Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T15:16:37.408Z Has data issue: false hasContentIssue false

On the taphonomy of the late Maastrichtian (Late Cretaceous) marine turtle Allopleuron hofmanni*

Published online by Cambridge University Press:  24 March 2014

R. Janssen*
Affiliation:
Faculteit der Aard- en Levenswetenschappen, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, the Netherlands
R.R. van Baal
Affiliation:
Faculteit der Aard- en Levenswetenschappen, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, the Netherlands
A.S. Schulp
Affiliation:
Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An exhaustive screening of public collections containing remains of the latest Cretaceous (late Maastrichtian) marine turtle Allopleuron hofmanni (Gray, 1831) from the type area of the Maastrichtian Stage (southeast Netherlands, northeast Belgium) shows the available material to represent almost exclusively adult individuals. The various skeletal elements are not preserved in proportionally equal abundance, with portions of carapace, pectoral girdle, cranium and mandible overrepresented. These observations can be explained by population characteristics and taphonomic factors. During the late Maastrichtian, while hatchlings and juveniles in all likelihood lived and fed elsewhere, extensive seagrass meadows might have supported a population of only adult marine turtles.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2011

Footnotes

*

In: Jagt, J.W.M., Jagt-Yazykova, E.A. & Schins, W.J.H. (eds): A tribute to the late Felder brothers – pioneers of Limburg geology and prehistoric archaeology.

References

Brand, L.R., Goodwin, T.H., Ambrose, P.D. & Buchheim, P.H., 2000. Taphonomy of turtles in the Middle Eocene Bridger Formation, SW Wyoming. Palaeogeography, Palaeoclimatology, Palaeoecology 162: 171189.CrossRefGoogle Scholar
Brand, L.R., Hussey, M. & Taylor, J., 2003. Taphonomy of freshwater turtles: decay and disarticulation in controlled experiments. Journal of Taphonomy 1: 233245.Google Scholar
Camper, P., 1786. Conjectures relative to the petrifactions found in St Peter's Mountain, near Maestricht. Philosophical Transactions of the Royal Society of London 76: 443456.Google Scholar
Chaloupka, M. & Zug, G.R., 1997. A polyphasic growth function for the endangered Kemp's ridley sea turtle, Lepidochelys kempii. Fishery Bulletin 95: 849856.Google Scholar
Dortangs, R.W., Schulp, A.S., Mulder, E.W.A., Jagt, J.W.M., Peeters, H.H.G. & De Graaf, D.T., 2002. A large new mosasaur from the Upper Cretaceous of The Netherlands. Netherlands Journal of Geosciences 81: 18.CrossRefGoogle Scholar
Gray, J.E., 1831. Synopsis Reptilium; or short descriptions of the species of reptiles. Synopsis Reptilium, Part 1: Tortoises, Crocodiles and Enaliosaurians. Treuttel, Würtz & Co. (London): viii + 186.CrossRefGoogle Scholar
Halliday, T.R. & Verrell, P.A., 1988. Body size and age in amphibians and reptiles. Journal of Herpetology 22: 253265.CrossRefGoogle Scholar
Herngreen, G.F.W. & Wong, T.E., 2007. Cretaceous. In: Wong, T.E., Batjes, D.A.J. & de Jager, J. (eds): Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences (Amsterdam): 127150.Google Scholar
Jagt, J.W.M., 1999. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium – Part 1: Introduction and stratigraphy. Scripta Geologica 116: 157.Google Scholar
Kuypers, M.M.M., Jagt, J.W.M., Peeters, H.H.G., De Graaf, D.T., Dortangs, R.W., Deckers, M.J.M., Eysermans, D., Janssen, M.J. & Arpot, L., 1998. Laat-kretaceïsche mosasauriërs uit Luik-Limburg – nieuwe vondsten leiden tot nieuwe inzichten. Publicaties van het Natuurhistorisch Genootschap in Limburg 41: 547.Google Scholar
Lutz, P.L., Musick, J.A. & Wynekenn, J. (eds), 2003. The biology of sea turtles, Vol. II. CRC Marine Biology Series, CRC Press (Boca Raton): 1472.Google Scholar
Meyer, C.A., 1991. Burial experiments with marine turtle carcasses and their paleoecological significance. Palaios 6: 8996.CrossRefGoogle Scholar
Mulder, E.W.A., 2003. On latest Cretaceous tetrapods from the Maastrichtian type area. Publicaties van het Natuurhistorisch Genootschap in Limburg 44: 1188.Google Scholar
Perrine, D., 2003. Sea Turtles of the World. Voyageur Press (Stillwater): 1144.Google Scholar
Reich, K.J., Bjorndal, K.A. & Bolten, A.B., 2007. The lost years of green turtles: using stable isotopes to study cryptic lifestages. Biology Letters 3: 712714.CrossRefGoogle ScholarPubMed
Ubaghs, C., 1883. La mâchoire de la Chelonia Hoffmanni de la Craie supérieure de Maestricht. Annales de la Société géologique de Belgique 10: 2535 Google Scholar
Van der Ham, R.W.J.M., Van Konijnenburg-van Cittert, J.H.A. & Indeherberge, L., 2007. Seagrass foliage from the Maastrichtian type area (Maastrichtian, Danian, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology 144: 301321.CrossRefGoogle Scholar
Wyneken, J., 2001. The anatomy of sea turtles. U.S. Department Commerce NOAA Technical Memorandum NMFS SEFSC 470: 1172.Google Scholar
Zug, G.R., Balazs, G.H. & Parker, D.M., 2002. Age and growth of Hawaiian green seaturtles (Chelonia mydas): an analysis based on skeletochronology. Fishery Bulletin 100: 117127.Google Scholar