Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T06:17:29.232Z Has data issue: false hasContentIssue false

Study of ZnTe:Cu/Metal Interfaces in CdS/CdTe Phovoltaic Solar Cells

Published online by Cambridge University Press:  01 February 2011

T. A. Gessert
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA 80401
C. L. Perkins
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA 80401
S. E. Asher
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA 80401
A. Duda
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA 80401
M. R. Young
Affiliation:
National Renewable Energy Laboratory (NREL), Golden, CO, USA 80401
Get access

Abstract

The present model for current transport at the CdTe/p-ZnTe:Cu/metal back contact assumes that the CdTe and ZnTe valence bands align, while current transport at a highly doped ZnTe and a metal interface proceeds by tunneling. To test part of this model, we have investigated the electrical and material properties of CdS/CdTe devices where the outer metal is either Ti or Ni. Our results show that differences in device series resistance are not linked simply to metal/ZnTe:Cu interfacial contact resistance, but that metallization-induced diffusion remains a more likely cause of significant performance distinctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McMahon, T. and Fahrenbruch, A., 28th IEEE PVSC (IEEE, Piscataway, NJ, 2000) pp. 539542.Google Scholar
2. Pautrat, J.L., Francou, J.M., Magnea, N., Molva, E., and Saminadayar, K., J. Cryst. Growth 72 194204 (1985).Google Scholar
3. Dobson, K., Visolv-Fisher, I., Hoden, G., and Cahen, D., Solar Energy Mater. & Solar Cells 62 295325 (2000).Google Scholar
4. Tersoff, J., Phys. Rev. Lett. 56 2755 (1986).Google Scholar
5. Rioux, D., Niles, D.W., and Hochst, H., J. Appl. Phys. 73 8381 (1993).Google Scholar
6. Zunger, A., Appl. Phys. Lett. 83 (1) 5759 (2003).Google Scholar
7. Gesser, T.A., Mason, A.R., Reeedy, R.C., Matson, R., Coutts, T.J., and Sheldon, P., J. Elect. Mater. 24 (10) 14431449 (1995).Google Scholar
8. Gessert, T.A., Duda, A., Asher, S.E., Narayanswamy, C., and Rose, D., Proc. 28th IEEE PVSC (IEEE, Piscataway, NJ, 2000), pp. 654657.Google Scholar
9. Berger, H.H., J. Electrochem. Soc.: Solid-State Sci. and Technol. 119 (4) 507514 (1972).Google Scholar
10. Gessert, T.A. and Coutts, T.J., AIP Conf. Proc. 306 (AIP, Woodbury, NY, 1994) pp. 345353.Google Scholar
11. For tellurides: Mills, K.C., Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides (Butterworths, London, 1974); For oxides: CRC Handbook of Chemistry and Physics, Section D.Google Scholar
12. Stone, P., Bennett, R.A., and Bowker, M., New J. Physics 1 pp. 1.1–1.12 (1999).Google Scholar