Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T08:52:29.255Z Has data issue: false hasContentIssue false

Acoustic enhancement of surface reactions

Published online by Cambridge University Press:  09 May 2019

Yasunobu Inoue*
Affiliation:
The University of Tokyo, Japan; yasinoue@chemsys.t.u-tokyo.ac.jp
Get access

Abstract

This article focuses on the acoustic-wave enhancement of chemisorption and surface reactions. Acoustic waves generated by a piezoelectric phenomenon on ferroelectric crystals by the application of radio frequency electric power produce periodic lattice distortions at the surface. The effects of surface acoustic waves (SAWs) and the resonance oscillation (RO) of bulk acoustic waves on thin films of metals or metal oxides are described herein. Both SAWs and RO can modify the work functions of thin Ag, Au, or Pd films, and this effect is highly dependent on the surface structures. These changes in the work function can, in turn, affect the adsorptive characteristics of the metals as well as surface reactions and properties such as catalysis. The importance of periodic lattice displacement vertical to the surface is examined in this article, and the acoustic-wave enhancement of metal and metal oxide surfaces as a means of tuning electronic states and chemical properties is discussed.

Type
Acoustic Processes in Materials
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lines, M.E., Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, UK, 2001).CrossRefGoogle Scholar
Ikeda, T., Fundamentals of Piezoelectricity (Oxford University Press, Oxford, UK, 1990).Google Scholar
Inoue, Y., Surf. Sci. Rep. 62, 305 (2007).CrossRefGoogle Scholar
Auld, B.A., Acoustic Fields and Waves in Solids, Vol. 2 (Wiley, New York, 1973), p. 163.Google Scholar
Saito, N., Nishiyama, H., Sato, K., Inoue, Y., Chem. Phys. Lett. 297, 72 (1998).CrossRefGoogle Scholar
Nishiyama, H., Inoue, Y., J. Phys. Chem. B 107, 8738 (2003).CrossRefGoogle Scholar
Lang, N.D., Kohn, W., Phys. Rev. B 1, 4555 (1970).CrossRefGoogle Scholar
Skriver, H.L., Rosengaard, N.M., Phys. Rev. B 46, 7157 (1992).CrossRefGoogle Scholar
Nishiyama, H., Inoue, Y., Surf. Sci. 600, 2644 (2006).CrossRefGoogle Scholar
Gartland, P.O., Berge, S., Slagsvold, B.J., Phys. Rev. Lett. 28, 738 (1972).CrossRefGoogle Scholar
Dweydari, A.W., Mee, C.H.B., Phys. Status Solidi A 17, 247 (1973).CrossRefGoogle Scholar
Nishiyama, H., Inoue, Y., Surf. Sci. 594, 156 (2005).CrossRefGoogle Scholar
Ryberg, R., Surf. Sci. 114, 627 (1982).CrossRefGoogle Scholar
Woodruff, D.P., Hayden, B.E., Prince, K., Bradshaw, A.M., Surf. Sci. 123, 397 (1982).CrossRefGoogle Scholar
Hollins, P., Pritchard, J., Surf. Sci. 89, 486 (1979).CrossRefGoogle Scholar
Pritchard, J., Surf. Sci. 79, 231 (1979).CrossRefGoogle Scholar
Pritchard, J., Catterick, T., Gupta, R.K., Surf. Sci. 53, 1 (1975).CrossRefGoogle Scholar
Nishiyama, H., Rattana, N., Saito, N., Sato, K., Inoue, Y., J. Phys. Chem. B 104, 10602 (2000).CrossRefGoogle Scholar
Bierbaum, P., Appl. Phys. Lett. 21, 595 (1972).CrossRefGoogle Scholar
Inoue, Y., Matsukawa, M., Sato, K., J. Phys. Chem. 96, 2222 (1992).CrossRefGoogle Scholar
Inoue, Y., Matsukawa, M., Sato, K., J. Am. Chem. Soc. 111, 8965 (1989).CrossRefGoogle Scholar
Inoue, Y., Matsukawa, M., Kawaguchi, H., J. Chem. Soc. Faraday Trans. 88, 2923 (1992).CrossRefGoogle Scholar
Inoue, Y., Watanabe, Y., Catal. Today 16, 487 (1993).CrossRefGoogle Scholar
Kelling, S., Saito, N., Inoue, Y., King, D.A., Appl. Surf. Sci. 150, 47 (1999).CrossRefGoogle Scholar
Gruyters, M., Mitrelias, T., King, D.A., Appl. Phys. A 61, 243 (1995).CrossRefGoogle Scholar
Mitrelias, T., Ostanin, V.P., Gruyters, M., King, D.A., Appl. Surf. Sci. 100/101, 305 (1996).CrossRefGoogle Scholar
Mitrelias, T., Kelling, S., Gruyters, M., King, D.A., Appl. Phys. Lett. 69, 3677 (1996).CrossRefGoogle Scholar
Kelling, S., Mitrelias, T., Matsumoto, Y., Ostanin, V.P., King, D.A., Faraday Discuss . 107, 435 (1997).CrossRefGoogle Scholar
Kelling, S., Mitrelias, T., Matsumoto, Y., Ostanin, V.P., King, D.A., J. Chem. Phys. 107, 5609 (1997).CrossRefGoogle Scholar
Kelling, S., Cerasari, S., Rotermund, H.H., Ertl, G., King, D.A., Chem. Phys. Lett. 293, 325 (1998).CrossRefGoogle Scholar
Nishiyama, H., Saito, N., Yashima, T., Sato, K., Inoue, Y., Surf. Sci. 427/428, 152 (1999).CrossRefGoogle Scholar
Saito, N., Inoue, Y., J. Chem. Phys. 113, 469 (2000).CrossRefGoogle Scholar
Saito, N., Ohkawara, Y., Watanabe, Y., Inoue, Y., Appl. Surf. Sci. 121/122, 343 (1997).CrossRefGoogle Scholar
Yukawa, Y., Saito, N., Nishiyama, H., Inoue, Y., Surf. Sci. 532/535, 359 (2003).CrossRefGoogle Scholar
Yukawa, Y., Saito, N., Nishiyama, H., Inoue, Y., J. Phys. Chem. B 106, 10174 (2002).CrossRefGoogle Scholar
Saito, N., Inoue, Y., J. Phys. Chem. 106, 5011(2002).CrossRefGoogle Scholar
Smith, J.R., Phys. Rev. 181, 522 (1969).CrossRefGoogle Scholar
Kratochwil, Th., Wittmann, M., Küppers, J., J. Electron Spectrosc. Relat. Phenom. 64/65, 609 (1993).CrossRefGoogle Scholar
Somorjai, G., Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).Google Scholar
Marcel, R.I., Principles of Adsorption and Reactions on Solid Surfaces (Wiley, New York, 1996).Google Scholar
Yukawa, Y., Saito, N., Nishiyama, H., Inoue, Y., Appl. Surf. Sci. 250, 104 (2005).CrossRefGoogle Scholar
Peremans, A., Maseri, F., Darville, J., Gilles, J.-M., Surf. Sci. 227, 73 (1990).CrossRefGoogle Scholar
Wang, J., DeAngelis, A., Zaikos, D., Setiadi, M., Masel, R.I., Surf. Sci. 318, 307 (1994).CrossRefGoogle Scholar
Bhattacharya, A.K., Chesters, M.A., Pemble, M.E., Sheppard, N., Surf. Sci. 206, L845 (1998).CrossRefGoogle Scholar
Kruse, N., Rebholz, M., Matolin, V., Chuah, G.K., Block, J.H., Surf. Sci. Lett. 238, L457 (1990).CrossRefGoogle Scholar
Rebholz, M., Matolin, V., Prins, R., Kruse, N., Surf. Sci. 251/252, 1117 (1991).CrossRefGoogle Scholar
Davis, J.L., Barteau, M.A., Surf. Sci. 197, 123 (1998).CrossRefGoogle Scholar
Davis, J.L., Barteau, M.A., Surf. Sci. 235, 235 (1990).CrossRefGoogle Scholar
Endo, M., Matsumoto, T., Kubota, J., Domen, K., Hirose, C., J. Phys. Chem. B 105, 1573 (2001).CrossRefGoogle Scholar
Yukawa, Y., Saito, N., Nishiyama, H., Inoue, Y., J. Phys. Chem. B 108, 20199 (2004).CrossRefGoogle Scholar
Saito, N., Inoue, Y., J. Phys. Chem. B 107, 2040 (2003).CrossRefGoogle Scholar
Saito, N., Sakamoto, M., Nishiyama, H., Inoue, Y., Chem. Phys. Lett. 341, 232 (2001).CrossRefGoogle Scholar
Saito, N., Nishiyama, H., Sato, K., Inoue, Y., Appl. Surf. Sci. 144/145, 385 (1999).CrossRefGoogle Scholar
Nishiyama, H., Kazui, M., Inoue, Y., Chem. Lett. 43, 618 (2014).CrossRefGoogle Scholar
Nishiyama, H., Watanabe, T., Inoue, Y., Appl. Surf. Sci. 294, 66 (2014).CrossRefGoogle Scholar
Nishiyama, H., Watanabe, T., Inoue, Y., Enzyme Microb. Technol. 67, 27 (2014).CrossRefGoogle Scholar
Nishiyama, H., Asari, R., Inoue, Y., Phys. Chem. Chem. Phys. 12, 5970 (2010).CrossRefGoogle Scholar