Skip to main content Accessibility help
×
  • Cited by 132
    • Show more authors
    • You may already have access via personal or institutional login
    • Select format
    • Publisher:
      Cambridge University Press
      Publication date:
      15 September 2009
      09 January 2006
      ISBN:
      9780511546068
      9780521845687
      9780521178730
      Dimensions:
      (253 x 177 mm)
      Weight & Pages:
      1kg, 476 Pages
      Dimensions:
      (253 x 215 mm)
      Weight & Pages:
      0.82kg, 476 Pages
    You may already have access via personal or institutional login
  • Selected: Digital
    Add to cart View cart Buy from Cambridge.org

    Book description

    Hydrodynamics of High-Speed Marine Vehicles, first published in 2006, discusses the three main categories of high-speed marine vehicles - vessels supported by submerged hulls, air cushions or foils. The wave environment, resistance, propulsion, seakeeping, sea loads and manoeuvring are extensively covered based on rational and simplified methods. Links to automatic control and structural mechanics are emphasized. A detailed description of waterjet propulsion is given and the effect of water depth on wash, resistance, sinkage and trim is discussed. Chapter topics include resistance and wash; slamming; air cushion-supported vessels, including a detailed discussion of wave-excited resonant oscillations in air cushion; and hydrofoil vessels. The book contains numerous illustrations, examples and exercises.

    Reviews

    ‘… excellent coverage of special topics that may not be included in traditional marine hydrodynamics textbooks. The book is an excellent technical resource for information about high-speed vessels, as it provides a summary of relevant recent research and references. I highly recommend this book to naval architects and marine and coastal engineers. This book is a valuable desktop reference for planners, designers, and decision makers involved in various issues concerning high-speed vessels.’

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering

    'The book strikes a good compromise in presentation between two possible extremes: a purely descriptive narrative on the one hand, and a highly mathematical treatment on the other hand. This reviewer believes that the book will soon become a standard reference on the subject. While the book is definitely mathematical, there are also many clear and straightforward explanations of the physics which should be acceptable to most engineering students. The typography of the book is of a high standard.'

    Source: Journal of Fluid Mechanics

    Refine List

    Actions for selected content:

    Select all | Deselect all
    • View selected items
    • Export citations
    • Download PDF (zip)
    • Save to Kindle
    • Save to Dropbox
    • Save to Google Drive

    Save Search

    You can save your searches here and later view and run them again in "My saved searches".

    Please provide a title, maximum of 40 characters.
    ×

    Contents

    References
    References
    Aarsnes, J. V., 1984, Current forces on ships. Dr.ing. thesis, Report UR-84-39, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
    Aarsnes, J. V., Faltinsen, O. M., Pettersen, B., 1985, Application of a vortex tracking method to current forces on ships. In Proc. Conf. Separated Flow around Marine Structures, pp. 309–46, Trondheim: Nor. Inst. Technol
    Abbott, J. H., Doenhoff, A. E., 1959, Theory of Wing Sections, New York: Dover Publications, Inc
    Abramowitz, M., Stegun, I., 1964, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York: Dover Publications Inc
    Abramson, N., 1974, Structural dynamics of advanced marine vehicles, In Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop, W. G. Price., pp. 344–57, London: Mechanical Engineering Publications Ltd
    Adegeest, L. J. M., 1995, Nonlinear hull girder loads, Ph.D. thesis, Delft University of Technology, Faculty Mech. Eng. and Mar. Tech., Delft
    Allison, J., 1993, Marine waterjet propulsion, Trans. SNAME, 101, 275–335
    Anderson, J. D., 2001, Fundamentals of Aerodynamics, third edition, New York: McGraw-Hill Book Company
    Andrewartha, M., Doctors, L., 2001, How many foils? A study of multiple hydrofoil configurations. In Proc. FAST 2001, Vol. 3, pp. 79–86, London: The Royal Institution of Naval Architects
    Ankudinov, V., Kaplan, P., Jacobsen, B. K., 1993, Assessment and principal structure of the modular mathematical model for ship maneuverability prediction and real-time maneuvering simulations, In Proc. MARSIM'93, St. John's, Newfoundland
    Arai, M., Myanchi, T., 1998, Numerical study of the impact of water on cylindrical shells, considering fluid-structure interactions, In Proc. PRADS'98, ed. M. C. W. Oosterveld, S. G. Tan, pp. 59–68, London and New York: Elsevier Applied Science
    Armand, J. L., Cointe, R., 1986, Hydrodynamic impact analysis of a cylinder, In Proc. Fifth Int. Offshore Mech. and Arctic Engng. Symp., Vol. 1, pp. 609–34, ASME
    Auf'M Keller, W. H., 1973, Extended diagrams for determining the resistance and required power for single-screw ships, Intern. Shipb. Progr., 20, 133–42
    Baarholm, R. J., 2001, Theoretical and experimental studies of wave impact underneath decks of offshore platforms, Dr. Ing thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
    Baba, E., 1969, Study on separation of ship resistance components, Mitsubishi Technical Bulletin, No. 59
    Bailey, D. S., 1976, The NPl high speed round bilge displacement hull series, Maritime Technology Monograph No. 4, London, UK: RINA
    Baird, N., 1998, The World Fast Ferry Market, Melbourne, Australia: Baird Publications
    Bal, S., Kinnas, S. A., Lee, H., 2001, Numerical analysis of 2-D and 3-D cavitating hydrofoils under a free surface, J. Ship Res., 45, 1, 34–49
    Barcellona, M., Landrini, M., Greco, M., Faltinsen, O. M., 2003, An experimental investigation of bow water shipping, J. Ship Res., 47, 4, 327–46
    Barringer, I. E., 1998, The hydrodynamics of ship sections entering and exiting a fluid, Ph.D. thesis, Dept. of Mathematics, Brunel University
    Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press
    Beek, T., 1992, Application limits for propellers at high speeds, In Hydrodynamics: Computations, Model Tests and Reality, ed. H. J. J. van den Boom, pp. 121–32, Amsterda Elsevier Science Publishers BV
    Berlekom, W. B., Goddard, T. A., 1972, Maneuvering of large tankers, Trans. SNAME, 80, 264–98
    Berstad, A. J., Faltinsen, O. M., Larsen, C. M., 1997, Fatigue crack growth in side longitudinals, In Proc. NAV&HSMV, pp. 5.3–15, Naples: Dipartimento Ingeneria-Università di Napoli “Federico II.”
    Berstad, A. J., Larsen, C. M., 1997, Fatigue crack growth in the hull structure of high speed vessels, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 255–62, South Yarra, Victoria, and London: Baird Publications
    Bertram, V., 1999, Numerical investigation of steady flow effects in three-dimensional seakeeping computations. In Proc. 22nd Symposium on Naval Hydrodynamics, Washington D. C.: Office of Naval Research–Dept. of the Navy
    Bertram, V., Iwashita, H., 1996, Comparative evaluation of various methods to predict seakeeping of fast ships, Schiff & Hafen, 48, 6, 54–8
    Besch, P. K., Liu, Y-N, 1972, Bending flutter and torsional flutter of flexible hydrofoil struts, In Proc. Ninth Symposium on Naval Hydrodynamics, ed. R. Brard, A. Castera, Vol. 1, pp. 343–400, Arlington, Va.: Office of Naval Research–Department of the Navy
    Bethwaite, F., 1996, High Performance Sailing, Shrewsbury, England: Waterline
    Beukelman, W., 1991, Slamming on forced oscillating wedges at forward speed, Part I: Test results, Rep. no. 888, Delft University of Technology, Ship Hydromechanics Laboratory, Netherlands
    Billingham, J., King, A. C., 2000, Wave Motion, Cambridge: Cambridge University Press
    Birkhoff, G., Zarantonello, E. H., 1957, Jets, Wakes and Cavities, New York: Academic Press Inc
    Bishop, R. E. D., Price, W. G., 1979, Hydroelasticity of Ships, Cambridge: Cambridge University Press
    Bisplinghoff, R. L., Ashley, H., Halfman, R. L., 1996, Aeroelasticity, New York: Dover Publications
    Blevins, R. D., 1990, Flow Induced Vibration, Malabar, Florida: Krieger Publishing Company
    Blok, J. J., Beukelman, W., 1984, The high speed displacement ship systematic series hull forms, Trans. SNAME, 92, 125–50
    Blount, D. L., 1997, Design of propeller tunnels for high-speed craft, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 151–6, South Yarra, Victoria, and London: Baird Publications
    Blount, D. L., Codega, L. T., 1992, Dynamic stability of planing boats, Marine Technology, 29, 1, 4–12
    Bouard, R., Coutanceau, M., 1980, The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104, J. Fluid Mech., 101, 3, 583–607
    Bowden, B., Davison, N., 1974, Resistance increments due to hull roughness associated with form factor extrapolation methods, NPL Ship Division Report TM 380
    Brennen, C. E., 1995, Cavitation and Bubble Dynamics, Oxford and New York: Oxford University Press
    Breslin, J. P., 1957, Application of ship-wave theory to the hydrofoil of finite span, J. Ship Res., 1, 1, 27–55
    Breslin, J. P., 1958, Discussion of the paper by K. L. Wadlin, In Proc. Second Symp. on Naval Hydrodynamics, pp. 434–40, Washington, D. C.: Office of Naval Research–Department of the Navy
    Breslin, J. P., 1994, Hydrofoil ships – fantasies, facts and fysiks, DCAMM Anniversary Volume, Danish Centre for Appl. Math. and Mech., Techn. Univ. of Denmark, Lyngby
    Breslin, J. P., Andersen, P., 1994, Hydrodynamics of Ship Propellers, Cambridge: Cambridge University Press
    Brix, J., 1993, Maneuvering Technical Manual, Hamburg: Seehafen Verlag GmbH
    Brizzolara, S., 2003, Hydrodynamic analysis of interceptors with computational fluid dynamics methods, In Proc. FAST'2003, ed. P. Cassella, Vol. III, Session E, pp. 49–56. Naples: Dipartimento Ingegneria Navale–Universitè di Napoli “Federico II.”
    Brug, J. B., Beukelman, W., Prins, G. J., 1971, Hydrodynamic forces on a surface piercing flat plate, Report no. 325, Shipbuilding Laboratory, Delft University of Technology, Delft, The Netherlands
    Bryant, J. P., 1983, Waves and wave groups in deep water, In Nonlinear Waves, ed. L. Debnath, Ch. 6, pp. 100–15, Cambridge: Cambridge University Press
    Buckingham, E., 1915, Model experiments and the forms of empirical equations, Trans. ASME, 37, 263–96
    Carlton, J. S., 1994, Marine Propellers and Propulsion, Oxford: Butterworth-Heineman
    Carstensen, C., 1983, Beitrag zur Berechnung von ebenen Einlaufströmungen, Dissertation, Technische Universität Berlin, D83, März
    Casanova, R. L., Latorre, R., 1992, The achievements of high performance in marine vehicles over the period 1970–1990, In Proc. HPMV'92, pp. O/A61–O/A66, Alexandria, Va.: American Society of Naval Engineers
    Cebeci, T., 2004, Analysis of Turbulent Flows, second revised and expanded edition, Oxford: Elsevier
    Celano, T., 1998, The prediction of porpoising inception for modern planing craft, Trans. SNAME, 106, 269–92
    Chapman, R. B., 1972, Hydrodynamic drag of semisubmerged ships, J. of Basic Eng., Trans. ASME, 94 Series D, 4, 879–84
    Chapman, R. B., 1976, Free surface effects for yawed surface-piercing plates, J. Ship Res., 20, 3, 125–36
    Chezhian, M., 2003, Three-dimensional analysis of slamming, Dr.ing thesis, Dept. of Marine Technology, NTNU, Trondheim, Norway
    Cleary, W. A., Robertson, J. B., Yagle, R. A., 1971, The results and significance of strength studies of Great Lakes bulk ore carrier, Edward L. Ryerson, In SNAME Symp. on Hull Stresses in Bulk Carriers in the Great Lakes and Gulf of St. Lawrence Wave Environment, Paper G, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
    Clement, E. P., Blount, D. L., 1963, Resistance tests of a systematic series of planing hull forms, Trans. SNAME, 71, 201–77
    Clement, E. P., Koelbel, J. G., 1992, Optimized design for stepped planing monohulls and catamarans, In Proc. HPMV'92, pp. PC35–PC44, Alexandria, Va.: American Society of Naval Engineers
    Clough, R. W., Penzien, J., 1993, Dynamics of Structures, second edition, New York: McGraw-Hill, Inc
    Cohen, S., Blount, D., 1986, Research plan for the investigation of dynamic instability of small high-speed craft, Trans. SNAME, 94, 197–214
    Cointe, R., 1991, Free surface flows close to a surface-piercing body, In Mathematical Approaches in Hydrodynamics, ed. T. Miloh, pp. 319–34, Philadelphia: Society for Industrial and Applied Mathematics
    Colagrossi, A., Lugni, C., Landrini, M., Graziani, G., 2001, Numerical and experimental transient tests for ship seakeeping, Int. Journal Off. and Ocean Struct., 11, 67–73
    Crane, C. L., Eda, H., Landsburg, A., 1989, Controllability, In Principles of Naval Architecture, Vol. III, Chapter IX, ed. E. V. Lewis, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
    Cummins, W. E., 1962, The impulse response function and ship motions, Schiffstechnik, 9, 47, 101–9
    Cusanelli, D. S., Karafiath, G., 1997, Integrated wedge-flap for enhanced powering performance, In Proc. FAST'97, ed. N. Baird, Vol. 2, pp. 751–64, South Yarra, Victoria, and London: Baird Publications
    Day, J. P., Haag, R. J., 1952, Planing Boat Porpoising, New York: Webb Institute of Naval Architecture
    Day, S., Clelland, D., Nixon, E., 2003, Experimental and numerical investigation of “Arrow” Trimarans, In Proc. FAST 2003, ed. P. Casella, Vol. III, Session D2, pp. 23–36, Naples: Dipartimenta Ingegneria navale, Universtà di Napoli “Federico II.”
    Delany, N. K., Sorensen, N. E., 1953, Low-speed drag of cylinders of various shapes. Washington, D. C.: NACA Technical Note 3038
    Divitiis, N., Socio, L. M., 2002, Impact of floats on the water, J. Fluid Mech., 471, 365–79
    Dobrovol'skaya, Z. N., 1969, On some problems of fluid with a free surface, J. Fluid Mech., 36, 4, 805–29
    Doctors, L. J., 1978, Hydrodynamic power radiated by a heaving and pitching air-cushion vehicle, J. Ship Res., 22, 2, 67–79
    Doctors, L. J., 1992, The use of pressure distributions to model the hydrodynamics of air-cushion vehicles and surface effect ships, In Proc. HPMV'92, pp. SES56–SES72, Alexandria, Va.: American Society of Naval Engineers
    Doctors, L. J., 2003, Hydrodynamics of the flow behind a transom stern, In Proc. Twenty-Ninth Israel Conference on Mechanical Engineering, Paper 20–1, 11 pp., Haifa, Israel
    Doctors, L. J., Day, A. H., 1997, Resistance prediction for transom-stern vessels, In Proc. FAST'97, ed. N. Baird, Vol. 2, pp. 743–50, South Yarra, Victoria, and London: Baird Publications
    Doctors, L. J., Sharma, S. D., 1972, The wave resistance of an air-cushion vehicle in steady and accelerated motion, J. Ship Res., 16, 4, 248–60
    Dorf, R. C., Bishop, R. H., 1998, Modern Control Systems, Menlo Park, Calif.: Addison Wesley Longman, Inc
    Doyle, R., Whittaker, T. J. T., Elsasser, B., 2001, A study of fast ferry wash in shallow water, In Proc. FAST 2001, Vol. 1, pp. 107–20, London: The Royal Institution of Naval Architects
    Eda, H., 1980, Rolling and steering performance of high speed ships – simulation studies of yaw-roll-rudder coupled instability, In Proc. 13th Symp. on Naval Hydrodynamics, pp. 115–31, Washington, D. C.: Office of Naval Research–Department of the Navy
    Etkin, B., 1959, Dynamics of Flight: Stability and Control, New York: John Wiley & Sons, Inc
    Falck, S., 1991, Seakeeping of foil catamarans. In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 209–21, Trondheim: Tapir Publishers
    Faltinsen, O. M., 1972, Wave forces on a restrained ship in head-sea wave, In Proc. Ninth Symp. on Naval Hydrodynamics, ed. R. Brard and A. Castera, vol. 2, pp. 1763–844. Arlington, Va.: Office of Naval Research–Department of the Navy
    Faltinsen, O. M., 1983, Bow flow and added resistance of slender ships at high Froude number and low wavelengths, J. Ship Res., 27, 160–71
    Faltinsen, O. M., 1990, Sea Loads on Ships and Offshore Structures, Cambridge: Cambridge University Press
    Faltinsen, O. M., 1997, The effect of hydroelasticity on slamming, Phil. Trans. R. Soc. Lond. A, 355, 575–91
    Faltinsen, O. M., 1999, Water entry of a wedge by hydroelastic orthotropic plate theory, J. Ship Res., 43, 3, 180–193
    Faltinsen, O. M., 2000, Water impact in ship and ocean engineering, In Proc. Fourth Int. Conf. on Hydrodyn., ed. Y. Goda, M. Ikehata, K. Suzuki, pp. 17–36, Yokohama: ICHD2000 Local Organizing Committee
    Faltinsen, O. M., 2001, Steady and vertical dynamic behaviour of prismatic planning hulls, In Proc. 22ndIntern Conf. HADMAR 2001, pp. 89–104, Varna, Bulgaria: Bulgarian Ship Hydrodynamics Centre
    Faltinsen, O. M., Helmers, J. B., Minsaas, K. J., Zhao, R., 1991a, Speed loss and operability of catamarans and SES in a seaway, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan. Vol. 2, pp. 709–25, Trondheim: Tapir Publishers
    Faltinsen, O. M., Hoff, J. R., Kvålsvold, J., Zhao, R., 1992, Global wave loads on high-speed catamarans, In Proc. PRADS'92, ed. J. B. Caldwell, G. Ward, Vol. 1, pp. 1.360–1.375, London and New York: Elsevier Applied Science
    Faltinsen, O. M., Holden, K. O., Minsaas, K. J., 1991b, Speed loss and operational limits of high-speed marine vehicles, In Proc. IMAS'91 – High Speed Marine Transportation, pp. 13–21, London: The Institute of Marine Engineers
    Faltinsen, O. M., Kvålsvold, J., Aarsnes, J. V., 1997, Wave impact on a horizontal elastic plate, J. Mar. Sci. Technol., 2, 2, 87–100
    Faltinsen, O. M., Landrini, M., Greco, M., 2004, Slamming in marine applications, J.Eng. Math., 48, 187–217
    Faltinsen, O. M., Minsaas, K., Liapis, N., Skjørdal, S. O., 1980, Prediction of resistance and propulsion of a ship in a seaway, In Proc. 13th Symp. on Naval Hydrodynamics, ed. T. Inui, pp. 505–30. Tokyo: The Shipbuilding Research Association of Japan
    Faltinsen, O. M., Pettersen, B., 1983, Vortex shedding around two-dimensional bodies at high Reynolds number, In Proc. 14th Symp. on Naval Hydrodynamics, pp. 1171–213, Washington, D. C.: National Academy Press
    Faltinsen, O. M., Svensen, T. E., 1990, Incorporation of seakeeping theories on CAD, In Proc. of Int. Symp. computational fluid dynamics and CAD in Ship Design, ed. G. van Oortmersen, pp. 147–64, Amsterdam: Elsevier Science Publishers, B.V
    Faltinsen, O. M., Zhao, R., 1991a, Numerical predictions of ship motions at high forward speed, Phil. Trans. R. Soc. Lond. A, 334, 241–52
    Faltinsen, O. M., Zhao, R., 1991b, Flow prediction around high-speed ships in waves, In Mathematical Approaches in Hydrodynamics, ed. T. Miloh, pp. 265–88, Philadelphia: Society for Industrial and Applied Mathematics
    Faltinsen, O. M., Zhao, R., 1998, Water entry of ship sections and axisymmetric bodies, In AGARD Report 827 High Speed Body Motions in Water, pp. 24-1–24-11, Neuilly-Sur-Seine, Cedex, France: AGARD/NATO
    Feifel, M. W., 1981, Advanced numerical methods for hydrofoil systems design and experimental verification, In Proc. Third Int. Conf. on Num. Ship Hydrodynamics, ed. J-C. Dern, H. J. Haussling, pp. 365–74, Paris: Bassin d'Essais des Carénes
    Fischer, H., Matjasic, K., 1999, The Hoverwing technology – bridge between WIG and ACV, In RTO Meeting Proc. 15 – Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface, pp. 30-1–30-7, Neuilly-Sur-Seine, Cedex, France: Res. and Techn. Org., NATO
    Flagg, C. N., Newman, J. N., 1971, Sway added-mass coefficients for rectangular profiles in shallow water, J. Ship Res., 15, December, 257–65
    Fontaine, E., Faltinsen, O. M., Cointe, R., 2000, New insight into generation of ship bow waves, J. Fluid Mech., 421, 15–38
    Førde, M., Ørbekk, E., Kubberud, N., 1991, Computational fluid dynamics applied to high speed craft with special attention to water intake for water jets, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan., Vol. 1, pp. 69–89, Trondheim: Tapir Publishers
    Fossen, T. I., 2002, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, Trondhei Marine Cybernetics AS
    Fridsma, G., 1969, A systematic study of the rough-water performance of planing boats, Report 1275, Davidson Laboratory, Stevens Institute of Technology, Hoboken, N.J
    Fridsma, G., 1971, A systematic study of the rough-water performance of planing boats; part 2, irregular waves, Davidson Laboratory, Stevens Institute of Technology, Hoboken, N.J
    Froude, W. W., 1877, Experiments upon the effect produced on the wave-making resistance of ships by length of parallel middle body, Trans. Inst. of Naval Arch., London, UK
    Fujino, M., 1968, Experimental studies on ship maneuverability in restricted waves – part I, Intern. Shipbuilding Progr., 15, 168, 279–301
    Fujino, M., 1976, Maneuverability in restricted waters: state of the art, report no. 184, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
    Fujino, M., 1996, Keynote lecture: prediction of ship manoeuvrability: state of the art, Marine Simulation and Ship Manoeuvrability, ed. M. S. Chislett, pp. 371–87, Rotterda Balkema
    Garrett, R., 1987, The Symmetry of Sailing: The Physics of Sailing for Yachtsmen, London: Adlard Coles
    Gawn, R. W. L., 1953, Effect of pitch and blade width on propeller performance, Trans. RINA, 95, 157–93
    Ge, C., 2002, Global hydroelastic response of catamarans due to wetdeck slamming, Dr.Ing thesis, Dept. of Marine Technology, NTNU, Trondheim
    Ge, C., Faltinsen, O. M., Moan, T., 2005, Global hydroelastic response of catamarans due to wetdeck slamming, J. Ship Res., 49, 1, 24–42
    Gerritsma, J., Beukelman, W., 1972, Analysis of the resistance increase in waves of a fast cargo ship, Intern. Shipbuilding Progr., 19, 217, 285–93
    Geurst, J. A., 1960, Linearized theory for fully cavitated hydrofoils, Intern. Shipbuilding Progr., 7, 65, 17–27
    Giesing, J. P., 1968, Nonlinear two-dimensional unsteady potential flow with lift, J. Aircraft, 5, 2, 135–43
    Goodman, R. A., 1971, Wave excited main hull vibration in large bulk carriers and tankers, Trans. RINA, 113, 167–84
    Gradshteyn, I., Ryzhik, I., 1965, Tables of Integrals Series and Products, fourth ed., London and New York: Academic Press
    Graff, W., Kracht, A., Weinblum, G. P., 1964, Some extensions of DW Taylor Standard Series, Trans SNAME, 72, 374–403
    Greco, M., 2001, A two-dimensional study of green water loading. Dr.Ing thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
    Greco, M., Landrini, M., Faltinsen, O. M., 2003, Local hydroelastic analysis on a VLFS with shallow draft, In Proc. Hydroelasticity in Marine Technology, ed. R. Eatock Taylor, pp. 201–14, Oxford: Dept. of Eng. Science, University of Oxford
    Green, A. E., 1936, Note on the gliding of a plate on the surface of a stream, Proc. Cambridge Phil.Soc., 32, 248–52
    Greenhow, M., 1986, High- and low-frequency asymptotic consequences of the Kramers-Kronig relations, J. Eng. Math., 20, 293–306
    Greenhow, M., Li, Y., 1987, Added masses for circular cylinders near or penetrating fluid boundaries – review, extension and application to water-entry, exit and slamming, Ocean Engng., 14, 4, 325–48
    Greenhow, M., Lin, W., 1983, Non-linear Free Surface Effects: Experiments and Theory, Report No. 83–19, Dept. Ocean Engn., Cambridge, Mass: Mass. Inst. Technol
    Grigoropoulos, G. J., Loukakis, T. A., 2002, Resistance and seakeeping characteristics of a systematic series in the pre-planing condition (part I), Trans. SNAME, 110, 77–113
    Grim, O., 1955, Die hydrodynamischen Kräfte beim Rollversuch, Schiffstechnik, 3, 14/15, 147–51
    Haarhoff, S., Sharma, S. D., 2000, A note on the influence of speed and metacentric height on the yaw-rate stability of displacement ships, Intern. Workshop on Ship Maneuvering at the Hamburg Ship Model Basin, Hamburg, Germany, October 10–11
    Hackmann, D., 1979, Written discussion to Jensen, J. J. and Pedersen, P. T. (1978)
    Halstensen, S. O., Leivdal, P. A., 1990, The development of the SpeedZ Propulsion System, In Seventh International High Speed Surface Craft Conference, Kingston upon Thames: High Speed Surface Craft Ltd
    Hama, F. R., Long, J. D., Hegart, J. C., 1956, On transition from laminar to turbulent flow, University of Maryland, Technical Note BN-81, AFOSR-TN-56-381
    Hama, F. R., 1957, An efficient tripping device, J. Aeronautical Sciences, March
    Hamamoto, M., Inoue, K., Kato, R., 1993, Turning motion and directional stability of surface piercing hydrofoil craft, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 807–18, Tokyo: The Society of Naval Architects of Japan
    Hansen, P. F., Jensen, J. J., Pedersen, T. P., 1994, Wave-induced springing and whipping of high-speed vessels, In Proc. Hydroelasticity in Marine Technology, ed. O. M. Faltinsen, C. M. Larsen, T. Moan, K. Holden, N. S. Spidsøe, pp. 191–204, Rotterdam and Brookfield: A. A. Balkema
    Hansen, P. F., Jensen, J. J., Pedersen, T. P., 1995, Long term springing and whipping stresses in high speed vessels, In Proc. FAST'95, ed. C. F. L. Kruppa, Vol. 1, pp. 473–85, Berlin and Hamburg: Schiffbautechnische Gesellschaft e.V
    Haugen, E. M., 1999, Hydroelastic analysis of slamming on stiffened plates with application to catamaran wetdeck, Dr.ing. thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
    Haugen, E. M., Faltinsen, O. M., Aarsnes, J. V., 1997, Application of theoretical and experimental studies of wave impact to wetdeck slamming, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 423–30, South Yarra, Victoria, and London: Baird Publications
    Havelock, T. H., 1908, The propagation of groups of waves in dispersive media with application to waves on water produced by a travelling disturbance, Proc. Royal Soc., London, Series A, LXXXI, 398–430
    Havelock, T. H., 1963, Collected Papers, ed. C. Wigley, Washington, D. C.: Office of Naval Research
    Hayman, B., Haug, B., Valsgård, S., 1991, Response of fast craft hull structures to slamming loads, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 381–398, Trondheim: Tapir Publishers
    Henry, C. J., Dugundji, J., Ashley, H., 1959, Aeroelastic stability of lifting surfaces in high-density fluids, J. Ship Res., 2, 4, 10–21
    Hermundstad, O. A., 1995, Theoretical and experimental hydroelastic analysis of high speed vessels, Dr.ing thesis, Dept. of Marine Structures, NTNU, Trondheim
    Hermundstad, O. A., Aarsnes, J. V., Moan, T., 1995, Hydroelastic analysis of a flexible catamaran and comparison with experiments, In Proc. FAST'95, ed. C. F. L. Kruppa, Vol. 1, pp. 487–500, Berlin and Hamburg: Schiffbautechnische Gesellschaft e.V
    Hermundstad, O. A., Aarsnes, J. V., Moan, T., 1997, Hydroelastic analysis of high speed catamaran in regular and irregular waves, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 447–54, South Yarra, Victoria, and London: Baird Publications
    Hinze, J. O., 1987, Turbulence, second edition, New York: McGraw-Hill Book Company
    Hoerner, S. F., 1965, Fluid Dynamic Drag, Published by the author
    Holling, H. D., Hubble, E. N., 1974, Model resistance data of Series 65 Hullforms applicable to hydrofoils and planing craft, National Ship Research and Development Centee Report No. 4121, Bethesda, Md
    Hooft, J. P., Nienhuis, U., 1994, The prediction of the ship's maneuverability in the design stage, SNAME Transactions, 102, 419–45
    Hough, G. R., Moran, J. P., 1969, Froude number effects on two-dimensional hydrofoils, J. Ship Res., 13, 1, 53–60
    Howison, S. D., Ockendon, J. R., Wilson, S. K., 1991, Incompressible water-entry problems at small deadrise angles, J. Fluid Mech., 222, 215–30
    Hughes, G., 1954, Friction and form resistance in turbulent flow, and a proposed formulation for use in model and ship correlation. Transactions of the Institution of Naval Architects, 96, 314–76
    Huse, E., 1972, Pressure fluctuations on the hull induced by cavitating propellers, Norwegian Ship Model Experiment Tank Publications, No. 111, March, Trondheim
    Ikeda, Y. Katayama, T., 2000a, Stability of high speed craft, In Contemporary Ideas on Ship Stability, ed. D. Vassalos, M. Hamamoto, A. Papanikolaou, D. Molyneux, pp. 401–9, Oxford: Elsevier Science Ltd
    Ikeda, Y., Katayama, T., 2000b, Porpoising oscillations of very-high-speed marine craft, Phil. Trans. R. Soc. Lond. A, 358, 1905–15
    Ikeda, Y., Katayama, T., Okumura, H., 2000a, Characteristics of hydrodynamics derivatives in maneuverability equations for super-high-speed planing hulls, In Proc. Tenth Int. Offshore and Polar Engineering Conf., Vol. 4, pp. 434–44
    Ikeda, Y., Okumura, H., Katayama, T., 2000b, Stability of a planing craft in turning motion, In Contemporary Ideas on Ship Stability, ed. D. Vassalos, M. Hamamoto, A. Papanikolaou, D. Molyneux, pp. 449–95, Oxford: Elsevier Science Ltd
    Ikeda, Y., Yokomizo, K., Hamasaki, J., Umeda, N., Katayama, T., 1993, Simulation of running attitude and resistance of a high-speed craft using a database of hydrodynamic forces obtained by fully captive model experiments, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 583–94, Tokyo: The Society of Naval Architects of Japan
    Inukai, Y., Horiuchi, K., Kinoshita, T., Kanou, H., Itakura, H., 2001, Development of a single-handed hydrofoil sailing catamaran, J. Mar. Sci. Technol. 6, 1, 31–41
    Ishiguro, T., Uchida, K., Manabe, T., Michida, R., 1993, A study on the maneuverability of the Super Slender Twin Hull, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 283–94, Tokyo: The Society of Naval Architects of Japan
    Iwashita, H., Nechita, M., Colagrossi, A., Landrini, M, Bertram, V., 2000, A critical assessment of potential flow models for ship seakeeping, In Proc. Fourth Osaka Colloquium on Seakeeping Performance of Ships, pp. 37–46. Osaka, Japan: Dept. of Naval Architecture and Ocean Engineering, Osaka University
    Jensen, J. J., 1996, Wave-induced hydroelastic response of fast monohull ships, CETENA Seminar on Hydroelasticity for Ship Structural Design, Genova: CETENA
    Jensen, J. J., Dogliani, M., 1996, Wave-induced ship hull vibrations in stochastic seaways, Marine Structures, 9, 3/4, 353–87
    Jensen, J. J., Pedersen, P. T., 1978, Wave-induced bending moments in ships – a quadratic theory, Trans. RINA, 121, 151–65
    Jensen, J. J., Pedersen, P. T., 1981, Bending moments and shear forces in ships sailing in irregular wave, J. Ship Res., 24, 4, 243–51
    Jensen, J. J., Wang, Z., 1998, Wave induced hydroelastic response of a fast monohull displacement ship, In Proc. Second Int. Conf. on Hydroelasticity in Marine Technology, ed. M. Kashiwagi, W. Koterayama, M. Okkusu, pp. 411–27, Fukuoka, Japan: RIAM, Kyushu University
    Johnston, R. J., 1985, Hydrofoils, Naval Engineers Journal, 97, 2, 142–99
    Kaiho, T., 1977, A new method for solving surface-piercing strut problems, Ph.D. thesis, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
    Kan, M., Hanaoka, T., 1964, Analysis for the effect of shallow water upon turning (in Japanese), J. Soc. Nav. Arch. Japan, 115, 49–55
    Kaplan, P., Bentson, J., Davis, S., 1981, Dynamics and hydrodynamics of surface-effect ships, Trans. SNAME, 89, 211–47
    Kapsenberg, G. K., Brizzolara, S., 1999, Hydroelastic effects of bow flare slamming on a fast monohull, In Proc. FAST'99, pp. 699–708, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
    Karman, T., 1929, The impact on seaplane floats during landing, NACA, Tech. Note No. 321, Washington, D.C
    Karman, T., 1930, Mechanische Ähnlichkeit und Turbulenz, Nachr. Ges. Wiss. Goett, Math-Phys. Kl., 58–76
    Kashiwagi, M., 1993, Heave and pitch motions of a catamaran advancing in waves, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 643–55, Tokyo: The Society of Naval Architects of Japan
    Katayama, T., 2002, Experimental techniques to assess dynamic unstability of high-speed planing craft, non-zero heel, bow-diving, porpoising and transverse porpoising, In Proc. Sixth Int. Ship Stability Workshop, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
    Katayama, T., Hinami, T., Ikeda, Y., 2000, Longitudinal motion of a super high-speed planing craft in regular head waves, In Proc. Fourth Osaka Colloquium on Seakeeping Performance of Ships, pp. 214–20. Osaka, Japan: Dept. of Naval Architecture and Ocean Engineering, Osaka University
    Kato, H., 1996, Cavitation, In Advances in Marine Hydrodynamics, ed. M. Ohkusu, Ch. 5, pp. 233–77, Southampton: Computational Mechanics Publications
    Kerczek, C., Tuck, E. O., 1969, The representation of ship hulls by conformal mapping functions, J. Ship Res., 13, 4, 284–98
    Kerwin, J. E., 1991, Hydrofoils and propellers. Lecture notes, Dept. of Ocean Engineering, MIT, Cambridge, Massachusetts
    Kerwin, J. E., Lee, C-S., 1978, Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory, Trans. SNAME, 86, 218–53
    Keuning, J. A., Gerritsma, J., 1982, Resistance tests of a series planing hull forms with 25 degrees deadrise angle, Intern. Shipbuilding Progr., 29, 337, 222–49
    Keuning, J. A., Gerritsma, J., Terwisga, P. F. van, 1993, Resistance tests of a series planing hull forms with 30 degrees deadrise angle and a calculation method based on this and similar systematic series, Intern. Shipbuilding Progr., 40, 424, 333–82
    Kijima, K., Furukawa, Y., 2000, Ship maneuvering performance in waves, in Contemporary Ideas on Ship Stability, ed. D. Vassalos, N. Hamamoto, A. Papanikolaous, D. Molyneux, pp. 435–48, Amsterdam: Elsevier Science Ltd
    Kinnas, S. A., 1996, Theory and numerical methods for the hydrodynamic analysis of marine propulsors, In Advances in Marine Hydrodynamics, ed. M. Okkusu, Ch. 6, pp. 279–323, Southampton: Computional Mechanics Publications
    Kinsman, B., 1965, Wind Waves, Englewood Cliffs, N. J.: Prentice-Hall Inc
    Klotter, K., 1978, Technische Schwingungslehre. Erster Band: Einfache Schwinger. Teil A: Lineare Schwingungen, Berlin, Heidelberg and New York: Springer-Verlag
    Kochin, N. E., Kibel, I. A., Roze, N. V., 1964, Theoretical Hydromechanics, New York: Interscience Publishers
    Koehler, B. R., Kettleborough, 1977, Hydrodynamics of a falling body upon a viscous incompressible fluid, J. Ship Res., 20, 190–8
    Kotik, J., Mangulis, V., 1962, On the Kramers-Kronig relations for ship motions, Intern. Shipbuilding Progr., 9, 97, 183–94
    Koumoutsakas, P., Leonard, A., 1995, High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296, 1–38
    Koushan, K., 1997, Beitrag Zum Kanaleinfluss bei Tragflügelversuchen, Dr.ing thesis, Technische Universität Berlin
    Krasny, R., 1987, Computation of vortex sheet roll-up in the Trefftz plane, J. Fluid Mech., 184, 123–55
    Kruppa, C., 1990, Propulsion systems for high-speed marine vehicles, Second Conference on High-Speed Marine Craft, Oslo: Norwegian Society of Chartered Engineers
    Kruppa, C., 1991, On the design of surface piercing propellers, Seventh GE-US Symposium Hydroacoustics, Part II, Hamburg, Germany
    Kruppa, C. F. L., 1992, Testing surface piercing propellers, In Hydrodynamics: Computation, Model Tests and Reality, ed. H. J. J. van den Boom, pp. 107–14, Amsterda Elsevier Science Publishers B.V
    Kuchemann, D., 1978, The Aerodynamic Design of Aircraft, Oxford: Pergamon Press
    Kutta, W. M., 1910, Über eine mit den Grundlagen des Flugsproblems in Beziehung stehende zweidimensionale Strömung. Sitzungsberichte der Königlischen Bayerschen Akademie der Wissenschaften. (This paper reproduced Kutta's unpublished thesis of 1902)
    Kvålsvold, J., 1994, Hydroelastic modelling of wetdeck slamming on multihull vessels, Dr.ing. thesis, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
    Kvålsvold, J., Faltinsen, O. M, 1995, Hydroelastic modelling of wetdeck slamming on multihull vessels, J. Ship Res., 39, 225–29
    Kvålsvold, J., Faltinsen, O. M., Aarsnes, J. V., 1995, Effect of structural elasticity on slamming against wetdecks of multihull vessels, In Proc. PRADS'95, ed. H. Kim, J. W. Lee, 1, 1684–99, Seoul: The Society of Naval Architects of Korea
    Lai, C., 1994, Three-dimensional planing hydrodynamics based on a vortex lattice method, Ph.D. thesis, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
    Landau, L. D., Lifshitz, E. M., 1959, Fluid Mechanics, Oxford: Pergamon Press
    Larsson, L., Baba, E., 1996, Ship resistance and flow computations, Advances in Marine Hydrodynamics, ed. M. Ohkusu, pp. 1–75, Southampton: Computational Mechanics Publication
    Larsson, L., Eliasson, R., 2000, Principles of Yacht Design, Camden, Maine: International Marine
    Latorre, R., Miller, A., Philips, R., 2003, Drag reduction on a high speed trimaran, In Proc. FAST'03, ed. P. Casella, Vol. 1, Session A1, pp. 87–92, Naples: Dipartimento Ingegneria Navale–Università di Napoli “Federico II.”
    Lavis, D. R., 1980, The development of stability standards for dynamically supported craft, a progress report, In Proc. of the High Speed Surface Craft Exhibition and Conference, pp. 384–94, Brighton, Sussex, UK: Kalerghi Publications
    Lee, C. S., 1977, A numerical method for the solution of the unsteady lifting problem of rectangular and elliptic hydrofoil, master's thesis, Dept. of Ocean Engineering, MIT, Cambridge, Mass
    Lee, W. T., Bales, S. L., 1984, Environmental data for design of marine vehicles, In Ship Structure Symposium '84, pp. 197–209, New York: The Society of Naval Architects and Marine Engineers
    Lefandeux, F., 1999, New advances in sailing hydrofoils, In RTO Meeting Proc. 15. Fluid Dynamics Problems of Vehicles Operating Near or in the Air-Sea Interface, pp. 15-1–15-14, Neuilly-Sur-Seine Cedex, France: Research and Technology Organization/NATO
    Leonard, J. W., 1988, Tension Structures, Behaviour and Analysis, New York: McGraw-Hill Book Company
    Lewandowski, E. M., 1997, Transverse dynamic stability of planing craft, Marine Technology, 34, 2, 109–18
    Lewis, R. I., 1996, Turbomachinery Performance Analysis, London: Arnold
    Lighthill, M. J., 1951, A new approach to thin airfoil theory, The Aeronautical Quarterly, III, 193–210
    Lighthill, M. J., 1960, Note on the swimming of slender ship, J.Fluid Mech., 9, 304–17
    Lin, W-M., Meinhold, M. J., Salvesen, N., 1995, SIMPLAN2, simulation of planing craft motions and load, Report SAIC-95/1000, SAIC, Annapolis, Md
    Lord Kelvin (Sir William Thompson), 1887, On ship waves, Proc. Inst. Mech. Eng., London, UK
    Lugni, C., Colagrossi, A., Landrini, M., Faltinsen, O. M., 2004, Experimental and numerical study of semi-displacement monohull and catamaran in calm water and incident waves, In Proc. 25th Symposium on Naval Hydrodynamics, Washington D. C.: Dept. of the Navy–Office of Naval Research
    Lugt, H. J., 1981, Numerical modelling of vortex flows in ship hydrodynamics, a review, In Proc. Third Int. Conf. on Numerical Ship Hydrodynamics, ed. J-C. Dern, H. J. Hausling, pp. 297–316, Paris: Bassin d'Essais des Carènes
    Lunde, J. K., 1951, On the linearized theory of wave resistance for displacement ships in steady and accelerated motions, Trans. SNAME, 59, 25–85
    Maeda, H., 1991, Modelling techniques for dynamics of ships, Phil. Trans. R. Soc. Lond. A, 334, 307–17
    Malakhoff, A., Davis, S., 1981, Dynamics of SES bow seal fingers, AIAA Sixth Marine Systems Conf., AIAA – 81-2087
    Manen, J. D., Oossanen, P. van, 1988, Resistance, propulsion and vibration, In Principles of Naval Architecture, ed. E. V. Lewis, Vol. II, Chapter VI, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
    Marchaj, C. A., 2000, Aero-hydrodynamics of Sailing, St. Michaels, Md: Tiller
    Maruo, H., 1963, Resistance in waves, 60th Anniversary Series SNA Japan, 8, 67–102
    Masilge, C., 1991, Konzeptien und Analyse eines interierten Strahlantriebes mit einem rotationssymmetrischen Grenzchichteinlauf, Dissertation, Technische Universität Berlin
    Maskell, E. C., 1972, On the Kutta-Joukowski condition in two-dimensional unsteady flow, Roy. Aircraft Establishment, Fanborough, Techn. Memo Aero 1451
    Matthews, S. T., 1967, Main hull girder loads on a Great Lakes bulk carrier, In Proc. SNAME Spring Meeting, pp. 11.1–11.32, Jersey City, N. J.: The Society of Naval Architects and Marine Engineers
    Meek-Hansen, B., 1990, Damage investigation on diesel engines in high speed vehicles, In Proc. Fifth International Congress on Marine Technology Athens '90, pp. 309–403, Athens: Hellenic Institute of Marine Technology
    Meek-Hansen, B., 1991, Engine running conditions during high speed marine craft operations, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 861–76, Trondheim: Tapir Publishers
    Mei, C. C., 1983, The Applied Dynamics of Ocean Surface Waves, New York: John Wiley & Sons. Revised printing (1989), Singapore: World Scientific
    Meyer, J. R., Wilkins, J. R. Jr., 1992, Hydrofoil development and applications, In Proc. HPMV'92, pp. HF1–HF24, Alexandria, Va.: American Society of Naval Engineers
    Michell, J. M., 1898, The wave resistance of a ship, Phil. Mag., London, Series 5, 45, 106–23
    Milburn, D., 1990, Numerical model of 47'MLB high speed turns, USCG R&D Center Report
    Milne-Thomson, L. M., 1996, Theoretical Hydrodynamics, Mineola, N. Y.: Dover Publications, Inc
    Minsaas, K. J., 1993, Design and development of hydrofoil catamarans in Norway, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 83–99, Tokyo: The Society of Naval Architects of Japan
    Minsaas, K. J., 1996, Flow studies with a pitot inlet in a cavitation tunnel, 20th ITTC Workshop on Waterjets, Supplement to the Report of the Waterjet Group, 21st ITTC, Trondheim, Norway
    Minsaas, K. J., Thon, H. J., Kauczynski, W., 1986, Influence of ocean environment on thrusters performance. In Proc. Int. Symp. Propeller and Cavitation, supplementary volume, pp. 142–42. Shanghai: The Editorial Office of Shipbuilding of China
    Molin, B., 1999, On the piston mode in moonpools, In Proc. 14th Int. Workshop on Water Waves and Floating Bodies, ed. R. F. Beck, W. W. Schultz, pp. 103–6, Ann Arbor, Mich.: Dept. of Nav. Arch. and Mar. Eng., The University of Michigan
    Molland, A. F., Wellicome, J. F., Couser, P. R., 1996, Resistance experiments on a systematic series of high speed displacement catamaran hull forms: Variation of length-displacement ratio and breadth-draught ratio, Trans. RINA, 138 pt A, 55–72
    Mørch, J. B., 1992, Aspects of hydrofoil design with emphasis on hydrofoil interaction in calm water, Dr.ing. thesis, Div. of Marine Hydrodynamics, NTNU, Trondheim
    Mørch, H. J. B., Minsaas, K. J., 1991, Aspects of hydrofoil design with emphasis on hydrofoil interaction in calm water, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 143–61, Trondheim: Tapir Publishers
    Morison, J. R., O'Brien, M. P., Johnson, J. W., Schaaf, S. A., 1950, The force exerted by surface waves on piles, Pet. Trans., 189, 149–54
    Moulijn, J. 2000, Added resistance due to waves of surface effect ships, Ph. D. thesis, Technical University of Delft, The Netherlands
    Müller-Graf, B., 1991, The effect of an advanced spray rail system on resistance and development of spray of semi-displacement round bilge hulls, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 1, pp. 125–41, Trondheim: Tapir Publishers
    Müller-Graf, B., 1994, Spritzleisten und Staukeile-Massnahmen zur Verbesserung der hydrodynamischen Eigenschaften von Motorbooten (Spray rails and wedges – an effective tool to improve the hydrodynamic characteristics of motorboats). In Proc. of the 15th Symp. on Yacht Design and Yacht Building, 28– 29 Oct. 1994, pp. 11–65, Hamburg, Germany: Hamburger Messe und Congress GmbH und Deutcher Boots und Schiffbauer Verband
    Müller-Graf, B., 1997, Dynamic stability of high speed small craft, WEGEMT Association Twenty-Fifth School Craft Technology, Athens, Greece: Dept. of Nav. Arch. and Mar. Eng., National Technical University of Athens
    Müller-Graf, B, 1999a, Widerstand und hydrodynamische Eigenschaften der schnellen Knickspant-Katamarane der VWS-Serie'89 (Resistance and hydrodynamic characteristics of the VWS Hard Chine Hull Catamaran Series '89). In Proc. German 20. Symposium Yachtenwurf und Yachtbau, 5.–6. November 1999, pp. 47–165, Hamburg, Germany: Hamburg Messe und Congress GmbH und Deutscher Boots- und Schiffbauer-Verband e.V
    Müller-Graf, B, 1999b, Leistingsbedarf und Propulsionseigenschaften der schnellen Knickspantkatamarane der VWS-Serie'89 (Power requirements and propulsive characteristics of the VWS Hard Chine Hull Catamaran Series '89). In Proc. German 20. Symposium Yachtenwurf und Yachtbau, 5.–6. November 1999, pp. 167–257, Hamburg, Germany: Hamburg Messe und Congress GmbH und Deutscher Boots- und Schiffbauer-Verband e.V
    Müller-Graf, B., Schmiechen, M., 1982, On the stability of semidisplacement craft, In Proc. of Second Intern. Conf. on Stability of Ships and Ocean Vehicles, pp. 67–76, Tokyo: The Society of Naval Architects of Japan
    Myrhaug, D., 2004, Lecture notes in oceanography: winds, waves, Trondhei Dept. of Marine Technology, NTNU
    Nakatake, K. Ando, J., Kataoka, K., Yoshitake, A., 2003, A simple surface panel method “SQCM” in ship hydrodynamics, In Proc. Int. Symp. on Naval Architecture and Ocean Engineering, pp. 23/1–11, Shanghai: School of Naval Architecture and Ocean Engineering, Shanghai Jiao Tong University, China
    Nakos, D., 1990, Ship wave patterns and motions by a three-dimensional Rankine panel method, Ph.D. thesis, Dept. of Ocean Engineering, MIT, Cambridge
    Newman, J. N., 1962, The exciting forces on fixed bodies in waves, J. Ship Res., 6, 4, 10–7
    Newman, J. N., 1969, Lateral motion of a slender body between two parallel walls, J. Fluid Mech., 39, 1, 97–115
    Newman, J. N., 1977, Marine Hydrodynamics, Cambridge: The MIT Press
    Newman, J. N., 1978, The theory of ship motions, Advances in Applied Mechanics, 18, 221–82
    Newman, J. N., 1987, Evaluation of the wave-resistance Green function: part 1 – the double integral, J. Ship Res., 31, 2, 79–90
    Newman, J. N., Sclavounos, P., 1980, The unified theory of ship motions, In Proc. 13th Symp.on Naval Hydrodynamics, ed. T. Inui, pp. 373–97, Tokyo: The Shipbuilding Research Association of Japan
    Newton, R. N., Rader, H. A., 1961, Performance data of propellers for high speed craft, Trans. RINA, 103, 2, 93–129
    Nicholson, K., 1974, Some parametric model experiments to investigate broaching-to, In Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop, W. G. Price, pp. 160–6, London: Mechanical Engineering Publications Ltd
    Nikuradse, J., 1930, Untersuchungen über turbulente Strömungen in nicht kreisförmigen Rohren, Ing. – Arch., 1, 306–32
    Nikuradse, J., 1933, Strömungsgesetze in rauhen Rohren, Forschungsheft, 361, Berlin: VDI-Verlag
    Nonaka, K., 1993, Estimation of hydrodynamic forces acting on a ship in maneuvering motion, In Proc. MARSIM'93, pp. 437–45, St. John's, Newfoundland
    Nordenstrøm, N., 1973, A method to predict long-term distributions of waves and wave-induced motions and loads on ships and other floating structures, Det Norske Veritas Publications No 81, Det Norske Veritas, Høvik, Norway
    Nordenstrøm, N., Faltinsen, O. M., Pedersen, B., 1971, Prediction of wave-induced motions and loads for catamarans, In Proc. Offshore Technology Conference, Paper No. OTC1418, Vol. 2, pp. 13–58, Richardson, Tex.: Offshore Technology Conference Inc
    NORDFORSK, 1987, The Nordic Cooperative Project, Seakeeping performance of ships, In Assessment of a Ship Performance in a Seaway, Trondheim, Norway: MARINTEK
    Norrbin, N. H., 1971, Theory and observation on the use of a mathematical model for ship maneuvering in deep and confined waters, SSPA Report No. 68, Gothenborg
    NS-ISO 2631-31. utgave November 1985 (Figure 1 side 6)
    Nwogu, O., 1993, An alternative form of Boussinesq equations for nearshore wave propagation, J. of Waterway, Port, Coastal and Ocean Engineering, 119, 6, 618–38
    Ochi, M. K., 1964, Prediction of occurrence and severity of ship slamming at sea, In Proc. Fifth Symp. on Naval Hydrodynamics, pp. 545–96. Washington, D. C.: Office of Naval Research–Department of the Navy
    Ochi, M. K., 1982, Stochastic analysis and probability distribution in random seas, Advances in Hydroscience, 13, 217–375
    Ogilvie, T. F., 1964, Recent progress towards the understanding and prediction of ship motions. In Proc. Fifth Symp. on Naval Hydrodynamics, pp. 3–128. Washington, D. C.: Office of Naval Research–Department of the Navy
    Ogilvie, T. F., 1969a, Lecture notes for the course Naval Hydrodynamics I, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
    Ogilvie, T. F., 1969b, Oscillating pressure fields on a free surface, Rep. no 030, Dept. of Nav. Arch. and Mar. Eng., The University of Michigan, Ann Arbor, Mich
    Ogilvie, T. F., 1972, The wave generated by a fine ship bow, In Ninth Symp. Naval Hydrodynamics, ed. R. Brard and A. Castaro, Vol. 2, pp. 1483–525, Washington, D. C.: National Academy Press
    Ogilvie, T. F., 1978, End effects in slender-ship theory, In Proc. Symp. on Applied Mathematics, dedicated to the late Prof. Dr. R. Timman, ed. A. J. Hermans, M. W. C. Oosterveld, pp. 119–39, Delft: Delft University Press
    Ohkusu, M., 1969, On the heaving motion of two circular cylinders on the surface of a fluid, Reports of Research Institute for Applied Mechanics, Vol. XVII, No. 58, Kyushu University, Japan
    Ohkusu, M., 1996, Hydrodynamics of ships in waves, In Advances in Marine Hydrodynamics, ed. M. Ohkusu, Chapter 2, pp. 77–132, Southampton: Computational Mechanics Publications
    Ohkusu, M., Faltinsen, O. M., 1990, Prediction of radiation forces on a catamaran at high Froude number, In Proc. 18th Symp. on Naval Hydrodynamics, pp. 5–19, Washington, D. C.: National Academy Press
    Økland, O., 2002, Numerical and experimental investigation of whipping in twinhull vessels exposed to severe wet deck slamming, Dr.ing. thesis, Dept. of Marine Technology, NTNU, Trondheim
    Papanikolaou, A., 2002, Developments and potential of Advanced Marine Vehicles Concepts, Bulletin of the KANSAI Society of Naval Architects, 55, 50–4
    Prandtl, L., 1933, Neuere Ergebnisse der Turbulenzforschung, Z. Ver. Dtch. Ing., 77, 5, 105–14, (Translated as NACA Tech. Mem. 720)
    Prandtl, L., 1956, Strömungslehre, Braunschweig: Friedr. Vieweg & Sohn
    Riabouchinski, D., 1920, Sur la resistance des fluids, Congres Intern. des Math, Strasbourg, pp. 568–85, Toulouse; Henri Villat, Librairie de l'Université
    Rognebakke, O. F., Faltinsen, O. M., 2003, Coupling of sloshing and ship motions, J. Ship Res., 47, 3, 208–21
    Ronæss, M., 2002, Wave induced motions of two ships advancing on a parallel course, Dr. Ing. Thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
    Rose, J. C., Kruppa, C., 1991, Surface piercing propellers – methodical series model test results, In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 1129–47, Trondheim: Tapir Publishers
    Rose, J. C., Kruppa, C., Koushan, K., 1993, Surface piercing propellers – propeller/hull interaction, In Proc. FAST'93, ed. K. Sugai, M. Miyata, S. Kubo, H. Yamata, Vol. 1, pp. 867–81, Tokyo: The Society of Naval Architects of Japan
    Rouse, H., 1961, Fluid Mechanics for Hydraulic Engineers, New York: Dover Publications, Inc
    Saito, Y., Oka, M., Ikebuchi, K., Asao, M., 1991, Rough water capabilities of fully submerged hydrofoil craft “Jetfoil,” In Proc. FAST‘91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 1013–28, Trondheim: Tapir Publishers
    Salvesen, N., 1974, Second-order steady-state forces and moments on surface ships in oblique waves, In Int. Symp. Dynamics of Marine Vehicles and Structures in Waves, ed. R. E. D. Bishop, W. G. Price, pp. 212–26, London: Mechanical Engineering Publications
    Salvesen, N., Tuck, E. O., Faltinsen, O. M., 1970, Ship motions and sea loads, Trans. SNAME, 78, 250–87
    Sarpkaya, T., 1966, Separated flow about lifting bodies and impulsive flow about cylinders, AIAA Journal, 44, 414–20
    Sarpkaya, T., Shoaff, R. L., 1979, A discrete-vortex analysis of flow about stationary and transversely oscillating circular cylinders, Tech. Rep. NPS-69 SL 79011, Nav. Postgrad. Sch. Monterey, Calif
    Sarpkaya, T., Isaacson, M., 1981, Mechanics of Wave Forces on Offshore Structures, New York: Van Nostrand Reinhold Company
    Savitsky, D., 1964, Hydrodynamic design of planing hulls, Marine Technology, 1, 1, 71–96
    Savitsky, D., 1988, Wake shapes behind planing hull forms, In Proc. Int. High-Performance Vehicle Conf., pp. VII, 1–15, Shanghai: The Chinese Society of Naval Architecture and Marine Engineering
    Savitsky, D., 1992, Overview of planing hull developments, In Proc. HPMV'92, pp. PC1–PC14, Alexandria, Va.: American Society of Naval Engineers
    Schlichting, H., 1979, Boundary-Layer Theory, New York: McGraw-Hill Book Company
    Schmitke, R. T., Jones, E. A., 1972, Hydrodynamics and simulation in the Canadian hydrofoil program, In Proc. Ninth Symp. on Naval Hydrodynamics, ed. R. Brard and A. Castera, Vol. 1, pp. 293–342, Arlington, Va.: Office of Naval Research–Department of the Navy
    Schultz-Grunow, F, 1940, Neues Reibungswiderstandsgesetz für glatte Platten, Luftfahrtforschung, 17, 239–46 (Translated as NACA Tech. Mem. 986)
    Schwartz, L. W., 1974, Computer extension and analytic continuation of Stokes' expansion for gravity waves, J. Fluid Mech., 62, 553–78
    Sclavounos, P. D., 1987, An unsteady lifting line theory, J. Eng. Math., 21, 201–26
    Sclavounos, P., 1996, Computation of wave ship interactions, In Advances in Marine Hydrodynamics, ed. M. Ohkusu, Ch. 4, pp. 177–231, Southampton: Computational Mechanics Publications
    Sclavounos, P. D., Borgen, H., 2004, Seakeeping analysis of a high-speed monohull with a motion control bow hydrofoil, J. Ship. Res., 28, 2, 77–117
    Scolan, Y.-M., Korobkin, A. A., 2001, Three-dimensional theory of water impact, part 1, inverse Wagner problem, J. Fluid Mech., 440, 293–326
    Scolan, Y.-M., Korobkin, A. A., 2003, On energy arguments applied to slamming of elastic body, In Proc. Hydroelasticity in Marine Technology, ed. R. Eatock Taylor, pp. 175–83, Oxford: Dept. of Eng. Science, University of Oxford
    Sedov, I., 1940, On the theory of unsteady planing and the motion of a wing with vortex separation, NACA Technical Memorandum 942, 53 pp., Washington, D.C
    Sedov, I., 1965, Two-Dimensional Problems in Hydrodynamics and Aerodynamics, New York: Interscience Publishers
    Sfakiotakis, M., Lane, D. M., Davies, J. B. C., 1999, Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering, 24, 2, 237–52
    Shen, Y. T., Ogilvie, T. F., 1972, Nonlinear hydrodynamic theory for finite-span planing surface, J. Ship Res., 16, 3–20
    Shen, Y. T., Eppler, R., 1979, Section design for hydrofoil wings with flaps, J. Hydrodynamics, 13, 2, 39–45
    Shen, Y. T., 1985, Wing sections for hydrofoils, part 3: experimental verifications, J. Ship Res., 29, 1, 39–50
    Skjørdal, S., Faltinsen, O. M., 1980, A linear theory of springing, J. Ship. Res., 24, 2, 74–84
    Skomedal, N., 1985, Application of a vortex tracking method to three-dimensional flow past lifting surfaces and blunt bodies, Dr.ing thesis, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
    Skorupka, S., Le Coz, D., Perdon, P., 1992, Performance assessment of the surface effect ship AGNES 200, DCN Bassin d'Essais des Carénes Translation, Paris, France
    Søding, H., 1982, Prediction of ship steering capabilities, Schiffstechnik, 29, 3–29
    Søding, H., 1984, Influence of course control on propulsion power, Schiff & Hafen/Kommandobrücke, 3, 63–8
    Søding, H., 1997, Drastic resistance reductions in catamarans by staggered hulls, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 225–30, South Yarra, Victoria, and London: Baird Publications
    Sørensen, A., 1993, Modelling and control of SES dynamics in the vertical plane, Dr.ing. thesis, ITK-report 1993:7-W, Nor. Inst. Technol., Trondheim
    Sorensen, R. M., 1993, Basic Wave Mechanics: For Coastal and Ocean Engineers, New York: John Wiley & Sons Inc
    Steen, S., 1993, Cobblestone effect on SES, Dr.ing. thesis, Dept. of Marine Hydrodynamics, Nor. Inst. Technol., Trondheim
    Stoker, J. J., 1958, Water Waves. The Mathematical Theory with Applications, New York: John Wiley & Sons Inc
    Storhaug, G., 1996, SWATH project: seakeeping and wave load analysis of a SWATH, revision 2, Det Norske Veritas report 96-0174, Det Norske Veritas, Høvik, Norway
    Storhaug, G., Vidic-Perunovic, J., Rüdinger, F., Holtsmark, G., Helmers, J. R., Gu, X., 2003, Springing/whipping response of a large ocean going vessel – a comparison between numerical simulations and full scale measurements, In Proc. Hydroelasticity in Marine Technology, ed. R. Eatock Taylor, pp. 117–29, Oxford: Dept. of Eng. Science, University of Oxford
    Stratford, B. S., 1959, An experimental flow with zero pressure friction throughout its region of pressure rise, J. Fluid Mech., 5, 1, 17–35
    Svenneby, E. J., Minsaas, K. J., 1992, Foilcat 2900, Design and performance, In Proc. Third Conf. on High-Speed Marine Craft, paper no 6, Oslo: Norwegian Society of Chartered Engineers
    Takaishi, Y., Matsumoto, T., Ohmatsu, S., 1980, Winds and Waves of the North Pacific Ocean 1964–1973. Statistical Diagrams and Tables, Tokyo: Ship Research Institute
    Takaki, M., Iwashita, H., 1994, On the estimation methods of the seakeeping qualities for the high speed vessel in waves, applications of ship motion theory to design, 11th Marine Dynamics Symposium, Tokyo: Soc. Naval Arch. of Japan
    Takemoto, H., 1984, Some considerations on water impact pressure, J. Soc. Naval Arch. Japan, 156, 314–22
    Tanaka, N., Ikeda, Y., Nishino, K., 1982, Hydrodynamic viscous force acting on oscillating cylinders with various shapes. In Proc. Sixth Symp. of Marine Technology, The Society of Naval Architects of Japan. (Also Rep. Dep. Nav. Arch., University of Osaka Prefecture, no. 407, Jan. 1983)
    Tatinclaux, J. C., 1975, On the wave resistance of surface effect ships, Trans. SNAME, 83, 51–66
    Taylor, T. E., Kerwin, J. E., Scherer, J. O., 1998, Waterjet pump design and analysis using a coupled lifting-surface and RANS procedure, Int. Conf. on Waterjet Propulsion, Latest Development, London: The Royal Institution of Naval Architects
    Terwisga, T., 1991, The effect of waterjet-hull interaction on thrust and propulsive efficiency. In Proc. FAST'91, ed. K. O. Holden, O. M. Faltinsen, T. Moan, Vol. 2, pp. 1149–67, Trondheim: Tapir Publishers
    Terwisga, T., 1992, On the prediction of the powering characteristics of hull-waterjet systems, In Hydrodynamics: Computations, Model Tests and Reality, ed. H. J. J. van den Boom, pp. 115–20, Amsterda Elsevier Science Publishers B.V
    Theodorsen, T., 1935, General theory of aerodynamic instability and mechanism of flutter, NACA Report 496
    Todd, F. H., 1967, Resistance and propulsion. In Principles of Naval Architecture, ed. J. P. Comstock, pp. 228–462. New York: Society of Naval Architects and Marine Engineers
    Torsethaugen, K., 1996, Model for a doubly peaked wave spectrum, Rep. no. STF22 A96204, SINTEF Civil and Environmental Engineering, Trondheim, Norway
    Tregde, V., 2004, Aspects of ship design; optimization of aft hull with inverse geometry design, Ph.D thesis, Dept. of Marine Technology, NTNU, Trondheim
    Triantafyllou, M. S., Triantafyllou, G. S., 1995, An efficient swimming machine, Scientific American, March, 40–8
    Troesch, A. W., 1984, Effects of nonlinearities on hull springing, Marine Technology, 21, 4, 356–63
    Troesch, A. W., 1992, On the hydrodynamics of vertically oscillating planing hulls, J. Ship Res., 36, 4, 317–31
    Troesch, A. W., Falzarano, J. M., 1993, Modern nonlinear dynamical analysis of vertical plane motion of planing hulls, J. Ship Res., 37, 3, 189–99
    Tuck, E. O., 1966, Shallow water flow past slender bodies, J. Fluid Mech., 26, 89–95
    Tuck, E. O., 1988, A strip theory for wave resistance, In Proc. Third Int. Workshop on Water Waves and Floating Bodies, ed. F. T. Korsmeyer, pp. 169–74, Cambridge, Mass.: Dept. of Ocean Engineering, MIT
    Tuck, E. O., Lazauskas, L., 1998, Optimum spacing of a family of multihulls, Ship Technology Research, 45, 180–95
    Tuck, E. O., Lazauskas, L., 2001, Free-surface pressure distributions with minimum wave resistance, ANZIAM Journal, 43, E75–E101
    Tuck, E. O., Newman, J. N., 1974, Hydrodynamic interactions between ships, In Tenth Symp. on Naval Hydrodynamics, ed. R. D. Cooper, S. W. Doroff, pp. 35–70, Arlington, Va.: Office of Naval Research–Department of the Navy
    Tucker, M. J., Challenor, P. G., Carter, D. J. T., 1984, Numerical simulation of a random sea, a common error and its effect upon wave group statistics, Applied Ocean Research, 6, 2, 118–22
    Tucker, M. J., Pitt, E. G., 2001, Waves in Ocean Engineering, Elsevier Ocean Engineering Book Series, Vol. 5, ed. R. Bhattacharya, M. E. McCormick, Amsterdam: Elsevier
    Tulin, M. P., 1953, Steady two-dimensional cavity flows about slender bodies, David Taylor Model Basin, Rep. 834, Washington D.C
    Tulin, M., Landrini, M., 2000, Breaking waves in the ocean and around ships, In Proc. 23rd Symp. on Naval Hydrodynamics, Washington, D. C.: National Academy Press
    Ulstein, T., 1995, Nonlinear effects of a flexible stern seal bag by cobblestone oscillations of an SES, Dr.ing. thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
    Ulstein, T., Faltinsen, O. M., 1996, Hydroelastic analysis of a flexible bag-structure, In Proc. 20th Symp. on Naval Hydrodynamics, pp. 702–21, Washington, D. C.: National Academy Press
    Ulstein, T., Faltinsen, O. M., 1996, Two-dimensional unsteady planing, J. Ship Res., 40, 3, 200–10
    Vanden-Broeck, J.-M., 1980, Nonlinear stern waves, J. Fluid Mech., 96, 3, 603–11
    Vassalos, D., Hamamoto, M., Papanikolaou, D, Molyneux, D., 2000, Contemporary Ideas on Ship Stability, Oxford: Elsevier Science Ltd
    Venning, E., Haberman, W. L., 1962, Supercavitating propeller performance, Trans. SNAME70, 354–417
    Vugts, J. H., 1968, Cylinder motions in beam waves, Nederlands Ship Research Centre, TNO, Delft
    Wadlin, K. L., 1958, Mechanics of ventilation inception, In Proc. Second Symp. on Naval Hydrodynamics, pp. 425–46, ed. P. Eisenberg, Washington, D. C.: Office of Naval Research–Department of the Navy
    Wagner, H., 1925, Über die Enstehung des Auftriebes von Tragflügeln, Z. Angew. Mech. 5, 1, 17–35
    Wagner, H., 1932, Über Stoss- und Gleitvorgänge an der Oberfläche von Flüssigkeiten, Zeitschr. f. Angew. Math und Mech, 12, 4, 193–235
    Wahab, R., Swaan, W. A., 1964, Course keeping and broaching in following waves, J. Ship Res., 7, 4, 1–15
    Walderhaug, H., 1972, Ship Hydrodynamics, Basic Course (in Norwegian), Trondheim: Tapir Publishers
    Walree, F., Yamaguchi, K., 1993, Hydrofoil research: model tests and computations, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 791–806, Tokyo: The Society of Naval Architects of Japan
    Walree, F., 1999, Computational methods for hydrofoil craft in steady and unsteady flow, Ph.D. thesis, Technical University of Delft, Delft
    Walree, F., Luth, H. R., 2000, Scale effects on foils and fins in steady and unsteady flow, RINA Conf. on Hydrodynamics of High Speed Craft, November, article no. 15, p. 8, London, UK
    Wehausen, J. H., Laitone, E. H., 1962, Surface waves, in Handbuch der Physik, ed. S. Flügge, Ch. 9, Springer-Verlag
    Wehausen, J. H., 1973, The wave resistance of ships, Advances in Applied Mechanics, 13, 93–245
    Weissinger, J., 1942, The lift distribution of swept back wings, Translated in NACA TM1120
    Werenskiold, P., 1993, Methods for regulatory and design assessment of planing craft dynamic stability, In Proc. FAST'93, ed. K. Sugai, H. Miyata, S. Kubo, H. Yamato, Vol. 1, pp. 883–94, Tokyo: The Society of Naval Architects of Japan
    Whicker, L. F., Fehlner, L. F., 1958, Free stream characteristics of a family of low aspect all movable control surfaces for application to ship design, DTNSRDC Report No. 933, Washington D.C
    White, F., 1972, An analysis of axisymmetric turbulent flow past a long cylinder, Journal of Basic Engineering, 94, 200–6
    White, F. M., 1974, Viscous Fluid Flow, New York: McGraw-Hill Book Company
    Whittaker, T., Elsässer, B., 2002, Coping with the wash. The nature of wash waves produced by fast ferries, Ingema, 11, 40–4
    Wigley, W. G. S., 1942, Calculated and measured wave resistance on a series of forms defined algebraically, The prismatic coefficient and angle of entrance being varied independently, Trans RINA, 84, 52–74
    Xu, L., Troesch, A. W., Vorus, W. S., 1998, Asymmetric vessel and planing hydrodynamics, J. Ship Res., 42, 3, 187–98
    Yamakita, K., Itoh, H., 1998, Sea trial test results of the wear characteristics of SES bow seal fingers, In Proc. Hydroelasticity in Marine Technology, ed. M. Kashiwagi, W. Koteryama, M. Ohkusu, pp. 471–6, Fukuoka, Japan: RIAM, Kyushu University
    Yamamoto, Y., Ohtsubo, H., Kohno, Y., 1984, Water impact of wedge model, Journal of the Soc. Nav. Arch. Japan, 155, 236–45
    Yang, Q., 2002, Wash and wave resistance of ships in finite water depth, Dr.ing. thesis, Dept. of Marine Hydrodynamics, NTNU, Trondheim
    Yang, Q., Faltinsen, O. M., Zhao, R., in press, Green function of steady motion in finite water depth, J. Ship Res.
    Zhang, S., Yue, D. K. P., Tanizawa, K., 1996, Simulation of plunging wave impact on a vertical wall, J. Fluid Mech., 327, 221–54
    Zhao, R., Faltinsen, O. M, 1992, Slamming loads on high-speed vessel, In Proc. 19th Symp. on Naval Hydrodynamics, Washington, D. C.: National Academy Press
    Zhao, R., Faltinsen. O. M., 1993, Water entry of two-dimensional bodies, J. Fluid Mech., 246, 593–612
    Zhao, R., Faltinsen, O. M., Aarsnes, J. V., 1996, Water entry of arbitrary two-dimensional sections with and without flow separation, In Proc. 21st Symp. on Naval Hydrodynamics, pp. 408–23, Washington, D. C.: National Academy Press
    Zhao, R., Faltinsen, O. M., Haslum, H., 1997, A simplified non-linear analysis of a high-speed planing craft in calm water, In Proc. FAST'97, ed. N. Baird, Vol. 1, pp. 431–8, South Yarra, Victoria, and London: Baird Publications

    Metrics

    Altmetric attention score

    Full text views

    Total number of HTML views: 0
    Total number of PDF views: 0 *
    Loading metrics...

    Book summary page views

    Total views: 0 *
    Loading metrics...

    * Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

    Usage data cannot currently be displayed.

    Accessibility standard: Unknown

    Why this information is here

    This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

    Accessibility Information

    Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.