonates and Evaporites 30:477481.CrossRefGoogle ScholarPubMed
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörndóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.CrossRefGoogle Scholar
Lindroos, A, Regev, L, Oinonen, M, Ringbom, Å, Heinemeier, J. 2012. 14C dating of fire-damaged mortars from medieval Finland. Radiocarbon 54(3):915932.CrossRefGoogle Scholar
Lippmann, F. 1973. Sedimentary Carbonate Minerals. Heidelberg: Springer.CrossRefGoogle Scholar
Madella, M, Alexandre, A, Ball, T. 2005. International Code for Phytolith Nomenclature 1.0. Annals of Botany 96:253260.CrossRefGoogle ScholarPubMed
Mehta, AV, Yang, S. 2008. Precipitation climatology over Mediterranean Basin from ten years of TRMM measurements. Advances in Geosciences 17:8791.CrossRefGoogle Scholar
Mulholland, SC, Rapp, GJ. 1992. Phytolith systematics: an introduction. In: Rapp JG, Mulholland SC, editors. Phytolith Systematics: Emerging Issues. New York: Plenum Press. p 113.Google Scholar
Price, D, Dollimore, D, Fatemi, NS, Whitehead, R. 1980. Mass spectrometric determination of kinetic parameters for solid state decomposition reactions. Part 1. Method; calcium oxalate decomposition. Thermochimica Acta 42:323332.CrossRefGoogle Scholar
Rebollo, NR, Cohen-Ofri, I, Popovitz-Biro, R, Bar-Yosef, O, Meignen, L, Goldberg, P, Weiner, S, Boaretto, E. 2008. Structural characterization of charcoal exposed to high and low pH: implications for 14C sample preparation and charcoal preservation. Radiocarbon 50(2):289307.CrossRefGoogle Scholar
Rebollo, NR, Weiner, S, Brock, F, Meignen, L, Goldberg, P, Belfer-Cohen, A, Bar-Yosef, O, Boaretto, E. 2011. New radiocarbon dating of the transition from the Middle to the Upper Paleolithic in Kebara Cave, Israel. Journal of Archaeological Science 38:24242433.CrossRefGoogle Scholar
Regev, J, Finkelstein, I, Adams, MJ, Boaretto, E. 2014. Wiggle-matched 14C chronology of Early Bronze Megiddo and the synchronization of Egyptian and Levantine chronologies. Egypt and the Levant 24:243266.Google Scholar
Regev, L, Eckmeier, E, Mintz, E, Weiner, S, Boaretto, E. 2011. Radiocarbon concentrations of wood ash calcite: potential for dating. Radiocarbon 53(1):117127.CrossRefGoogle Scholar
Regev, L, Cabanes, D, Homsher, R, Kleiman, A, Weiner, S, Finkelstein, I, Shahack-Gross, R. 2015. Geoarchaeological Investigation in a Domestic Iron Age Quarter, Tel Megiddo, Israel. Bulletin of the American Schools of Oriental Research 374:135157.CrossRefGoogle Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: learning from experience. Radiocarbon 56(2):619635.CrossRefGoogle Scholar
Roebroeks, W, Villa, P. 2011. On the earliest evidence for habitual use of fire in Europe. PNAS 108:52095214.CrossRefGoogle ScholarPubMed
Seuss, B, Titshack, J, Seifert, S, Neubauer, J, Nützel, A. 2012. Oxygen and stable carbon isotopes from a nautiloid from the middle Pennsylvanian (Late Carboniferous) impregnation Lagerstätte “Buckhorn Asphalt Quarry” – Primary paleo-environmental signals versus diagenesis. Palaeogeography, Palaeoclimatology, Palaeoecology 319–320:115.CrossRefGoogle Scholar
Shahack-Gross, R, Ayalon, A. 2013. Stable carbon and oxygen isotopic compositions of wood ash: an experimental study with archaeological implications. Journal of Archaeological Science 40:570578.CrossRefGoogle Scholar
Shahack-Gross, R, Berna, F, Karkanas, P, Lemorini, C, Gopher, A, Barkai, R. 2014. Evidence for the repeated use of a central hearth at Middle Pleistocene (300 ky ago) Qesem Cave, Israel. Journal of Archaeological Science 44:1221.CrossRefGoogle Scholar
Stalport, F, Coll, P, Szopa, C, Person, A, Navarro-Gonzalez, R, Cabane, M, Ausset, P, Vaulay, MJ. 2007. Search for past life on Mars: Physical and chemical characterization of minerals of biotic and abiotic origin: 2. Aragonite. Geophysical Research Letters 34:L24102.CrossRefGoogle Scholar
Stiner, MC, Kuhn, SL, Weiner, S, Bar-Yosef, O. 1995. Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science 22:223237.CrossRefGoogle Scholar
Stoops, G, Marcelino, V, Mees, F, editors. 2010. Interpretation of Micromorphological Features of Soils and Regoliths. Amsterdam: Elsevier.Google Scholar
Taylor, RE, Bar–Yosef, O. 2014. Radiocarbon Dating: An Archaeological Perspective. Walnut Creek, CA: Left Coast Press.Google Scholar
Toffolo, M, Maeir, AM, Chadwick, JR, Boaretto, E. 2012. Characterization of contexts for radiocarbon dating: results from the early Iron Age at Tell es-Safi/Gath, Israel. Radiocarbon 54(3–4):371390.CrossRefGoogle Scholar
Toffolo, MB, Arie, E, Martin, MAS, Boaretto, E, Finkelstein, I. 2014. Absolute chronology of Megiddo, Israel in the Late Bronze and Iron Ages: high-resolution radiocarbon dating. Radiocarbon 56(1):221244.CrossRefGoogle Scholar
Toffolo, MB, Boaretto, E. 2014. Nucleation of aragonite upon carbonation of calcium oxide and calcium hydroxide at ambient temperatures and pressures: a new indicator of fire-related human activities. Journal of Archaeological Science 49:237248.CrossRefGoogle Scholar
Twiss, PC, Suess, E, Smith, RM. 1969. Morphological classification of grass phytoliths. Soil Science Society of America 33:109115.CrossRefGoogle Scholar
van der Marel, HW, Beutelspacher, H. 1976. Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures. Amsterdam: Elsevier Scientific Publishing Company.Google Scholar
Wadley, L, Sievers, C, Bamford, M, Goldberg, P, Berna, F, Miller, CE. 2011. Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science 334:13881391.CrossRefGoogle ScholarPubMed
Walker, MJ, Anesin, D, Angelucci, DE, Avilés-Fernández, A, Berna, F, Buitrago-López, AT, Fernández-Jalvo, Y, Haber-Uriarte, M, López-Jiménez, A, López-Martínez, M, Martín-Lerma, I, Ortega-Rodrigáñez, J, Polo-Camacho, J-L, Rhodes, SE, Richter, D, Rodríguez-Estrella, T, Schwenniger, J-L, Skinner, AR. 2016. Combustion at the late Early Pleistocene site of Cueva Negra del Estrecho del Río Quípar (Murcia, Spain). Antiquity 90:571589.CrossRefGoogle Scholar
Weiner, S, Bar-Yosef, O. 1990. States of Preservation of Bones from Prehistoric Sites in the Near East: a Survey. Journal of Archaeological Science 17:187196.CrossRefGoogle Scholar
Weiner, S, Goldberg, P, Bar-Yosef, O. 2002. Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: diagenetic processes and archaeological implications. Journal of Archaeological Science 29(11):12891308.Google Scholar
Weiner, S. 2010. Microarchaeology. Beyond the Visible Archaeological Record. New York: Cambridge University Press.CrossRefGoogle Scholar
Wrangham, RW. 2009. Catching Fire. How Cooking Made Us Human. London: Profile Books LTD.Google Scholar
Yizhaq, M, Mintz, G, Cohen, I, Khalaily, H, Weiner, S, Boaretto, E. 2005. Quality controlled radiocarbon dating of bones and charcoal from the early Pre-Pottery Neolitic B (PPNB) of Motza (Israel). Radiocarbon 47(2):193206.CrossRefGoogle Scholar