Hostname: page-component-68c7f8b79f-lqrcg Total loading time: 0 Render date: 2025-12-24T19:03:15.530Z Has data issue: false hasContentIssue false

Crystal structure and vibration spectra of norsethite-type BaMg(CO3)2–BaMn(CO3)2 solid solutions

Published online by Cambridge University Press:  27 January 2025

Wen Liang*
Affiliation:
College of Material Science and Engineering, Guizhou Minzu University, Guiyang, 550025, China Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
Jie Bai
Affiliation:
Analysis and test center, Guangdong University of Technology, Guangzhou, 510075, China
Lin Li
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
Zengsheng Li
Affiliation:
Shandong Geological Sciences Institute, Jinan, 250013, China
Yong Meng
Affiliation:
College of Material Science and Engineering, Guizhou Minzu University, Guiyang, 550025, China Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
Kaixiang Liu
Affiliation:
College of Material Science and Engineering, Guizhou Minzu University, Guiyang, 550025, China
Peer-Lennart Gehlken
Affiliation:
Raw Materials Analysis Ltd., D-37136 Ebergötzen, Germany
Michael E. Böttcher*
Affiliation:
Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), D-18119 Warnemünde, Germany Institute for Geography & Geology, University of Greifswald, D-17489 Greifswald, Germany; Interdisciplinary Faculty, University of Rostock, D-18059 Rostock, Germany
*
Corresponding authors: Michael E. Böttcher; Email: michael.boettcher@io-warne muende.de; Wen Liang; Email: liangwen.pku@163.com
Corresponding authors: Michael E. Böttcher; Email: michael.boettcher@io-warne muende.de; Wen Liang; Email: liangwen.pku@163.com

Abstract

Members of norsethite-type carbonate solid solutions with the compositions Ba(Mg1–xMnx)(CO3)2, (x = 0, 0.25, 0.50 and 0.75) have been synthesised under high-pressure and -temperature conditions (3GPa, 800°C) for the first time. The synthetic transparent crystals gradually changed their appearance from colourless to blue lustre with the increasing Mn2+ content (XMn). The results of the crystal structure analyses reveal that the lattice parameters (a, c, unit-cell volume, Mg/Mn–O bond lengths and Ba–O bond lengths) complied with a linear increase with XMn. In contrast, the C–O bond lengths and O–C–O bond angles decreased, because the CO32– group was squeezed by the expansion of the (Mg/Mn)O6 octahedra. Moreover, the Raman and infrared vibrations, except for the lattice mode T, shift to low frequency with the increasing XMn, and the slight corresponding variations of the atomic positions were also determined. These new results demonstrate the impact of Mg2+–Mn2+ substitution on the crystal chemistry of norsethite-type solid solutions, with further implications for the natural occurrence and environmental of norsethite-type and dolomite/ankerite-type carbonates.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Koichi Momma

#

These authors contributed equally to this work.

The original version of this article was published with an incorrect article title. A notice detailing this has been published and the error rectified in the online PDF and HTML copies.

References

Bertram, M.A., Mackenzie, F.T., Bishop, F.C. and Bischoff, W.D. (1991) Influence of temperature on the stability of magnesian calcite. American Mineralogist, 76, 18891896.Google Scholar
M.E, Böttcher. (1998) Manganese(II) partitioning during experimental precipitation of rhodochrosite-calcite solid-solutions from aqueous solutions. Marine Chemistry, 62, 287297.Google Scholar
M.E, Böttcher. (2000) Stable isotope fractionation during experimental formation of norsethite (BaMg[CO3]2): A mineral analogue of dolomite. Aquatic Geochemistry, 6, 201213.Google Scholar
Böttcher, M.E. and Dietzel, M. (2010) Metal-ion partitioning during low-temperature precipitation and dissolution of anhydrous carbonates and sulfates. EMU Notes in Mineralogy, 10, 139187.Google Scholar
Böttcher, M.E., Gehlken, P.-L., Usdowski, E. and Reppke, V. (1993) An infrared spectroscopic study of natural and synthetic carbonates from the quaternary system CaCO3-MgCO3-FeCO3-MnCO3. Zeitschrift Deutsche Geologische Gesellschaft, 144, 478484.Google Scholar
Böttcher, M.E., Gehlken, P.-L. and Reutel, C. (1996) The vibrational spectra of PbMg(CO3)2. Neues Jahrbuch für Mineralogie – Monatshefte, 1996, 241250.Google Scholar
Böttcher, M.E., Gehlken, P.-L., Skogby, H. and Reutel, C. (1997) The vibrational spectra of BaMg(CO3)2 (norsethite). Mineralogical Magazine, 61, 249256.CrossRefGoogle Scholar
Böttcher, M.E., Effenberger, H.S., Gehlken, P.-L., Grathoff, G. H., Schmidt, B.C., Geprägs, P., Bahlo, R., Dellwig, O., Leipe, T., Winde, V., Deutschmann, A., Stark, A., Gallego-Torres, D. and Martinez-Ruiz, F. (2012) BaMn[CO3]2 – a previously unrecognized double carbonate in low-temperature environments: Structural, spectroscopic, and textural tools for future identification. Geochemistry, 72, 8589.CrossRefGoogle Scholar
Böttcher, M.E., Gehlken, P.-L. and Liang, W. (2021) The mid-infrared spectrum of a new double carbonate, BaFe[CO3]2. Journal of Molecular Structure, 1250, 131899.CrossRefGoogle Scholar
Damyanov, Z. K., Bakardjiev, S. and Popov, P. (1996) Mineralogy, geology and genesis of the Kremikovtsi carbonate-hosted submarine exhalative iron(+Mn)-barite (+base metals) deposit, West Balkan, Bulgaria. Proceedings of the Annual Meeting, Sofia, UNESCO Project 356, 1, 2937.Google Scholar
Effenberger, H. (1980) Die Kristallstruktur des Minerals Paralstonit. Neues Jahrbuch Mineralogie, Monatshefte, 1980, 353363.Google Scholar
Effenberger, H. and Zemann, J. (1985) Single crystal X-ray investigation of norsethite, BaMg(CO3)2: one more mineral with an aplanar carbonate group. Zeitschrift für Kristallographie, 171, 275280.CrossRefGoogle Scholar
Effenberger, H., Pippinger, T., Libowitzky, E., Lengauer, C.L. and Miletich, R. (2014) Synthetic norsethite, BaMg(CO3)2: revised crystal structure, thermal behaviour and displacive phase transition. Mineralogical Magazine, 78, 15891612.CrossRefGoogle Scholar
Glynn, P. (2000) Sulfate minerals: crystallography, geochemistry and environmental significance. Reviews in Mineralogy and Geochemistry, 40, 481511.CrossRefGoogle Scholar
Glynn, P.D. and Reardon, E.J. (1990) Solid-solution aqueous-solution equilibria: Thermodynamic theory and representation. American Journal of Science, 290, 164201.CrossRefGoogle Scholar
Hazen, R.M. and Ausubel, J.H. (2016) On the nature and significance of rarity in mineralogy. American Mineralogist, 101, 12451251.CrossRefGoogle Scholar
Kapustin, J.L. (1965) Norsethite – The first find in USSR. Doklady Akademii Nauk, 161, 922924.Google Scholar
Liang, W., Li, Z., Wang, L., Chen, L. and Li, H. (2017) High pressure synthesis of anhydrous magnesium carbonate (MgCO3) from magnesium oxalate dihydrate (MgC2O4·2H2O) and its characterization. Acta Physica Sinica, 66, 206213.Google Scholar
Liang, W., Li, L., Yin, Y., Li, R., Li, Z., Liu, X., Zhao, C., Yang, S., Meng, Y., Li, Z., He, Y. and Li, H. (2019) Crystal structure of norsethite-type BaMn(CO3)2 and its pressure-induced transition investigated by Raman spectroscopy. Physics and Chemistry of Minerals, 46, 771781.CrossRefGoogle Scholar
Liang, W., Li, L., Li, R., Yin, Y., Li, Z., Liu, K., Shan, S., He, Y., Meng, Y., Li, Z. and Li, H. (2020) Crystal structure of impurity-free rhodochrosite (MnCO3) and thermal expansion properties. Physics and Chemistry of Minerals, 47, 9.CrossRefGoogle Scholar
Liang, W., Peters, C., Li, L., Leupold, O., Li, H. and M.E, Böttcher. (2021) BaFe(CO3)2, a new double carbonate: Synthesis, structural characterization, and geostability implications for high and low PT. Geochemistry, 81, 125740, 112.CrossRefGoogle Scholar
Lindner, M., Saldi, G.D., Carrocci, S., Benezeth, P., Schott, J. and Jordan, G. (2018) On the growth of anhydrous Mg-bearing carbonates- Implications from norsethite growth kinetics. Geochimica et Cosmochimica Acta, 238, 424437.CrossRefGoogle Scholar
Lippmann, F. (1967) Die Synthese des Norsethit, BaMg (CO3)2, bei ca. 20°C und 1 at. Ein Modell zur Dolomitisierung. Neues Jahrbuch für Mineralogie Abhandlungen, 1967, 2329.Google Scholar
Lippmann, F. (1968) Syntheses of BaMg(CO3)2 (Norsethite) at 20°C and the formation of dolomite in sediments. Pp. 3337 in: Recent developments in carbonate sedimentology in Central Europe (Müller, G., and Friedman, G. M., editors). Springer-Verlag, New York.CrossRefGoogle Scholar
Lippmann, F. (1973) Sedimentary Carbonate Minerals. Springer-Verlag, Heidelberg-New York.CrossRefGoogle Scholar
Mrose, M.E., Chao, E.T.C., Fahey, J.J. and Milton, C. (1961) Norsethite, BaMg(CO3)2, a new mineral from the Green River formation, Wyoming. American Mineralogist, 46, 420429.Google Scholar
Oelkers, E. and Gislason, S.R. (2023) Carbon capture and storage: From global cycles to global solutions. Geochemical Perspectives, 12, 179349.CrossRefGoogle Scholar
Onac, B.P. (2002) Caves formed within Upper Cretaceous skarns at Băiţa, Bihor County, Romania: Mineral deposition and speleogenesis. The Canadian Mineralogist, 40, 16931703.CrossRefGoogle Scholar
Pasero, M. (2025) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.units.it/.Google Scholar
Peacor, D.R., Essene, E.J. and Gaines, A.M. (1987) Petrologic and crystal-chemical implications of cation order-disorder in kutnohorite CaMn(CO3)2. American Mineralogist, 72, 319328.Google Scholar
Platt, R.G. and Woolley, A.R. (1990) The carbonatites and fenites of Chipman lake, Ontario. The Canadian Mineralogist, 28, 241250.Google Scholar
Putnis, A. (1992) Introduction to Mineral Sciences. Cambridge University Press, UK, 457 pp.CrossRefGoogle Scholar
Reeder, R.J. (1983) Crystal chemistry of the rhombohedral carbonates. Pp. 148 in: Carbonates: Mineralogy and Chemistry (Reeder, R.J., editor). Reviews in Mineralogy, 11. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Reeder, R.J. and Dollase, W.A. (1989) Structural variation in the dolomite-ankerite solid-solution series: An X-ray, Mössbauer, and TEM study. American Mineralogist, 74, 11591167.Google Scholar
Sánchez-Pastor, N., Gigler, AM., Jordan, G., Schmahl, WW. and Fernández-Díaz, L. (2011) Raman study of synthetic witherite–strontianite solid solutions. Spectroscopy Letters, 44, DOI: 10.1080/00387010.2011.610409.CrossRefGoogle Scholar
Schmidt, B., Gehlken, P.L. and M.E, Böttcher. (2013) Vibrational spectra of BaMn(CO3)2 and a re-analysis of the Raman spectrum of BaMg(CO3)2. European Journal of Mineralogy, 25, 137144.CrossRefGoogle Scholar
Secco, L. and Lavina, B. (1999) Crystal chemistry of two natural magmatic norsethites, BaMg(CO3)2, from an Mg-carbonatite of the alkaline carbonatitic complex of Tapira (SE Brazil). Neues Jahrbuch fur Mineralogie, Monatshefte, 1999, 8796.Google Scholar
Shannon, R.D. and Prewitt, C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallographica, B25, 925946.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, 64, 112122.CrossRefGoogle Scholar
Steyn, J.G.D. and Watson, M.D. (1967) A new occurrence of norsethite, BaMg(CO3)2. American Mineralogist, 52, 17701775.Google Scholar
Sundius, N. and Blix, R. (1965) Norsethite from Langban. Arkiv for Mineralogi och Geologi, 4, 277278.Google Scholar
Urashima, S., Tomoya, N. and Hiroharu, Y. (2022) Micro–Raman spectroscopic analysis on natural carbonates: linear relations found via biaxial plotting of peak frequencies for cation substituted species. Analytical Sciences, 38, 921929.CrossRefGoogle ScholarPubMed
White, W.B. (1974) The carbonate minerals. Pp. 227284 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society Monograph 4. Mineralogical Society, London.CrossRefGoogle Scholar
Zheng, Y.-F. and M.E, Bӧttcher. (2016) Oxygen isotope fractionation in double carbonates. Isotopes in Environmental & Health Studies, 52, 2946.CrossRefGoogle ScholarPubMed
Zidarov, N., Petrov, O., Tarassov, M., Damyanov, Z., Tarassova, E., Petkova, V., Kalvachev, Y. and Zlatev, Z. (2009) Mn-rich norsethite from the Kremikovtsi ore deposit, Bulgaria. Neues Jahrbuch für Mineralogie, Abhandlungen, 186, 321331.CrossRefGoogle Scholar
Supplementary material: File

Liang et al. supplementary material

Liang et al. supplementary material
Download Liang et al. supplementary material(File)
File 571.4 KB