Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T16:49:21.852Z Has data issue: false hasContentIssue false

Plasma Chemistry in Silane and Silane-Germane Discharge Deposition

Published online by Cambridge University Press:  25 February 2011

A. Gallagher
Affiliation:
Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology Boulder, CO 80309 -0440
J. Doyle
Affiliation:
Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology Boulder, CO 80309 -0440
D. Doughty
Affiliation:
Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology Boulder, CO 80309 -0440
Get access

Abstract

The spatial and energetic characteristics of rf and dc parallel-plate deposition discharges are discussed, along with their implications to plasma chemistry. We discuss the results and interpretation of our recent measurements of silane, disilane, germane, and mixed-gas stochiometry. These yield the initial dissociation branching between even and odd dangling-bond radicals, as well as the relative roles of higher silanes and silyl germanes (produced by the discharge) in the chemistry. Our deposition model and supporting data are discussed, as are various causes of film-quality variations which this suggests.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kushner, M. J., in Plasma Processing, edited by Coburn, J. W., Gottscho, R. A., and Hess, D. W. (Materials Research Society Symposia Proceedings, Vol. 68, 1986); IEEE Trans. Plasma Sci. PS-14, 188 (1986).Google Scholar
2. Perrin, J., Cabarrocas, P. R., Allain, B., and Friedt, J-M., Jap. J. Appl. Phys. 27, 2041 (1989).CrossRefGoogle Scholar
3. Doyle, J. R., Thesis, University of Colorado, Boulder, CO 1989.Google Scholar
4. Doyle, J. R. and A. Gallagher (in preparation).Google Scholar
5. Doughty, D. and Gallagher, A., J. Appl. Phys. (submitted).Google Scholar
6. Longeway, P. A., Estes, R. D., and Wiekliem, H. A., J. Phys. Chem. 88, 73 (1984); 88, 3282 (1984).CrossRefGoogle Scholar
7. Robertson, R., Hils, D., Chatham, H., and Gallagher, A., Appl. Phys. Lett. 43, 544 (1983); R. Robertson and A. Gallagher, J. Appl. Phys. 59, 3402 (1986).CrossRefGoogle Scholar
8. Doughty, D. and A. Gallagher (in preparation).Google Scholar
9. Inoue, G. and Suzuki, M., Chem. Phys. Lett. 122, 361 (1985).CrossRefGoogle Scholar
10. Jasinski, J. M. and Chu, J. O., J. Chem. Phys. 88, 1678 (1988).CrossRefGoogle Scholar
11. Gallagher, A., J. Appl. Phys. 63, 2406 (1988).CrossRefGoogle Scholar
12. Lin, G. H., Doyle, J. R., He, M., and Gallagher, A., J. Appl. Phys. 64, 188 (1988).CrossRefGoogle Scholar
13. Mackenzie, K. D., Burnett, J. H., Eggert, J. R., Li, Y.-M., and Paul, W., Phys. Rev. B 38, 6120 (1988).CrossRefGoogle Scholar
14. Tsai, C. C., Knights, J. C., Chang, G., and Wacker, B., J. Appl. Phys. 59, 2998 (1986).CrossRefGoogle Scholar
15. Drevillon, B., Perrin, J., Siefert, J. M., Huc, J., Lloret, A., deRosny, G., and Schmitt, J. P. M., Appl. Phys. Lett. 42, 801 (1983).CrossRefGoogle Scholar