Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T15:35:59.466Z Has data issue: false hasContentIssue false

Mineralogical and physico-chemical properties of Heu-type zeolitic rocks SE of Ankara, central Turkey

Published online by Cambridge University Press:  02 January 2018

Muazzez Çelik Karakaya*
Affiliation:
Selçuk Universitesi Mühendislik Fakültesi Jeoloji Müh. Böl., 42039 Konya, Türkiye İstanbul Teknik üniversitesi Jeoloji Müh. Böl. Maslak, 34469 İstanbul, Türkiye
Necati Karakaya
Affiliation:
Selçuk Universitesi Mühendislik Fakültesi Jeoloji Müh. Böl., 42039 Konya, Türkiye İstanbul Teknik üniversitesi Jeoloji Müh. Böl. Maslak, 34469 İstanbul, Türkiye
Fuat Yavuz
Affiliation:
Selçuk Universitesi Mühendislik Fakültesi Jeoloji Müh. Böl., 42039 Konya, Türkiye

Abstract

This study focused on the mineralogical and physico-chemical properties of heulandite/clinoptilolite (Heu/Cpt)-rich zeolitic tuffs SE of Ankara (Turkey) and evaluated their potential for use as adsorbents. The main Heu/Cpt minerals correspond to the intermediate type and the Cpt-type of the heulandite series. Minor chabazite, erionite and rarely analcime and accessory feldspars, mica, smectite, and quartz were also detected. Three types of Heu were recognized according to their thermal behaviour. Cpt (type-III Heu) was thermally stable at 600°C, whereas type-I Heu collapsed and type-II Heu partially collapsed. The Si/Al ratios of the Hul/Cpt ranged from 3.54 to 5.03, the Γ parameter (Γ = Ca/Al + 0.115*Al) varied between 0.78 and 1.85 and Al + Fe3+ varied between 6.27 and 8.00. The Na, K and Ca contents of Heu/Cpt varied widely and the Heu had an intermediate composition between types II and III. The Mg + Ca content is greater than the Na + K content in Heu-type II and smaller in Heu-type III zeolites. The BET surface area and the pore-size of the samples varied between 10.15 and 194.27 m2/g, and between 1.41 and 12.42 nm, respectively. The N2 adsorption and desorption isotherms were comparable, but the adsorption/desorption capacity is greater in type III than in type II Heu zeolites. The cation exchange capacities of the Heu/Cpt-rich samples ranged from 185 to 280 meq/100 g.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberti, A. & Vezzalini, G. (1983) The thermal behavior of heulandites: a structural study of the dehydration of the Nadap heulandite. Tschermaks Mineralogische und Petrographische Mitteilungen, 31, 259270.Google Scholar
Alietti, A., Gottardi, G. & Poppi, L. (1974) The heat behaviour of the cation exchanged zeolites with heulandite structure. Tschermaks Mineralogische und Petrographische Mitteilungen, 21, 291298.Google Scholar
Alietti, A., Brigatti, M.E. & Poppi, L. (1977) Natural Carich clinoptilolites (heulandites of group 3): new data and review. Neues Jahrbuch für Mineralogie Monatshefte, H11, 493501.Google Scholar
Armbruster, T. (1993) Dehydration mechanism of clinoptilolite and heulandite: single-crystal X-ray study of Na-poor, Ca-, K-, Mg-rich clinoptilolite at 100 K. American Mineralogist, 78, 260264.Google Scholar
Armbruster, T. & Gunter, M.E. (1991) Stepwise dehydration of heulandite-clinoptilolite from Succor Creek, Oregon, U.S.A.: a single-crystal X-ray study at 100 K. American Mineralogist, 76, 18721883.Google Scholar
Armbruster, T. & Gunter, M.E. (2001) Crystal structure of natural zeolites. Pp. 157 in: Natural Zeolites: Occurrence, Properties, Applications (Bish, D.L. & Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America and Geochemical Society, Washington, D.C. Google Scholar
Armstrong, J.T. (1988) Accurate quantitative analysis of oxygen and nitrogen with a WSi multilayer crystal. Pp. 301304 in: Microbeam Analysis (Newbury, D.E., editor). San Francisco Press, San Francisco.Google Scholar
Bharathi, K.S. & Ramesh, S.T. (2013) Removal of dyes using agricultural waste as low-cost adsorbents: a review. Applied Water Science, 3, 773790.Google Scholar
Bish, D.L. (1984) Effect of exchangeable cation composition on the thermal expansion/contraction of clinoptilolite. Clays and Clay Minerals, 32, 444452.CrossRefGoogle Scholar
Bish, D.L. (1988) Effects of composition on the dehydration behavior of Cpt and heulandite. Pp. 565576 in: Occurrence, Properties and Utilization of Natural Zeolites (D. Kallo & Sherry, H.S., editors). Akademiai Kiado, Budapest.Google Scholar
Bish, D.L. & Boak, J.M. (2001) Clinoptilolite-heulandite nomenclature. Pp. 207215 in: Natural Zeolites: Occurrence, Properties, Applications (Bish, D.L. & Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Boles, J.R. (1972) Composition, optical properties, cell dimensions, and thermal stability of some heulandite group zeolites. American Mineralogist, 57, 14631469.Google Scholar
Bowman, R.S. (2003) Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61, 4356.Google Scholar
Breck, D.W. (1974) Zeolite Molecular Sieves. Wiley, New York, 657 pp.Google Scholar
Brown, G., Catt, J.A. & Weir, A.H. (1969) Zeolites of the clinoptilolite-heulandite type in sediments of southeast England. Mineralogical Magazine, 37, 480488.CrossRefGoogle Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimoleculer layers. Journal of the American Chemical Society, 60, 309319.Google Scholar
Caro, J. & Noack, M. (2008) Zeolite membranes – recent developments and progress. Microporous and Mesoporous Materials, 115, 215233.Google Scholar
Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F., Mandarino, J.A., Minato, H. et al. (1998) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and New Names. Mineralogical Magazine, 62, 533571.CrossRefGoogle Scholar
Esenli, F. & Kumbasar, I. (1998) X-ray diffraction intensity ratios I(111)/I(_311) of natural heulandites and clinoptilolites. Clays and Clay Minerals, 46, 679686.CrossRefGoogle Scholar
Esenli, F. & Özpeker I. (1993) Zeolitic diagenesis of Neogene basin and the mineralogy of heulanditeclinoptilolite around Gördes. Geological Bulletin of Turkey, 8, 118.Google Scholar
Ferronato, C., Vianello, G. & Vittori Antisari L. (2015) Adsorption of pathogenic microorganisms, NH4 + and heavy metals from wastewater by clinoptilolite using bed laminar flow. Clay Minerals, 50, 110.Google Scholar
Gottardi, G. & Galli, E. (1985) Natural Zeolites. Springer-Verlag, Berlin, 409 pp.Google Scholar
Gündoğdu, M.N. (1982) Neojen yaşlı Bigadiç sedimanter baseninin jeolojik, mineralojik ve jeokimyasal incelenmesi. PhD thesis. Hacettepe University, Ankara, Turkey, 386 pp.Google Scholar
Gündoğdu, M.N., Yalçin , H., Temel, A. & Clauer, N. (1996) Geological, mineralogical and geochemical characteristics of zeolite deposits associated with borates in the Bigadiç Emet and Kırka Neogene lacustrine basins, western Turkey. Mineralium Deposita, 31, 492513.Google Scholar
Helvacı, C. Stamatakis, M.G. Zagouroglou, C. & Kanaris, J. (1993) Borate minerals and related authigenic silicates in northeastern Mediterranean late Miocene continental basins. Exploration and Mining Geology, 2, 171178.Google Scholar
Kaçmaz, H. & Köktürk, U. (2004) Geochemistry and mineralogy of zeolitic tuffs from the Alaçatı (Cesme) area, Turkey. Clays and Clay Minerals, 52, 705713.Google Scholar
Kallo, D. (2001) Applications of natural zeolites in water and wastewater treatment. Pp. 519550 in: Natural Zeolites: Occurrence, Properties, Applications (Bish, D.L. & Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America, Washington, D.C. Google Scholar
Kaneko, K. (1994) Determination of pore size and pore size distribution 1. Adsorbents and catalysts. Journal of Membrane Science, 96, 5989.CrossRefGoogle Scholar
Karakaya, N. Karakaya, M.Ç. & Temel, A. (2013) Mineralogical and chemical properties and the origin of two types of analcime in SWAnkara, Turkey. Clays and Clay Minerals, 61, 231257.Google Scholar
Karakaya, M.Ç., Karakaya, N. & Yavuz, F. (2015) Geology and formation conditions of the zeolite-bearing deposits southeast of Ankara (Central Turkey). Clays and Clay Minerals, 63, 85109.Google Scholar
Kılıç, A.M. & Kılıç, Ö. (2006) Evaluation of Gördes zeolite deposit of Turkey for industrial uses. Asian Journal of Chemistry, 18, 14051412.Google Scholar
Kitsopoulos, K.P. (1999) Cation-exchange capacity (CEC) of zeolitic volcaniclastic materials: applicability of the ammonium acetate saturation (AMAS) method. Clays and Clay Minerals, 47, 688696.Google Scholar
Koyama, K. & Takeuchi, Y. (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Zeitschrift für Kristallographie, 145, 216239.Google Scholar
Krajišnik, D. Daković A. Malenović A. Kragović M. & Milić J. (2015) Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers. Clay Minerals, 50, 1122.Google Scholar
Lin, H., Liu, Q., Yingbo, D., Chen, Y., Huo, H. & Liu, S. (2013) Study on channel features and mechanism of clinoptilolite modified by LaCl3. Journal of Materials Science Research, 2, 3744.Google Scholar
Malekian, R., Abedi-Koupai, J. & Saeid Eslamian S. (2011) Influences of clinoptilolite and surfactantmodified clinoptilolite zeolite on nitrate leaching and plant growth. Journal of Hazardous Materials, 185, 970976.Google Scholar
Mansouri, N., Rikhtegar, N., Panahi, H.A., Atabi, F. & Shahrak, B.K. (2013) Porosity, characterization and structural properties of natural zeolite-clinoptilolite as a sorbent. Environment Protection Engineering, 39, 139152.CrossRefGoogle Scholar
Mumpton, F.A. (1999) La roca: uses of natural zeolites in agriculture and industry. Geology, Mineralogy and Human Welfare, 96, 34633470.Google Scholar
Ming, D.W. & Dixon, J.B. (1987) Quantitative determination of clinoptilolite in soils by a cation-exchange capacity methods. Clays and Clay Minerals, 35, 463468.Google Scholar
Ostrooumov, M., Cappelletti, P. & de’Gennaro, R. (2012) Mineralogical study of zeolite from New Mexican deposits (Cuitzeo area, Michoacan, Mexico). Applie. Clay Science, 55, 2735.CrossRefGoogle Scholar
Pabalan, R.T. & Bertetti, F.P. (2001) Cation-exchange properties of natural zeolites. Pp. 453518 in: Natural Zeolites: Occurrence, Properties, Applications (Bish, D.L. & Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America, Washington, D.C. Google Scholar
Rahmani, A.R. & Mahvi, A.H. (2006) Use of ion exchange for removal of ammonium: a biological regeneration of zeolite. Global NEST Journal, 8, 146150.Google Scholar
Ramesh, K., Reddy, D.D., Biswas, A.K. & Rao, A.S. (2011) Zeolites and their potential uses in agriculture. Advances in Agronomy, 113, 215236.Google Scholar
Ramesh, K., Reddy, K.S., Rashmi, I., Biswas, A.K. & Rao, A.S. (2015) Crystal morphology and differential meso-micro pore-volume distribution patterns of clinoptilolite fractions. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 85, 8591.Google Scholar
Rehákova, M., ćuvanová, S., Dzivák, M. Rimár, J. & Gavalova, Z. (2004) Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science, 8, 397404.CrossRefGoogle Scholar
Şahin, M.B. (2007) Orta Anadolu’da belirlenen önemli bir şabazit oluşumu ve mineralojik özellikleri. MTA Dergisi, 135, 3144.Google Scholar
Skarpelis, N., Marantos, I. & Christidis, G. (1993) Zeolites in Oligocene volcaniclastic rocks, Dadia-Lefkimi area, Thrace, Northern Greece: mineralogy and cation exchange properties. Bulletin of the Geological Society Greece, XXVIII/2, 305315.Google Scholar
Snellings, R., van Haten T., Machiels, L., Mertens, G., Vandenberghe, N. & Elsen, J. (2008) Mineralogy, geochemistry and diagenesis of clinoptilolite tuffs (Miocene) in the central Simav graben, Western Turkey. Clays and Clay Minerals, 56, 622632.Google Scholar
Taenzana, B. (2011) Adsorption of cadmium, nickel and lead on modified natural zeolite. Masters thesis. University of the Witwatersrand, Johannesburg, South Africa, 91 pp.Google Scholar
Tchernev, D.I. (2001) Natural zeolites in solar energy heating, cooling and energy storage. Pp. 589617 in: Natural Zeolites: Occurrence, Properties, Applications (Bish, D.L. & Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America, Washington, D.C. Google Scholar
Temel, A. & Gündoğdu M.N. (1996) Zeolite occurrences and the erionite-mesothelioma relationship in Cappadocia, central Anatolia. Mineralium Deposita, 31, 539547.Google Scholar
Valueva, G.P. (1994) Chemical parameters for classification of heulandite. Russian Geology and Geophysics, 35, 14.Google Scholar
Wdowin, W., Macherzyński, M., Panek, R., Górecki, J. & Franus, W. (2015) Investigation of the mercury vapour sorption from exhaust gas by an Ag-X zeolite. Clay Minerals, 50, 3140.CrossRefGoogle Scholar
Whitney, D.L. & Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.Google Scholar
Wise, W.S., Nokleberg, W.J. & Kokinos, M. (1969) Clinoptilolite and ferrierite from Agoura, California. American Mineralogist, 54, 887895.Google Scholar