Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T06:04:42.368Z Has data issue: false hasContentIssue false

Material Requirements For All-Optical Devices:Nonlinear Properties of Poly-4BCMU

Published online by Cambridge University Press:  21 February 2011

G. I. Stegeman
Affiliation:
Center for Research in Electro-Optics and Lasers, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826
W. Torruellas
Affiliation:
Raytheon Research Division, 131 Spring St. Lexington, MA 02173
K. B. Rochford
Affiliation:
Dylor Corporation, 4425 Brookfield Corporate Drive, Chantilly, VA 22021
R. Zanoni
Affiliation:
Center for Laser Research, Oklahoma State University, Stillwater, OK 74078-0533
W. Krug
Affiliation:
Boeing Defense and Space Group High Technology Center, Seattle, WA 98124
E. Miao
Affiliation:
Boeing Defense and Space Group High Technology Center, Seattle, WA 98124
M. W. Beranek
Affiliation:
Boeing Defense and Space Group High Technology Center, Seattle, WA 98124
Get access

Extract

The non-resonant third order nonlinearity of conjugated polymers appears to be potentially useful for all-optical devices in waveguide formats.[l,2] This nonlinearity manifests itself as an intensity-dependent refractive index which leads to a nonlinear phase shift over some propagation distance. Device research over the last few years has shown that there are certain minimum requirements for the nonlinear phase shift that need to be achieved over one absorption length of the material.[l,3] There are two principal sources of absorption, the usual linear absorption which is independent of fluence, and two photon absorption for which the absorption scales linearly with intensity. Thus the usefulness of a nonlinear material for all-optical switching devices can be evaluated from a limited number of material parameters, namely n2 (in n = n0 + n2I where I is the local intensity), α0 which is the low power absorption coefficient and β which is the two photon coefficient (in α = α0 + βI). The problem for a given material is to identify spectral regions over which the minimum required phase shift can be achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stegeman, G.I. and Wright, E.M., J. Optical and Quant. Electron., 22, 95, (1990)Google Scholar
2. see for example Nonlinear Opntical Effects in Organic Polymers, edited by Messier, J. et al., NATO ISI Series, Vol 162 (Kluwer Academic Publishers, 1989); Nonlinear Optical Properties of Organic Molecules and Crystals, edited by D.S. Chemla and J. Zyss (Academic Press, New York, 1987)Google Scholar
3. DeLong, K., Rochford, K.B. and Stegeman, G.I., Appl. Phys. Lett., 55, 1823, (1989)Google Scholar
4. Chance, R.R., Shand, M.L., Hogg, C. and Silbey, R., Phys. Rev. B22, 3540, (1980).Google Scholar
5. Dennis, W.M., Blau, W. and Bradley, D.J., Appl. Phys. Lett., 47, 200 (1985).Google Scholar
6. Rao, D.N., Chopra, P., Ghoshal, S.K., Swiatkiewicz, J. and Prasad, P.N., J. Chem. Phys., 84, 7049 (1986).Google Scholar
7. Chollet, P.A., Kajzar, F. and Messier, J., Synth. Met., 18, 459 (1987).Google Scholar
8. Nunzi, J.M. and Grec, D., J. Appl. Phys., 62, 2198, (1987); J.M. Nunzi and F. Charra, Opt. Commun., 73, 357 (1989).CrossRefGoogle Scholar
9. Ho, P.P., Dorsinville, R., Yang, N.L., Odian, G., Eichmann, G., Jimbo, T., Wang, Q.Z., Tang, G.C., chen, N.D., Zou, W.K., Li, Y. and Alfano, R.R., Proceedings of Symposium on Molecular and Polymeric Materials, SPIE 682, 36 (1986); L. Yang, R. Dorsinville, Q.Z. Wang, W.K. Zou, P.P. Ho, N.L. Yang, R.R. Alfano,, R. Zamboni, R. Danieli, R. Ruani and C. Taliani, J. Opt. Soc. Am. B 6, 753 (1989).Google Scholar
10. Sinclair, M., McBranch, D., Moses, D. and Heeger, A.J., Appl. Phys. Lett., 53, 2374 (1989).Google Scholar
11. Townsend, P.D., Jackel, J.L., Baker, G.L., Shelbourne, J.A. III, Etemad, S., Appl. Phys. Lett., 1989, 55, 1829, (1989)Google Scholar
12. Torruellas, W.E., Rochford, K.B., Zanoni, R., Arakaki, S. and Stegeman, G.I., Opt. Comm., 82, 94, (1991).Google Scholar
13. Torruellas, W.E., “The Optical Susceptibility Dispersion of Some Transparent Thin Films”, PhD thesis, Un. Arizona 1990 Google Scholar
14. Rochford, K.B., Zanoni, R., Stegeman, G.I., Krug, W., Miao, E. and Beranek, M.W., Appl. Phys. Lett., 58, 13, (1991).CrossRefGoogle Scholar
15. Schulten, K., Ohmine, I. and Karplus, M., J. Chem. Phys., 64, 4422 (1976).Google Scholar
16. Orr, B.J. and Ward, J.F., Mol. Phys., 20, 513 (1971).Google Scholar
17. Meredith, G.R., Buchalter, B and Hanzlik, C., J. Chem. Phys., 78, 1543 (1983).Google Scholar
18. Kajzar, F., Messier, J. and Rosilio, R., J. Appl. Phys., 60, 3040 (1986).CrossRefGoogle Scholar
19. Townsend, P.D., Fann, W., Etemad, S., Baker, G.L., Jackel, J. and Soos, Z.G., Chem. Phys. Lett., to be publishedGoogle Scholar
20. Finlayson, N., Banyai, W.C., Seaton, C.T., Stegeman, G.I., O'Neill, M., Cullen, T.J. and Ironside, C.N., Opt. Lett., 14, 532, (1989).Google Scholar
21. LaGasse, M.J., Wong, D.L., Haus, H.A. and Fujimoto, J.G., Opt. Lett., 14, 311 (1989).Google Scholar
22. Rochford, K.B., “The Desert Chronicles”, PhD thesis, Un. Arizona (1990).Google Scholar
23. Agrawal, G.P., Cojan, C. and Flytzanis, C., Phys. Rev., B17, 776, (1978)Google Scholar
24. Hudson, B.S., Kohler, B.E. and Schultem, K., in Excited States, Vol 6, edited by Lim, E.C., (Academic, New York, 1982), pp l96 Google Scholar
25. Soos, A.G. and Hayden, G.W., in Electroresponsive Molecular and Polymeric Systems, Vol 1, edited by Skotheim, T.A., (Marcel Dekker, New York, 1988), pp197266 Google Scholar
26. Soos, Z.G. and Ramasesha, S., J. Chem. Phys., 90, 1067 (1989).Google Scholar
27. Mazumdar, S., Guo, D. and Dixit, S.N., Proceedings of SPIE 1991 O/E Laser Conference, in press; Mol. Cryst. Liq. Cryst., 194, 33 (1991).Google Scholar