Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T01:35:41.464Z Has data issue: false hasContentIssue false

Dose effect of live yeasts on rumen microbial communities and fermentations during butyric latent acidosis in sheep: new type of interaction

Published online by Cambridge University Press:  13 March 2007

L. Brossard
Affiliation:
Unité de Recherches sur les Herbivores, INRA, Centre de Recherche de Clermont-Ferrand-Theix, 63122, St-Genès-Champanelle, France Lallemand Animal Nutrition, 19 rue des Briquetiers, BP 59, 31702, Blagnac Cedex, France
F. Chaucheyras-Durand
Affiliation:
Lallemand Animal Nutrition, 19 rue des Briquetiers, BP 59, 31702, Blagnac Cedex, France Laboratoire de Microbiologie, INRA, Centre de Recherche de Clermont-Ferrand-Theix, 63122, St-Genès-Champanelle, France
B. Michalet-Doreau
Affiliation:
Unité de Recherches sur les Herbivores, INRA, Centre de Recherche de Clermont-Ferrand-Theix, 63122, St-Genès-Champanelle, France
C. Martin*
Affiliation:
Unité de Recherches sur les Herbivores, INRA, Centre de Recherche de Clermont-Ferrand-Theix, 63122, St-Genès-Champanelle, France
*
Corresponding author. E-mail: cecile@clermont.inra.fr
Get access

Abstract

Six ruminal cannulated Texel sheep were used to assess the dose response and the effect of live yeasts (Levucell® SC, Saccharomyces cerevisiae CNCM I-1077) on the prevention of induced ruminal latent acidosis. The sheep received, in a replicated 3×3 Latin-square design, an acidotic diet (wheat +lucerne hay, 60:40 (dry matter (DM) basis); starch: 410 g/kg DM) without yeast (control group; L0 treatment), supplemented with 0·2 g/day yeast (4×109 colony-forming units (c.f.u.) per day corresponding to producer recommendations; L1 treatment) or with 2 g/day yeast (4×1010 c.f.u. per day; L10 treatment). The following measurements were carried out: food intake, ruminal pH, ruminal volatile fatty acids (VFA), lactate and ammonia (NH3) concentrations, protozoal and lactate-utilizing bacterial counts, relative proportions of two main bacteria implicated in lactate metabolism (a lactate-producing species, Streptococcus bovis, and a lactate-utilizing species, Megasphaera elsdenii) using specific 16S-rRNA-targeting oligonucleotide probes, activities of lactate dehydrogenase (LDH) and of polysaccharidases involved in plant cell wall (xylanase, carboxymethylcellulase) and starch (amylase) degradation. The acidotic diet (L0) induced a butyric (12 mol per 100 mol total VFA) rather than lactic (<4 mmol/l) ruminal latent acidosis. Ruminal pH, fermentative patterns, lactate-metabolizing bacteria (concentration, LDH activity) and polysaccharidase activities were similar between treatments (P>0·1). Yeast supplementation tended to increase ruminal protozoal population (P<0·1) and intake of animals (P<0·1). The recommended yeast concentration (L1) was sufficient to ensure these effects. The yeast's action may differ according to the nature and function of the micro-organisms involved and the type of fermentative pattern favoured (protozoa/butyrate v. lactate-metabolizing bacteria/lactate and propionate) during ruminal acidosis in sheep.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous (1988) Arrêté du 19 avril 1988 fixant les conditions d'attribution de l'autorisation d'expérimenter. Journal Officiel de la République Française, 27 avril 1988 56085610Google Scholar
Association of Official Analytical Chemists (1990) Official methods of analysis of the Association of Official Analytical Chemists, 15th edition AOAC, Arlington, VA.Google Scholar
Arcos-Garcia, J.L.Castrejon, F.A.Mendoza, G.D.Perez-Gavilan, E.P. (2000) Effect of two commercial yeast cultures with Saccharomyces cerevisiae on ruminal fermentation and digestion in sheep fed sugar cane tops. Livestock Production Science 63: 153157CrossRefGoogle Scholar
Brossard, L.Martin, C.Chaucheyras-Durand, F.Michalet-Doreau, B. (2003a) Efficiency and dose effect of Levucell® SC to improve ruminal pH in induced acidotic sheep. Proceeding of the 26th conference on gastrointestinal functionChicago, IL p. 31Google Scholar
Brossard, L.Martin, C.Chaucheyras-Durand, F.Michalet-Doreau, B. (2004) Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep. Reproduction Nutrition Development 44: 195206CrossRefGoogle ScholarPubMed
Brossard, L.Martin, C.Michalet-Doreau, B. (2003) Ruminal fermentative parameters and blood acido-basic balance changes during the onset and the recovery of induced lactic acidosis in sheep. Animal Research 52:513530CrossRefGoogle Scholar
Bryant, M.P.Burkey, L.A. (1953) Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. Journal of Dairy Science 36:205217CrossRefGoogle Scholar
Chaucheyras, F.Fonty, G. (2004) Balancing ruminal microbial activities with live yeasts used as feed additives. Reproduction Nutrition Development 44: (Suppl. 1) S99 (abstr.)Google Scholar
Chaucheyras, F.Fonty, G.Bertin, G.Salmon, J.M.Gouet, P. (1996) Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Canadian Journal of Microbiology 42:927933CrossRefGoogle Scholar
Clarke, K.R.Owens, N.J.P. (1983) A simple and versatile micro-computer program for the determination of “Most Probable Number”. Journal of Microbiological Methods 1:133137CrossRefGoogle Scholar
Dann, H.M.Drackley, J.K.McCoy, G.C.Hutjens, M.F.Garrett, J.E. (2000) Effects of yeast culture (Saccharomyces cerevisiae) on prepartum intake and postpartum intake and milk production of Jersey cows. Journal of Dairy Science 83:123127CrossRefGoogle ScholarPubMed
Doreau, M.Jouany, J.P. (1998) Effect of a Saccharomyces cerevisiae culture on nutrient digestion in lactating dairy cows. Journal of Dairy Science 81:32143221CrossRefGoogle ScholarPubMed
Doreau, M.Ollier, A.Michalet-Doreau, B. (2001) Un cas atypique de fermentations ruminales associées a une cétose chez la vache en début de lactation. Revue de Medecine Veterinaire 152:301306Google Scholar
Edwards, I.E. (1991) Practical uses of yeast culture in beef production: insight into its mode of action. In Biotechnology in the feed industry Lyons, T.P.5165Alltech Technical Publications Nicholasville, KY.Google Scholar
Edwards, I.E. (1991) Practical uses of yeast culture in beef production: insight into its mode of action. In Biotechnology in the feed industry Lyons, T.P.5165Alltech Technical Publications Nicholasville, KY.Google Scholar
Edwards, I.E. (1991) Practical uses of yeast culture in beef production: insight into its mode of action. In Biotechnology in the feed industry (ed. Lyons, T.P.), pp. 5165Alltech Technical Publications Nicholasville, KY.Google Scholar
El Hassan, S.M.Newbold, C.J.Edwards, I.E.Topps, J.H.Wallace, R.J. (1996) Effects of yeast culture on rumen fermentation, microbial protein flow from the rumen and live-weight gain in bulls given high cereal diets. Animal Science 62:4348CrossRefGoogle Scholar
Erasmus, L.J.Botha, P.M.Kistner, A. (1992) Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows. Journal of Dairy Science 75:30563065CrossRefGoogle ScholarPubMed
Faisant, N.Planchot, V.Kozlowski, F.Pacouret, M.P.Clonna, P.Champ, M. (1995) Resistant starch determination adapted to products containing high level of resistant starch. Sciences des Aliments 15:8389Google Scholar
Fallon, R.J.Earley, B. (2001) The effect of different levels of yeast culture inclusion in the concentrate diet on calf performance. Journal of Dairy Science 84: (Suppl. 1) 38(abstr.)Google Scholar
Fiems, L.O.Cottyn, B.G.Dussert, L.Vanacker, J.M. (1993) Effect of viable yeast culture on digestibility and rumen fermentation in sheep fed different types of diets. Reproduction Nutrition Development 33:4349Google ScholarPubMed
Garcia, C.C.G.Mendoza, M.G.D.Gonzalez, M.S.Cobos, P.M.Ortega, C.M.E.Ramirez, L.R. (2000) Effects of a yeast culture (Saccharomyces cerevisiae) and monensin on ruminal fermentation and digestion in sheep. Animal Feed Science and Technology 83:165170Google Scholar
Ghorbani, G.R.Morgavi, D.P.Beauchemin, K.A.Leedle, J.A.Z. (2002) Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. Journal of Animal Science 80: 19771985Google ScholarPubMed
Harmon, D.L.Britton, R.A.Prior, R.L.Stock, R.A. (1985) Net portal absorption of lactate and volatile fatty acids in steers experiencing glucose-induced acidosis or fed a 70% concentrate diet ad libitum. Journal of Animal Science 60: 560569CrossRefGoogle ScholarPubMed
Jouany, J.P. (1982) Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sciences des Aliments 2:131144Google Scholar
Jouany, J.P.Mathieu, F.Senaud, J.Bohatier, J.Bertin, G.Mercier, M. (1999) Effects of Saccharomyces cerevisiae and Aspergillus oryzae on the population of rumen microbes and their polysaccharidase activities. South African. Journal of Animal Science 29:6364Google Scholar
Jouany, J.P.Senaud, J. (1982) Influence des ciliés du rumen sur la digestion des différents glucides chez les moutons. I. Utilisation des glucides pariétaux (cellulose, hémicellulose) et de l'amidon. Reproduction Nutrition Development 22:735752Google Scholar
Kumar, U.Sareen, V.K.Singh, S. (1994) Effect of Saccharomyces cerevisiae yeast culture supplement on ruminal metabolism in buffalo calves given a high concentrate diet. Animal Production 59:209215Google Scholar
Lever, M. (1977) Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHßAH): effect of bismuth on the reaction. Analytical Biochemistry 81: 2127CrossRefGoogle ScholarPubMed
Mackie, R.I.Gilchrist, F.M.C.Roberts, A.M.Hannah, P.E.Schwartz, H.M. (1978) Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. Journal of Agricultural Science 90: 241254CrossRefGoogle Scholar
Martin, C.Michalet-Doreau, B. (1995) Variations in mass and enzyme activity of rumen microorganisms: Effects of barley and buffer supplements. Journal of the Science of Food and Agriculture 67: 407413Google Scholar
Mathieu, F.Jouany, J.P.Senaud, J.Bohatier, J.Bertin, G.Mercier, M. (1996) The effect of Saccharomyces cerevisiae and Aspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoal and probiotic interactions. Reproduction Nutrition Development 36: 271287CrossRefGoogle ScholarPubMed
Michalet-Doreau, B.Morand, D. (1996) Effect of yeast culture, Saccharomyces cerevisiae, on ruminal fermentation during adaptation to high-concentrate feeding. Annales de Zootechnie 45: (Suppl) 337(abstr.)Google Scholar
Michalet-Doreau, B.Morand, D.Martin, C. (1997) Effect of the microbial additive Levucell® SC on microbial activity in the rumen during the stepwise adaptation of sheep to high-concentrate diet. Reproduction Nutrition Development 37: 8182 (Suppl. 1) (abstr.)CrossRefGoogle Scholar
Miranda, R.L. A. Mendoza, M.G.D.Barcena-Gama, J.R.Gonzalez, M.S.S.Ferrara, R.Ortega, C.M.E.Cobos, P.M.A. (1996) Effect of Saccharomyces cerevisiae and Aspergillus oryzae cultures and NDF level on parameters of ruminal fermentation. Animal Feed Science and Technology 63: 289296CrossRefGoogle Scholar
Pace, N.R.Stahl, D.A.Lane, D.J.Olsen, C.J. (1986) The use of rRNA sequences to characterize natural microbial populations. Advances in Microbial Ecology 9: 155CrossRefGoogle Scholar
Pierce, J.Suelter, C.H. (1977) An evaluation of coomassie brilliant blue G-250 dye-binding method for quantitative protein determination. Analytical Biochemistry 81: 478480CrossRefGoogle Scholar
Plata, P.F.Mendoza, M.G.D.Barcena-Gama, J.R.Gonzalez, M.S. (1994) Effect of a yeast culture (Saccharomyces cerevisiae) on neutral detergent fiber digestion in steers fed oat straw based diets. Animal Feed Science and Technology 49: 203210CrossRefGoogle Scholar
Roa, M.L.Barcena-Gama, J.R.Gonzalez, M.S.Mendoza, M.G.Ortega, C.M.E.Garcia, B.C. (1997) Effect of fiber source and a yeast culture (Saccharomyces cervisiae 1026) on digestion and the environment in the rumen of cattle. Animal Feed Science and Technology 64: 327336CrossRefGoogle Scholar
Rossi, F.Cocconcelli, P.S.Masoero, F. (1995) Effect of a Saccharomyces cerevisiae culture on growth and lactate utilization by the ruminal bacterium Megasphaera elsdenii. Annales de Zootechnie 44: 403409CrossRefGoogle Scholar
Statistical Analysis Systems Institute. (1988) Statistical analysis systems, version 6.03. SAS Institute Inc, Cary, NC.Google Scholar
Sauvant, D.Meschy, F.Mertens, D. (1999) Les composantes de l'acidose ruminale et les effets acidogenes des rations. INRA Productions Animales 12: 4960CrossRefGoogle Scholar
Sniffen, C.J.Chaucheyras-Durand, F.De Ondarza, M.B.Donaldson, G. (2004) Predicting the impact of a live yeast strain on rumen kinetics and ration formulation. Proceedings of the 19th southwest nutrition and management conferencePhoenixArizona, USA26–27 February 53–59Google Scholar
Van Eenaeme, C.Bienfait, J.M.Lambot, O.Pondant, A. (1969) Automatic determination of ammonia in the liquid of the rumen by the method of Berthelot adapted to the auto-analyzer. Annales de Medecine Veterinaire 7: 419424Google Scholar
Van Soest, P.J.Robertson, J.B. (1980) Systems of analysis for evaluating fibrous feeds. In Standardization of analytical methodology for feeds (ed. Pigden, W.J.Balch, C.C.Graham, M.), pp. 4960International Research Development Center, Ottawa, Canada.Google Scholar
Williams, A.G.Coleman, G.S. (1992) Factors affecting protozoal populations in vivo. In The rumen protozoa (ed. Williams, A.G.Coleman, G.S.), pp. 300316Springer-Verlag New York.Google Scholar
Williams, A.G.Coleman, G.S. (1997) The rumen protozoa. In The rumen microbial ecosystem (ed. Hobson, P.N.Stewart, C.S.), pp. 73139Blackie Academic and Professional London.CrossRefGoogle Scholar
Williams, P.E.V.Tait, C.A.G.Innes, G.M.Newbold, C.J. (1991) Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. Journal of Animal Science 69: 30163026CrossRefGoogle ScholarPubMed
Wohlt, J.E.Corcione, T.T.Zajac, P.K. (1998) Effect of yeast on feed intake and performance of cows fed diets based on corn silage during early lactation. Journal of Dairy Science 81: 13451352CrossRefGoogle ScholarPubMed
Yoon, I.K.Stern, M.D. (1996) Effects of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows. Journal of Dairy Science 79: 411417CrossRefGoogle ScholarPubMed