Hostname: page-component-68c7f8b79f-m4fzj Total loading time: 0 Render date: 2026-01-17T06:29:03.640Z Has data issue: false hasContentIssue false

A local-global principle for parametrized $\infty $-categories

Published online by Cambridge University Press:  15 January 2026

Hadrian Heine*
Affiliation:
University of Oslo , Norway Max Planck Institute for Mathematics, Bonn, Germany; E-mail: heine@mpim-bonn.mpg.de

Abstract

We prove a local-global principle for parametrized $\infty $-categories: we show that any functor $\mathcal {B} \to \mathcal {C}$ is determined by the following data: the collection of fibers $\mathcal {B}_X$ for X running through the set of equivalence classes of objects of $\mathcal {C}$ endowed with the action of the space of automorphisms $\mathrm {Aut}_X(\mathcal {B})$ on the fiber, the local data, together with a locally cartesian fibration ${\mathcal D} \to \mathcal {C}$ and $\mathrm {Aut}_X(\mathcal {B})$-linear equivalences ${\mathcal D}_X \simeq {\mathcal P}(\mathcal {B}_X)$ to the $\infty $-category of presheaves on $\mathcal {B}_X$, the gluing data. As applications we compute the mapping spaces of the conditionally existing internal hom of $\infty \mathrm {Cat}_{/\mathcal {C}}$ and extend the $\infty $-categorical Grothendieck-construction by proving that $\infty $-categories over any $\infty $-category $\mathcal {C}$ are classified by normal lax 2-functors to a double $\infty $-category of correspondences.

MSC classification

Information

Type
Algebraic and Complex Geometry
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - SA
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (https://creativecommons.org/licenses/by-nc-sa/4.0), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is used to distribute the re-used or adapted article and the original article is properly cited. The written permission of Cambridge University Press or the rights holder(s) must be obtained prior to any commercial use.
Copyright
© The Author(s), 2026. Published by Cambridge University Press

1 Introduction

By Hasse’s famous local-global principle the natural commutative square

relating the integers, rationals, and p-adic numbers, is a cartesian square, known as the arithmetic fracture square. Hasse’s principle serves as a guiding principle in arithmetic and arithmetic geometry and was extended to a fundamental principle in unstable and stable homotopy theory fracturing an appropriate finite (stable) homotopy type into its rationalization and p-completion.

It is goal of this article to prove a local-global principle for parametrized $\infty $ -categories. It is a fundamental insight of [Reference Barwick, Dotto, Glasman, Nardin and Shah5], [Reference Barwick, Dotto, Glasman, Nardin and Shah6], [Reference Nardin and Shah30], [Reference Shah34], [Reference Shah33] that parametrized $\infty $ -category theory, that is, the systematic study of $\infty $ -categories over a fixed base $\infty $ -category, is a powerful tool to perform constructions in equivariant and motivic homotopy theory [Reference Barwick and Glasman7], [Reference Quigley and Shah32], [Reference Cnossen, Haugseng, Lenz and Linskens10], [Reference Bachmann and Hoyois4]. Parametrized $\infty $ -category theory relies on a deep understanding and efficient control of fibrations of $\infty $ -categories. The latter play the role in higher category theory that Kan-fibrations play in homotopy theory but the complexity is drastically higher [Reference Ayala and Francis2]. The next diagram gives an impression of the plethora of fibrations of $\infty $ -categories, where all sub-squares are cartesian:

All fibrations in the latter diagram have a common base $\infty $ -category. Choosing the base to be a space the latter diagram degenerates and only two types of fibrations remain: Kan-fibrations and bicartesian fibrations. Since any space splits as the disjoint union of path components, the first type of fibration classifies a family of spaces, the family of fibers over the path components, equipped with the action of the loop space. Similarly, the second type of fibration classifies a family of $\infty $ -categories equipped with the action of the loop space.

We prove a local-global principle for parametrized $\infty $ -categories following the next table of analogies:

$$ \begin{align*}\begin{array}{ l | c} \hline {\mathbb{Z}} & \{\infty\text{-categories over the base}\} \\ \hline {\mathbb Q} & \{\text{Locally cartesian fibrations whose fibers are presentable} \\ & \text{and whose fiber transports admit a right adjoint}\} \\ \hline \text{primes } p & \text{equivalence classes } p \text{ of objects of the base} \\ \hline {\mathbb{Z}}_p & \infty\mathrm{Cat}[\Omega_p], \text{ the } \infty\text{-category of small } \infty\text{-categories} \\ & \text{equipped with an action of the loop space at } p. \\ \hline {\mathbb Q}_p = {\mathbb Q} \otimes_{\mathbb{Z}} {\mathbb{Z}}_p & \mathrm{Pr}^L[\Omega_p], \text{ the } \infty\text{-category of presentable } \infty\text{-categories} \\ & \text{equipped with an action of the loop space at } p. \end{array}\end{align*} $$

We prove the following theorem, where for any small $\infty $ -category ${\mathcal C}$ we write $\pi _0({\mathcal C})$ for the set of equivalence classes in ${\mathcal C}$ and $ \mathrm {LoCART}^L_{\mathcal C} $ for the $\infty $ -category of locally cartesian fibrations whose fibers are presentable and whose fiber transports admit a right adjoint and arbitrary functors over ${\mathcal C}$ inducing left adjoints on every fiber:

Theorem 1.1 (Theorem 4.1)

For every small $\infty $ -category ${\mathcal C}$ there is a pullback square of $(\infty ,2)$ -categories

Theorem 1.1 is useful since it reduces the theory of parametrized $\infty $ -categories to the theory of locally cartesian fibrations whose fibers are presentable and fiber transports admit a right adjoint. This correspondence restricts to several classes of fibrations of interest: Theorem 1.1 reduces the theory of exponentiable fibrations to the theory of cartesian fibrations whose fibers are presentable and fiber transports admit a right adjoint (Proposition 3.22). It reduces the theory of cocartesian fibrations to the theory of bicartesian fibrations whose fibers are presentable and fiber transports admit a right adjoint (Lemma 3.11). In particular, Theorem 1.1 relates several classes of relevant fibrations of $\infty $ -categories to each other and therefore helps to understand their relationships.

Parametrized $\infty $ -category theory might be thought of as a generalization of $\infty $ -category theory and parametrized homotopy theory that studies $\infty $ -categories over a fixed $\infty $ -category ${\mathcal C}.$ For ${\mathcal C}=[1]$ the walking arrow parametrized $\infty $ -category theory specializes to the theory of correspondences of $\infty $ -categories, which are a crucial concept in the theory of dualities of $\infty $ -categories [Reference Heine, Lopez-Avila and Spitzweck21]. We apply Theorem 1.1 for ${\mathcal C} =[1]$ to in [Reference Heine, Lopez-Avila and Spitzweck21, Theorem 5.21.] and [Reference Heine, Spitzweck and Verdugo22, Theorem 6.27.] to prove an equivalence between symmetric bilinear functors and dualities.

We use Theorem 1.1 to construct a Grothendieck construction for parametrized $\infty $ -categories. The Grothendieck construction for cocartesian and cartesian fibrations of $\infty $ -categories [Reference Lurie27, Theorem 3.2.0.1.], [Reference Nuiten31], [Reference Moser, Rasekh and Rovelli29], [Reference Abellán, Gagna and Haugseng1] is a cornerstone in higher category theory and an essential and crucial tool to construct functors to the $\infty $ -category $\infty \mathrm {Cat}$ of small $\infty $ -categories that has ubiquitious applications. Due to its importance and relevance several extensions of the Grothendieck-construction have been studied: [Reference Lurie28, §3], [Reference Ayala, Mazel-Gee and Rozenblyum3, Theorem B.4.3.] offer a Grothendieck construction for locally cartesian fibrations. [Reference Ayala and Francis2, Theorem 0.8], [Reference Barwick and Shah8, 4.8. Proposition] construct a Grothendieck-construction for exponentiable fibrations.

Since Theorem 1.1 reduces the theory of parametrized $\infty $ -categories to the theory of locally cartesian fibrations, we can apply Theorem 1.1 to extend the Grothendieck construction for locally cartesian fibrations to a Grothendieck construction for parametrized $\infty $ -categories, which extends all Grothendieck constructions. While the Grothendieck-construction for cartesian fibrations classifies functors to the $\infty $ -category $\infty \mathrm {Cat}$ of small $\infty $ -categories and functors, the Grothendieck-construction for exponentiable fibrations classifies functors to the $\infty $ -precategory ${\mathrm {Corr}}$ of small $\infty $ -categories and correspondences. We extend all Grothendieck constructions via the concept of double $\infty $ -category [Reference Gepner and Haugseng11, Definition 2.4.3.], which is a category object in $\infty \mathrm {Cat}$ , and a 2-categorical refinement of an $\infty $ -precategory. We use Theorem 1.1 to construct a double $\infty $ -category ${\mathrm {CORR}}$ (Theorem 7.6) that refines the $\infty $ -precategory ${\mathrm {Corr}}$ of correspondences, thereby answering a question of [Reference Ayala and Francis2, Question 0.14]. We apply Theorem 1.1 to prove the following Grothendieck-construction for parametrized $\infty $ -categories that classifies lax normal functors to the double $\infty $ -category ${\mathrm {CORR}},$ where ${\mathrm N}$ is the (derived version of the) nerve of an $\infty $ -category:

Theorem 1.2 (Corollary 7.31)

Let ${\mathcal C}$ be a small $\infty $ -category. There is a canonical equivalence of $\infty $ -categories

$$ \begin{align*}\mathrm{Lax}\mathrm{Fun}({\mathrm N}({\mathcal C}^{\mathrm{op}}), {\mathrm{CORR}}) \simeq \infty\mathrm{Cat}_{/{\mathcal C}},\end{align*} $$

where the left hand side is the $\infty $ -category of lax normal functors.

Blom [Reference Blom9] recently gave an alternative and very different proof of Theorem 1.2, which heavily relies on a universal property of the double $\infty $ -category of spans [Reference Haugseng13, Corollary 3.11.].

Although Theorem 1.2 is interesting from a theoretical point of view, one might wonder why a Grothendieck construction for parametrized $\infty $ -categories is useful, and what kind of lax normal functors to ${\mathrm {CORR}}$ one might like to classify. We offer an instructive example (Example 7.19). Parametrized $\infty $ -category theory studies for every small $\infty $ -category ${\mathcal C}$ the $\infty $ -category $\infty \mathrm {Cat}_{/{\mathcal C}}$ of small $\infty $ -categories over ${\mathcal C}.$ The $\infty $ -category $\infty \mathrm {Cat}_{/{\mathcal C}}$ is not cartesian closed. However by the defining property of exponentiability for every exponentiable fibration ${\mathcal A} \to {\mathcal C}$ the functor ${\mathcal A} \times _{\mathcal C} (-) : \infty \mathrm {Cat}_{/{\mathcal C}} \to \infty \mathrm {Cat}_{/{\mathcal C}}$ admits a right adjoint $\mathrm {Fun}^{\mathcal C}({\mathcal A},-).$ For every functor ${\mathcal B} \to {\mathcal C}$ the internal hom $\mathrm {Fun}^{{\mathcal C}}({\mathcal A},{\mathcal B}) \to {\mathcal C} $ is a parametrized $\infty $ -category that plays the role of the $\infty $ -category of functors in higher category theory, and therefore is a crucial and ubiquitious construction in parametrized $\infty $ -category theory, which is unfortunately generally hard to understand. The internal hom is generally not a cocartesian, cartesian, or even exponentiable fibration and therefore cannot be analyzed by means of the usual Grothendieck-construction. However, we can apply Theorem 1.2 to classify the internal hom $\mathrm {Fun}^{{\mathcal C}}({\mathcal A},{\mathcal B})\to {\mathcal C} $ by a lax normal functor ${\mathcal C}^{\mathrm {op}} \to {\mathrm {CORR}}$ , which can be used to analyze the internal hom. The classified lax normal functor ${\mathcal C}^{\mathrm {op}} \to {\mathrm {CORR}}$ sends any morphism $\theta : X \to Y$ in ${\mathcal C}$ to a pro-functor

$$ \begin{align*}\mathrm{Fun}^{{\mathcal C}}({\mathcal A},{\mathcal B})_Y \simeq \mathrm{Fun}({\mathcal A}_Y,{\mathcal B}_Y) \to \mathrm{Fun}^{{\mathcal C}}({\mathcal A},{\mathcal B})_X \simeq \mathrm{Fun}({\mathcal A}_X,{\mathcal B}_X)\end{align*} $$

corresponding to a functor $\gamma : \mathrm {Fun}({\mathcal A}_X,{\mathcal B}_X)^{\mathrm {op}} \times \mathrm {Fun}({\mathcal A}_Y,{\mathcal B}_Y) \to {\mathcal S}$ . The functors ${\mathcal A} \to {\mathcal C}, {\mathcal B} \to {\mathcal C}$ classify lax normal functors ${\mathcal C}^{\mathrm {op}} \to {\mathrm {CORR}}$ that send the morphism $\theta : X \to Y$ to pro-functors $ {\mathrm A}_Y \to {\mathcal A}_X, {\mathcal B}_Y \to {\mathcal B}_X$ corresponding to functors $\alpha : {\mathcal A}_X^{\mathrm {op}} \times {\mathcal A}_Y \to {\mathcal S}, \beta : {\mathcal B}_X^{\mathrm {op}} \times {\mathcal B}_Y \to {\mathcal S}.$ The functor $\gamma $ sends any pair $(F,G) \in \mathrm {Fun}({\mathcal A}_X,{\mathcal B}_X)^{\mathrm {op}} \times \mathrm {Fun}({\mathcal A}_Y,{\mathcal B}_Y)$ to the limit of the functor

$$ \begin{align*}\beta \circ (F^{\mathrm{op}} \times G) \circ \rho: {\mathcal W} \to {\mathcal S},\end{align*} $$

where $\rho : {\mathcal W} \to {\mathcal A}_X^{\mathrm {op}} \times {\mathcal A}_Y$ is the left fibration classified by $\alpha $ . We use the latter description of the internal hom in $\infty \mathrm {Cat}_{/[1]}$ in [Reference Heine, Spitzweck and Verdugo23, Proposition 3.22.] to prove an equivalence between a real S-construction and hermitian ${\mathcal Q}$ -construction.

2 Notation and terminology

We fix a hierarchy of Grothendieck universes whose objects we call small, large, very large, etc. We call a space small, large, etc. if its set of path components and its homotopy groups are small, large, etc. for any choice of base point. We call an $\infty$ -category small, large, etc if its maximal subspace and all its mapping spaces are small, large, etc.

We write

  • $\mathrm {Set}$ for the category of small sets.

  • $\Delta $ for (a skeleton of) the category of finite, nonempty, partially ordered sets and order preserving maps, whose objects we denote by $[{n}] = \{0 < \cdots < {n}\}$ for ${n} \geq 0$ .

  • ${\mathcal S}$ for the $\infty $ -category of small spaces.

  • $ \infty \mathrm {Cat}$ for the $\infty $ -category of small $\infty $ -categories.

  • $\infty \mathrm {Cat}^{{c} {c}} $ for the $\infty $ -category of large $\infty $ -categories with small colimits and small-colimits-preserving functors.

We often indicate $\infty $ -categories of large objects by $\widehat {(-)}$ , for example, we write $\widehat {{\mathcal S}}, \infty \widehat {\mathrm {Cat}}$ for the $\infty $ -categories of large spaces, $\infty $ -categories.

For any $\infty $ -category ${\mathcal C}$ containing objects ${\mathrm A}, {\mathrm B}$ we write

  • ${\mathcal C}({\mathrm A},{\mathrm B})$ for the space of maps ${\mathrm A} \to {\mathrm B}$ in ${\mathcal C}$ ,

  • ${\mathcal C}_{/{\mathrm A}}$ for the $\infty $ -category of objects over ${\mathrm A}$ ,

  • ${\mathrm {Ho}}({\mathcal C})$ for its homotopy category,

  • ${\mathcal C}^{\mathrm {op}}$ for the opposite $\infty $ -category,

  • ${\mathcal C}^{\triangleleft }, {\mathcal C}^{\triangleright }$ for the $\infty $ -category arising from ${\mathcal C}$ by adding an initial, final object, respectively,

  • $\iota ({\mathcal C}) $ for the maximal subspace in ${\mathcal C}$ ,

  • $\infty \mathrm {Cat}^{\mathrm {cocart}}_{/{\mathcal C}} \subset \infty \mathrm {Cat}_{/{\mathcal C}}$ the subcategory of cocartesian fibrations over ${\mathcal C}$ and functors over ${\mathcal C}$ preserving cocartesian morphisms,

  • $\infty \mathrm {Cat}^{\mathrm {cart}}_{/{\mathcal C}} \subset \infty \mathrm {Cat}_{/{\mathcal C}}$ the subcategory of cartesian fibrations over ${\mathcal C}$ and functors over ${\mathcal C}$ preserving cartesian morphisms.

Note that ${\mathrm {Ho}}(\infty \mathrm {Cat})$ is cartesian closed and for small $\infty $ -categories ${\mathcal C},{\mathcal D}$ we write $\mathrm {Fun}({\mathcal C},{\mathcal D})$ for the internal hom, the $\infty $ -category of functors ${\mathcal C} \to {\mathcal D}.$

We often call a fully faithful functor an embedding. We call a functor an inclusion if if it induces an embedding on maximal subspaces and on all mapping spaces.

3 Parametrized $\infty $ -categories of presheaves

Our key tool to prove a local global principle for parametrized $\infty $ -categories, that is, $\infty $ -categories over a given base $\infty $ -category ${\mathcal C},$ is a parametrized version of presheaf $\infty $ -category. In this section we define this parametrized version of presheaf $\infty $ -category (Definition 3.5, Corollary 3.37) and establish a universal property (Proposition 3.16). Moreover we use this parametrized version of presheaf $\infty $ -category to relate several types of fibrations of $\infty $ -categories to each other (Proposition 3.22, Corollary 3.27).

We first recall the Grothendieck construction [Reference Lurie27, Theorem 3.2.0.1.].

For every ${\mathcal C} \in \infty \mathrm {Cat}$ the Grothendieck construction is an equivalence

(3.1) $$ \begin{align} \mathrm{Fun}({\mathcal C}, \infty\mathrm{Cat}) \to \infty\mathrm{Cat}^{\mathrm{cocart}}_{/{\mathcal C}} \end{align} $$

that sends a functor ${\mathcal C} \to \infty \mathrm {Cat}$ to a cocartesian fibration over ${\mathcal C},$ which we call the classifying cocartesian fibration. There is also a Grothendieck construction for cartesian fibrations

(3.2) $$ \begin{align} \mathrm{Fun}({\mathcal C}^{\mathrm{op}}, \infty\mathrm{Cat}) \to \infty\mathrm{Cat}^{\mathrm{cart}}_{/{\mathcal C}} \end{align} $$

sending a functor ${\mathcal C}^{\mathrm {op}} \to \infty \mathrm {Cat}$ to a cartesian fibration over ${\mathcal C},$ which we call the classifying cartesian fibration.

Remark 3.1. The Grothendieck construction for cartesian fibrations 3.2 is by definition the composite

$$ \begin{align*}\mathrm{Fun}({\mathcal C}^{\mathrm{op}}, \infty\mathrm{Cat}) \simeq \mathrm{Fun}({\mathcal C}^{\mathrm{op}}, \infty\mathrm{Cat}) \to \infty\mathrm{Cat}^{\mathrm{cocart}}_{/{\mathcal C}^{\mathrm{op}}} \simeq \infty\mathrm{Cat}^{\mathrm{cart}}_{/{\mathcal C}},\end{align*} $$

where the middle functor is the Grothendieck construction 3.1 for ${\mathcal C}^{\mathrm {op}}$ , and the first and last functors are induced by the opposite $\infty $ -category involution $(-)^{\mathrm {op}}: \infty \mathrm {Cat} \to \infty \mathrm {Cat}$ .

Remark 3.2. For every functor $\psi : {\mathcal C} \to {\mathcal D}$ there is a commutative square

(3.3)

where the horizontal functors form the Grothendieck construction and the left vertical functor is precomposition along $\psi $ and the right vertical functor forms the base change along $\psi .$

For ${\mathcal C}$ the final $\infty $ -category the equivalence (3.1) identifies with the identity. Hence for every object ${\mathrm X} \in {\mathcal D}$ the commutative square (3.3) identifies with the commutative triangle

where the left vertical functor evaluates at ${\mathrm X}$ and the right vertical functor takes the fiber over ${\mathrm X}.$

Definition 3.1. A functor ${\mathcal A} \to {\mathcal B}$ is a right fibration if the induced commutative square

(3.4)

is a pullback square, where the vertical functors evaluate at the target.

Remark 3.3. A functor ${\mathcal C}^{\mathrm {op}} \to \infty \mathrm {Cat}$ lands in the full subcategory of $\infty $ -groupoids if and only if the classifying cartesian fibration over ${\mathcal C}$ is a right fibration [Reference Lurie27, Proposition 2.4.2.4.].

Definition 3.2. A right fibration ${\mathcal A} \to {\mathcal B}$ is representable if ${\mathcal A}$ has a final object.

Remark 3.4. A right fibration ${\mathcal A} \to {\mathcal B}$ is representable if and only if ${\mathcal A} \to {\mathcal B}$ classifies a representable presheaf.

Notation 3.3. Let

$$ \begin{align*}{\mathcal R} \subset \mathrm{Fun}([1],\infty\mathrm{Cat})\end{align*} $$

be the full subcategory of right fibrations and

$$ \begin{align*}{\mathcal U} \subset {\mathcal R}\end{align*} $$

the full subcategory of representable right fibrations.

Lemma 3.4. Evaluation at the target $\rho : {\mathcal R} \to \infty \mathrm {Cat}$ is a cocartesian and cartesian fibration that restricts to a cocartesian fibration $\kappa : {\mathcal U} \to \infty \mathrm {Cat}$ with the same cocartesian morphisms.

Proof. The functor $\gamma : \mathrm {Fun}([1],\infty \mathrm {Cat}) \to \infty \mathrm {Cat}$ evaluating at the target is a cartesian fibration because $\infty \mathrm {Cat}$ admits pullbacks. Since right fibrations are stable under pullback, $\gamma $ restricts to a cartesian fibration $\rho : {\mathcal R} \to \infty \mathrm {Cat}$ with the same cartesian morphisms. For any functor $\psi : {\mathcal C} \to {\mathcal D}$ the fiber transport ${\mathcal R}_{\mathcal D} \to {\mathcal R}_{\mathcal C}$ of ${\mathcal R} \to \infty \mathrm {Cat}$ admits a left adjoint $\psi _!$ that takes the left Kan extension along the functor ${\mathcal C}^{\mathrm {op}} \to {\mathcal D}^{\mathrm {op}}.$ This guarantees that the cartesian fibration $\rho : {\mathcal R} \to \infty \mathrm {Cat}$ is also a cocartesian fibration. Since $\psi _!$ preserves representables, the cocartesian fibration $\rho : {\mathcal R} \to \infty \mathrm {Cat}$ restricts to a cocartesian fibration $\kappa : {\mathcal U} \to \infty \mathrm {Cat}$ with the same cocartesian morphisms.

Definition 3.5. For every cocartesian fibration ${\mathcal D} \to {\mathcal C}$ classifying a functor $\psi : {\mathcal C} \to \infty \mathrm {Cat}$ let ${\mathcal P}^{\mathcal C}({\mathcal D}) \to {\mathcal C} $ be the pullback of $\rho : {\mathcal R} \to \infty \mathrm {Cat}$ along $\psi : {\mathcal C} \to \infty \mathrm {Cat}.$

Notation 3.6. Let ${\mathcal P}: \infty \mathrm {Cat} \to \infty \widehat {\mathrm {Cat}}$ be the functor classifying the cocartesian fibration $\rho : {\mathcal R} \to \infty \mathrm {Cat}$ .

Remark 3.5. For every cocartesian fibration ${\mathcal D} \to {\mathcal C}$ classifying a functor $\psi : {\mathcal C} \to \infty \mathrm {Cat}$ by Lemma 3.4 the pullback ${\mathcal P}^{\mathcal C}({\mathcal D}) \to {\mathcal C} $ is a cocartesian and cartesian fibration. By definition the cocartesian fibration ${\mathcal P}^{\mathcal C}({\mathcal D}) \to {\mathcal C} $ classifies the functor ${\mathcal C} \xrightarrow {\psi } \infty \mathrm {Cat} \xrightarrow {{\mathcal P}} \infty \widehat {\mathrm {Cat}}. $

Remark 3.6. Evaluation at the target ${\mathcal R} \to \infty \mathrm {Cat}$ is a cocartesian and cartesian fibration by Lemma 3.4. So for every cocartesian fibration ${\mathcal D} \to {\mathcal C}$ whose fibers are small, the functor ${\mathcal P}^{\mathcal C}({\mathcal D}) \to {\mathcal C} $ is a cocartesian and cartesian fibration.

For the next lemma we use the following notation:

Notation 3.7. For every functor ${\mathcal A} \to {\mathcal B}$ and $\infty $ -category ${\mathrm K}$ let ${\mathcal A}^{\mathrm K} \to {\mathcal B}$ be the pullback ${\mathcal B} \times _{\mathrm {Fun}({\mathrm K},{\mathcal B})} \mathrm {Fun}({\mathrm K},{\mathcal A}) $ along the diagonal functor ${\mathcal B} \to \mathrm {Fun}({\mathrm K},{\mathcal B}).$

Remark 3.7. Note that for every functor ${\mathcal C} \to {\mathcal B}$ there is a canonical equivalence

$$ \begin{align*}\mathrm{Fun}_{\mathcal B}({\mathcal C}, {\mathcal A}^{\mathrm K}) \simeq \mathrm{Fun}({\mathrm K}, \mathrm{Fun}_{\mathcal B}({\mathcal C}, {\mathcal A})).\end{align*} $$

In this sense ${\mathcal A}^{\mathrm K} \to {\mathcal B}$ is the cotensor of the functor ${\mathcal A} \to {\mathcal B}$ with ${\mathrm K}$ in the sense of [Reference Heine19, Definition 2.51.] for the action of $\infty \mathrm {Cat} $ on itself. This justifies the Notation 3.7.

Lemma 3.8.

  1. 1. The cocartesian fibration $\kappa : {\mathcal U} \to \infty \mathrm {Cat}$ classifies the identity.

    By (1) for every cocartesian fibration ${\mathcal D} \to {\mathcal C}$ classifying a functor ${\mathcal C} \to \infty \mathrm {Cat}$ there is a canonical embedding of cocartesian fibrations over ${\mathcal C}$ :

    $$ \begin{align*}{\mathcal D} \simeq {\mathcal C} \times_{\infty\mathrm{Cat}} {\mathcal U} \subset {\mathcal P}^{\mathcal C}({\mathcal D})={\mathcal C} \times_{\infty\mathrm{Cat}} {\mathcal R}.\end{align*} $$
  2. 2. The embedding

    $$ \begin{align*}{\mathcal D} \simeq {\mathcal C} \times_{\infty\mathrm{Cat}} {\mathcal U} \subset {\mathcal P}^{\mathcal C}({\mathcal D})={\mathcal C} \times_{\infty\mathrm{Cat}} {\mathcal R} \subset {\mathcal C} \times_{\mathrm{Fun}(\{1\},\infty\mathrm{Cat})} \mathrm{Fun}([1],\infty\mathrm{Cat})\end{align*} $$

    corresponds to a natural transformation of functors ${\mathcal D} \to \infty \mathrm {Cat}$ that is classified by the canonical map ${\mathcal D}^{[1]} \to {\mathcal D} \times _{\mathcal C} {\mathcal D}$ of cocartesian fibrations over ${\mathcal D}.$

Proof. (1): Let ${\mathcal V} \to \infty \mathrm {Cat}$ be the cocartesian fibration classifying the identity. To prove (1) we will construct an equivalence ${\mathcal V} \simeq {\mathcal U}$ over $\infty \mathrm {Cat}$ . By the Yoneda-lemma it will suffice to show that for any $\infty $ -category ${\mathcal A}$ and functor $\theta : {\mathcal A} \to \infty \mathrm {Cat}$ there is a bijection between the sets of equivalence classes of functors ${\mathcal A} \to {\mathcal V}$ over $\infty \mathrm {Cat}$ and ${\mathcal A} \to {\mathcal U}$ over $\infty \mathrm {Cat}$ .

Let ${\mathcal C} \to {\mathcal A}$ be the cocartesian fibration classified by the functor $\theta : {\mathcal A} \to \infty \mathrm {Cat}$ . By naturality of the Grothendieck construction there is a canonical equivalence ${\mathcal C} \simeq {\mathcal A} \times _{\infty \mathrm {Cat}}{\mathcal V}$ over ${\mathrm A}.$ Thus a functor ${\mathcal A} \to {\mathcal V}$ over $\infty \mathrm {Cat}$ corresponds to a functor ${\mathcal A} \to {\mathcal A} \times _{\infty \mathrm {Cat}}{\mathcal V} \simeq {\mathcal C}$ over ${\mathrm A}, $ that is, a section of the cocartesian fibration ${\mathcal C} \to {\mathcal A}$ .

Next we identify functors ${\mathcal A} \to {\mathcal U} $ over $\infty \mathrm {Cat}$ . A functor ${\mathcal A} \to \mathrm {Fun}([1],\infty \mathrm {Cat})$ over $\infty \mathrm {Cat}$ is classified by a map of cocartesian fibrations ${\mathcal D} \to {\mathcal C}$ over ${\mathcal A}$ . Since ${\mathcal U} $ is the full subcategory of $\mathrm {Fun}([1],\infty \mathrm {Cat})$ spanned by the representable right fibrations, a functor ${\mathcal A} \to {\mathcal U} \subset \mathrm {Fun}([1],\infty \mathrm {Cat})$ over $\infty \mathrm {Cat}$ is classified by a map of cocartesian fibrations ${\mathcal D} \to {\mathcal C}$ over ${\mathcal A}$ that induces on the fiber over any ${\mathrm A} \in {\mathcal A}$ a representable right fibration.

Thus, to complete the proof, we will show that there is a bijection between equivalence classes of sections of the cocartesian fibration ${\mathcal C} \to {\mathcal A}$ and maps of cocartesian fibrations ${\mathcal D} \to {\mathcal C}$ over ${\mathcal A}$ that induce on the fiber over any ${\mathrm A} \in {\mathcal A}$ a representable right fibration, where ${\mathcal D} \to {\mathcal A}$ is some cocartesian fibration.

A section $\alpha $ of ${\mathcal C} \to {\mathcal A}$ gives rise to a map ${\mathcal A} \times _{{\mathcal C}^{\{1\}} } {\mathcal C}^{[1]} \to {\mathcal C}^{\{0\}}$ of cocartesian fibrations over ${\mathcal A}$ that induces on the fiber over any ${\mathrm A} \in {\mathcal A}$ the representable right fibration $({\mathcal C}_{\mathrm A})_{/\alpha ({\mathrm A})} \to {\mathcal C}_{\mathrm A}$ .

Conversely, let $\psi : {\mathcal D} \to {\mathcal C}$ be a map of cocartesian fibrations over ${\mathcal A}$ such that for any ${\mathrm A} \in {\mathcal A}$ the fiber ${\mathcal D}_{\mathrm A}$ has a final object. Then the $\infty $ -category $\mathrm {Fun}_{\mathcal A}({\mathcal A},{\mathcal D})$ has a final object $\beta $ such that for any ${\mathrm A} \in {\mathcal A}$ the image $\beta ({\mathrm A})$ is final in ${\mathcal D}_{\mathrm A}.$ The composition $\psi \circ \beta : {\mathcal A} \to {\mathcal C}$ is a section of ${\mathcal C} \to {\mathcal A}$ .

We will prove that sending a section $\alpha $ of ${\mathcal C} \to {\mathcal A}$ to the map ${\mathcal A} \times _{{\mathcal C}^{\{1\}} } {\mathcal C}^{[1]} \to {\mathcal C}^{\{0\}}$ of cocartesian fibrations over ${\mathcal A}$ is inverse to sending a map $\psi : {\mathcal D} \to {\mathcal C} $ of cocartesian fibrations over ${\mathcal A}$ such that for any ${\mathrm A} \in {\mathcal A}$ the fiber ${\mathcal D}_{\mathrm A}$ has a final object, to the section $\psi \circ \beta : {\mathcal A} \to {\mathcal C}$ of ${\mathcal C} \to {\mathcal A}$ .

The map ${\mathcal A} \times _{{\mathcal C}^{\{1\}} } {\mathcal C}^{[1]} \to {\mathcal C}^{\{0\}}$ of cocartesian fibrations over ${\mathcal A}$ induces on sections the functor $\mathrm {Fun}_{\mathcal A}({\mathcal A},{\mathcal C})_{/\alpha } \to \mathrm {Fun}_{\mathcal A}({\mathcal A},{\mathcal C})$ . Consequently, $\alpha : {\mathcal A} \to {\mathcal C} $ is the associated section of the map ${\mathcal A} \times _{{\mathcal C}^{\{1\}} } {\mathcal C}^{[1]} \to {\mathcal C}^{\{0\}}$ of cocartesian fibrations over ${\mathcal A}$ .

It remains to see that for any map ${\mathcal D} \to {\mathcal C}$ of cocartesian fibrations over ${\mathcal A}$ that induces on the fiber over any ${\mathrm A} \in {\mathcal A}$ a representable right fibration, with associated section $\beta : {\mathcal A} \to {\mathcal C},$ there is an equivalence ${\mathcal D} \simeq {\mathcal A} \times _{{\mathcal C}^{\{1\}} } {\mathcal C}^{[1]} \to {\mathcal C}^{\{0\}} $ over ${\mathcal C}.$

Let $\psi : {\mathcal D} \to {\mathcal C}$ be a map of cocartesian fibrations over ${\mathcal A}$ that induces on the fiber over any ${\mathrm A} \in {\mathcal A}$ a representable right fibration. The induced map

(3.5) $$ \begin{align} {\mathcal A} \times_{{\mathcal D}^{\{1\}} } {\mathcal D}^{[1]} \to {\mathcal D}^{\{0\}} \end{align} $$

of cocartesian fibrations over ${\mathcal A}$ induces on the fiber over any ${\mathrm A} \in {\mathcal A}$ the functor $({\mathcal D}_{\mathrm A})_{/\beta ({\mathrm A})} \to {\mathcal D}_{\mathrm A}$ , which is an equivalence since $\beta ({\mathrm A})$ is a final object in ${\mathcal D}_{\mathrm A}.$ Therefore the functor (3.5) is an equivalence.

As we have noted, the $\infty $ -category $\mathrm {Fun}_{\mathcal A}({\mathcal A},{\mathcal D})$ admits a final object $\beta $ such that for any ${\mathrm A} \in {\mathcal A}$ the image $\beta ({\mathrm A})$ is final in ${\mathcal D}_{\mathrm A}.$ The section $\psi \circ \beta : {\mathcal A} \to {\mathcal C}$ of ${\mathcal C} \to {\mathcal A}$ and the map $\psi : {\mathcal D} \to {\mathcal C}$ of cocartesian fibrations over ${\mathcal A}$ give rise to a map

(3.6) $$ \begin{align} {\mathcal A} \times_{{\mathcal D}^{\{1\}} } {\mathcal D}^{[1]} \to {\mathcal A} \times_{{\mathcal C}^{\{1\}} } {\mathcal C}^{[1]} \end{align} $$

of cocartesian fibrations over ${\mathcal A}$ , which induces on the fiber over any ${\mathrm A} \in {\mathcal A}$ the functor $({\mathcal D}_{\mathrm A})_{/\beta ({\mathrm A})} \to ({\mathcal C}_{\mathrm A})_{/\alpha ({\mathrm A})}$ . Since $\psi : {\mathcal D} \to {\mathcal C}$ induces on the fiber over A a right fibration ${\mathcal D}_{\mathrm A} \to {\mathcal C}_{\mathrm A}$ , the functor $({\mathcal D}_{\mathrm A})_{/\beta ({\mathrm A})} \to ({\mathcal C}_{\mathrm A})_{/\alpha ({\mathrm A})}$ is an equivalence. Consequently, the functor (3.6) is an equivalence.

Via the equivalences (3.5) and (3.6) the functor ${\mathcal D} \to {\mathcal C}$ is equivalent over ${\mathcal C}$ to ${\mathcal A} \times _{{\mathcal C}^{\{1\}} } {\mathcal C}^{[1]} \to {\mathcal C}^{\{0\}}$ . The proof of (1) shows (2).

Definition 3.9. Let ${\mathcal C} \to {\mathcal A}$ be a functor. The enveloping cocartesian fibration of ${\mathcal C} \to {\mathcal A}$ is the pullback

$$ \begin{align*}{\mathrm{Env}}({\mathcal C}):= \mathrm{Fun}([1], {\mathcal A}) \times_{\mathrm{Fun}(\{0\}, {\mathcal A})} {\mathcal C} \to \mathrm{Fun}(\{1\}, {\mathcal A}).\end{align*} $$

The diagonal embedding ${\mathcal A} \to \mathrm {Fun}([1],{\mathcal A})$ induces an embedding $\theta : {\mathcal C} \to {\mathrm {Env}}({\mathcal C})$ over ${\mathcal A}$ . The following proposition is [Reference Heine17, Proposition A.2.]:

Proposition 3.10. Let ${\mathcal C} \to {\mathcal A}$ be a functor. Restriction along $\theta $ induces for every cocartesian fibration ${\mathcal D} \to {\mathcal A}$ an equivalence

$$ \begin{align*}\mathrm{Fun}^{\mathrm{cocart}}_{\mathcal A}({\mathrm{Env}}({\mathcal C}),{\mathcal D}) \to \mathrm{Fun}_{\mathcal A}({\mathcal C},{\mathcal D}),\end{align*} $$

where the left hand side is the full subcategory of maps of cocartesian fibrations over ${\mathcal A}.$

Lemma 3.11. Let ${\mathcal C} \to {\mathcal A}$ be a cocartesian fibration between small $\infty $ -categories. There is a canonical embedding

$$ \begin{align*}{\mathcal P}^{\mathcal A}({\mathcal C}) \hookrightarrow {\mathcal P}^{\mathcal A}({\mathrm{Env}}({\mathcal C}))\end{align*} $$

over ${\mathcal A}$ that induces on the fiber over every ${\mathrm A} \in {\mathcal A}$ the embedding $(\theta _{\mathrm A})_!: {\mathcal P}({\mathcal C}_{\mathrm A}) \subset {\mathcal P}({\mathrm {Env}}({\mathcal C})_{\mathrm A})$ .

Proof. By [Reference Heine17, Lemma A.7.] the embedding $\theta : {\mathcal C} \subset {\mathrm {Env}}({\mathcal C})$ admits a left adjoint ${\mathrm L}$ relative to ${\mathcal A}$ , which is a map of cocartesian fibrations over ${\mathcal A}$ . The relative left adjoint gives rise to a map ${\mathrm L}_!: {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C})) \to {\mathcal P}^{\mathcal A}({\mathcal C})$ of cocartesian fibrations over ${\mathcal A}$ . For every ${\mathrm A} \in {\mathcal A}$ the induced localization ${\mathrm L}_{\mathrm A}: {\mathrm {Env}}({\mathcal C})_{\mathrm A} \rightleftarrows {\mathcal C}_{\mathrm A}: \theta _{\mathrm A}$ induces a localization $({\mathrm L}_!)_{\mathrm A} \simeq ({\mathrm L}_{\mathrm A})_! : {\mathcal P}({\mathrm {Env}}({\mathcal C})_{\mathrm A})\rightleftarrows {\mathcal P}({\mathcal C}_{\mathrm A}): (\theta _{\mathrm A})_! $ . By [Reference Lurie26, Proposition 7.3.2.6.] this implies that the map $ {\mathrm L}_!: {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C})) \to {\mathcal P}^{\mathcal A}({\mathcal C})$ of cocartesian fibrations over ${\mathcal A}$ admits a fully faithful right adjoint relative to ${\mathcal A}$ that induces on the fiber over ${\mathrm A} \in {\mathcal A}$ the embedding $(\theta _{\mathrm A})_!.$

Lemma 3.11 motivates the following extension of Definition 3.5.

Definition 3.12. For every functor ${\mathcal C} \to {\mathcal A}$ between small $\infty $ -categories let

$$ \begin{align*}{\mathcal P}^{\mathcal A}({\mathcal C}) \subset {\mathcal P}^{\mathcal A}({\mathrm{Env}}({\mathcal C}))\end{align*} $$

be the full subcategory spanned by the objects of ${\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C}))_{\mathrm A} \simeq {\mathcal P}({\mathrm {Env}}({\mathcal C})_{\mathrm A}) $ that belong to the essential image of the embedding $(\theta _{\mathrm A})_!: {\mathcal P}({\mathcal C}_{\mathrm A}) \subset {\mathcal P}({\mathrm {Env}}({\mathcal C})_{\mathrm A})$ for some ${\mathrm A} \in {\mathcal A}$ .

Remark 3.8. For every object ${\mathrm A}$ of ${\mathcal A}$ there is a canonical equivalence

$$ \begin{align*}{\mathcal P}^{\mathcal A}({\mathcal C})_{\mathrm A} \simeq {\mathcal P}({\mathcal C}_{\mathrm A}).\end{align*} $$

Remark 3.9. The embedding ${\mathcal C} \subset {\mathrm {Env}}({\mathcal C}) \to {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C}))$ over ${\mathcal A}$ of Lemma 3.8 induces an embedding ${\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal C})$ over ${\mathcal A}$ that induces on the fiber over every object ${\mathrm A}$ of ${\mathcal A}$ the Yoneda-embedding ${\mathcal C}_{\mathrm A} \to {\mathcal P}({\mathcal C}_{\mathrm A}).$

Lemma 3.13. Let $\phi : {\mathcal D} \to {\mathcal A}$ be a locally cocartesian fibration and ${\mathcal C} \subset {\mathcal D}$ a full subcategory such that for every ${\mathrm A} \in {\mathcal A}$ the induced embedding ${\mathcal C}_{\mathrm A} \subset {\mathcal D}_{\mathrm A}$ admits a left adjoint ${\mathrm L}_{\mathrm A}.$ The restriction $\phi ': {\mathcal C} \subset {\mathcal D} \to {\mathcal A}$ is a locally cocartesian fibration. A morphism of ${\mathcal C}$ lying over a morphism ${\mathrm {f}}: {\mathrm A} \to {\mathrm B} $ of ${\mathcal A}$ is locally $\phi '$ -cocartesian if and only if it factors as ${\mathrm X} \to {\mathrm Y} \to {\mathrm Y}'$ , where ${\mathrm X} \to {\mathrm Y}$ is $\phi $ -cocartesian and ${\mathrm Y} \to {\mathrm Y}'$ is a ${\mathrm L}_{{\mathrm B}}$ -local equivalence.

Proof. For every ${\mathrm Z} \in {\mathcal C}$ lying over ${\mathrm B} \in {\mathcal A}$ the canonical map

$$ \begin{align*}{\mathcal C}_{\mathrm B}({\mathrm Y}',{\mathrm Z}) \simeq {\mathcal D}_{\mathrm B}({\mathrm Y},{\mathrm Z}) \to \{{\mathrm{f}}\}\times_{{\mathcal A}({\mathrm A}, {\mathrm B})} {\mathcal D}({\mathrm X},{\mathrm Z})\end{align*} $$

is an equivalence.

Proposition 3.14. For every functor ${\mathcal C} \to {\mathcal A}$ of small $\infty $ -categories the functor ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ is a locally cartesian fibration. For every morphism ${\mathrm A} \to {\mathrm B}$ of ${\mathcal A}$ the induced functor $ {\mathcal P}^{\mathcal A}({\mathcal C})_{\mathrm B} \to {\mathcal P}^{\mathcal A}({\mathcal C})_{\mathrm A}$ factors as

$$ \begin{align*}{\mathcal P}({\mathcal C}_{\mathrm B}) \subset {\mathcal P}({\mathrm{Env}}({\mathcal C})_{\mathrm B}) \to {\mathcal P}({\mathcal C}_{\mathrm A}),\end{align*} $$

where the last functor is restriction along the functor ${\mathcal C}_{\mathrm A} \subset {\mathrm {Env}}({\mathcal C})_{\mathrm A} \to {\mathrm {Env}}({\mathcal C})_{\mathrm B},$ and thus is a left adjoint.

Proof. The functor ${\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C})) \to {\mathcal A} $ is a cartesian fibration and for every ${\mathrm A} \in {\mathcal A}$ the induced embedding $(\theta _{\mathrm A})_!: {\mathcal P}^{\mathcal A}({\mathcal C})_{\mathrm A} \simeq {\mathcal P}({\mathcal C}_{\mathrm A}) \subset {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C}))_{\mathrm A} \simeq {\mathcal P}({\mathrm {Env}}({\mathcal C})_{\mathrm A})$ admits a right adjoint. Thus by Lemma 3.13 the restriction ${\mathcal P}^{\mathcal A}({\mathcal C}) \subset {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C})) \to {\mathcal A}$ is a locally cartesian fibration.

Notation 3.15. Let ${\mathcal C} \to {\mathcal A}, {\mathcal D} \to {\mathcal B}$ be functors. Let

$$ \begin{align*}\Theta({\mathcal C},{\mathcal D}) := \mathrm{Fun}({\mathcal A},{\mathcal B}) \times_{\mathrm{Fun}({\mathcal C},{\mathcal B})} \mathrm{Fun}({\mathcal C}, {\mathcal D})\end{align*} $$

and

$$ \begin{align*}\Theta({\mathcal C},{\mathcal D})^{\mathrm L} \subset \Theta({\mathcal C},{\mathcal D})\end{align*} $$

the full subcategory spanned by the commutative squares

such that for every ${\mathrm A} \in {\mathcal A}$ the induced functor ${\mathcal C}_{\mathrm A} \to {\mathcal D}_{\psi ({\mathrm A})}$ on the fiber over ${\mathrm A}$ preserves small colimits.

The following universal property of ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ is crucial for our main theorem:

Proposition 3.16. Let ${\mathcal D} \to {\mathcal B}$ be a locally cartesian fibration whose fibers admit small colimits.

  1. 1. Let ${\mathcal C} \to {\mathcal A}$ be a functor between small $\infty $ -categories. Restriction along the embedding ${\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal C})$ induces an equivalence

    $$ \begin{align*}\theta_{\mathcal D}: \Theta({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})^{\mathrm L} \to \Theta({\mathcal C}, {\mathcal D}).\end{align*} $$
  2. 2. Let ${\mathcal C} \to {\mathcal A}$ be a functor between $\infty $ -categories and ${\mathcal P}^{\mathcal A}({\mathcal C}) $ the full subcategory of $\widehat {{\mathcal P}}^{\mathcal A}({\mathcal C})$ such that for every ${\mathrm A} \in {\mathcal A}$ the fiber ${\mathcal P}^{\mathrm A}({\mathcal C})_{\mathrm A} \subset \widehat {{\mathcal P}}^{\mathcal A}({\mathcal C})_{\mathrm A} \simeq \widehat {{\mathcal P}}({\mathcal C}_{\mathrm A})$ is generated by ${\mathcal C}_{\mathrm A}$ under small colimits. Restriction along the induced embedding ${\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal C}) \subset \widehat {{\mathcal P}}^{\mathcal A}({\mathcal C})$ induces an equivalence

    $$ \begin{align*}\theta_{\mathcal D}: \Theta({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})^{\mathrm L} \to \Theta({\mathcal C}, {\mathcal D}).\end{align*} $$

Proof. (2) is similar to (1). We prove (1). We first reduce to the case that ${\mathcal D} \to {\mathcal B}$ is a cocartesian and cartesian fibration whose fibers admit large colimits.

By the opposite of Lemma 3.17 (applied to a larger universe) there is an embedding ${\mathcal D} \subset {\mathcal E}$ over ${\mathcal B}$ that induces on the fiber over every object of ${\mathcal B}$ a small colimits preserving functor, where ${\mathcal E} \to {\mathcal B}$ is a cocartesian and cartesian fibration whose fibers admit large colimits and are locally large. Since the $\infty $ -category of presheaves is generated by the representable presheaves under small colimits [Reference Heine15, Lemma 2.10.], the functor $\theta _{\mathcal D}$ is the pullback of the functor $\theta _{\mathcal E}$ . So it is enough to check that $\theta _{\mathcal E}$ is an equivalence and we can assume that ${\mathcal D} \to {\mathcal B}$ is a cocartesian and cartesian fibration whose fibers admit large colimits and are locally large.

Next we further reduce the statement to show that for every cocartesian and cartesian fibration ${\mathcal D} \to {\mathcal A}$ whose fibers admit large colimits and are locally large, the canonical functor

(3.7) $$ \begin{align} \kappa_{\mathcal D}: \mathrm{Fun}_{\mathcal A}^{\mathrm L}({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D}) \to \mathrm{Fun}_{\mathcal A}({\mathcal C}, {\mathcal D})\end{align} $$

is an equivalence, where the left hand side is the full subcategory of functors over ${\mathcal A}$ that induce on every fiber a small colimits preserving functor.

There is a commutative triangle

Because the functor ${\mathcal D} \to {\mathcal B}$ is a cocartesian and cartesian fibration, this triangle is a map of cocartesian and cartesian fibrations over $\mathrm {Fun}({\mathcal A},{\mathcal B}).$ Since the functor ${\mathcal D} \to {\mathcal B}$ is a cocartesian and cartesian fibration, the fiber transports of the cocartesian fibration are left adjoints. This guarantees that the restriction $\Theta ({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})^{\mathrm L} \to \mathrm {Fun}({\mathcal A},{\mathcal B})$ is also a cocartesian fibration and the embedding $\Theta ({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})^{\mathrm L} \subset \Theta ({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})$ is a map of cocartesian fibrations over $\mathrm {Fun}({\mathcal A},{\mathcal B}) $ . Hence also the restriction

is a map of cocartesian fibrations over $\mathrm {Fun}({\mathcal A},{\mathcal B}) $ .

Consequently, $\theta _{\mathcal D}$ is an equivalence if it induces on the fiber over every functor $\psi : {\mathcal A} \to {\mathcal B}$ an equivalence. The functor $\theta _{\mathcal D}$ induces on the fiber over $\psi $ the functor

$$ \begin{align*}\kappa_{{\mathcal A} \times_{\mathcal B} {\mathcal D}}: \mathrm{Fun}_{\mathcal A}^{\mathrm L}({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal A} \times_{\mathcal B} {\mathcal D}) \to \mathrm{Fun}_{\mathcal A}({\mathcal C}, {\mathcal A} \times_{\mathcal B} {\mathcal D}).\end{align*} $$

Therefore it is enough to see that the functor (3.7) is an equivalence.

The functor (3.7) is conservative since for every ${\mathrm A} \in {\mathcal A}$ the $\infty $ -category ${\mathcal P}^{\mathcal A}({\mathcal C})_{\mathrm A} \simeq {\mathcal P}({\mathcal C}_{\mathrm A})$ is generated by ${\mathcal C}_{\mathrm A}$ under small colimits. Therefore, the functor (3.7) is an equivalence if it admits a fully faithful left adjoint. We devote the remaining proof to showing this.

By Proposition 3.14 the functor ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ is a locally cartesian fibration. This implies that ${\mathcal P}^{\mathcal A}({\mathcal C})$ is large because ${\mathcal A}$ is large and the fibers of ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ are large. Let $\iota : {\mathcal C} \subset {\mathcal P}^{\mathcal A}({\mathcal C})$ be the canonical embedding. Since ${\mathcal P}^{\mathcal A}({\mathcal C})$ is large and the fibers of the cocartesian fibration ${\mathcal D} \to {\mathcal A}$ admit large colimits preserved by the fiber transports, by [Reference Lurie27, Corollary 4.3.2.14., Proposition 4.3.2.17.] the induced functor

$$ \begin{align*}\iota^*: \mathrm{Fun}_{\mathcal A}({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D}) \to \mathrm{Fun}_{\mathcal A}({\mathcal C}, {\mathcal D})\end{align*} $$

admits a fully faithful left adjoint $\iota _!$ , which forms the left Kan extension relative to ${\mathcal A}$ along the embedding ${\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal C}).$ We complete the proof by showing that the fully faithful left adjoint $\iota _!$ lands in the full subcategory $\mathrm {Fun}_{\mathcal A}({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})^{\mathrm L},$ and so is a fully faithful left adjoint of $\kappa _{\mathcal D}$ . In other words, we have to see that the left Kan extension $ {\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal D}$ relative to ${\mathcal A}$ of any functor ${\mathcal C} \to {\mathcal D}$ over ${\mathcal A}$ preserves fiberwise small colimits.

Let ${j}: {\mathcal P}^{\mathcal A}({\mathcal C}) \subset {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C}))$ be the canonical embedding. Because ${\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C}))$ is large, by [Reference Lurie27, Corollary 4.3.2.14., Proposition 4.3.2.17.] the induced functor

$$ \begin{align*}{j}^*: \mathrm{Fun}_{\mathcal A}({\mathcal P}^{\mathcal A}({\mathrm{Env}}({\mathcal C})), {\mathcal D}) \to \mathrm{Fun}_{\mathcal A}({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})\end{align*} $$

admits a fully faithful left adjoint ${j}_!, $ which forms the left Kan extension relative to ${\mathcal A}$ along the embedding ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C})).$ Since ${j}_!$ is fully faithful, the unit $\mathrm {id} \to {j}^*{j}$ is an equivalence.

We want to see that for every functor ${\mathcal C} \to {\mathcal D}$ over ${\mathcal A}$ the left Kan extension $\iota _!({\mathrm F}) \simeq {j}^*({j}_!(\iota _!({\mathrm F}))): {\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal D}$ relative to ${\mathcal A}$ preserves fiberwise small colimits. The embedding ${j}: {\mathcal P}^{\mathcal A}({\mathcal C}) \subset {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C}))$ preserves fiberwise small colimits. Hence it is enough to see that ${j}_!(\iota _!({\mathrm F}))$ preserves fiberwise small colimits.

The functor ${j} \circ \iota : {\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal C}) \subset {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C})) $ factors as ${\mathcal C} \to {\mathrm {Env}}({\mathcal C}) \subset {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C})). $ Therefore by adjointness, the functor ${j}_!(\iota _!({\mathrm F}))$ is likewise the left Kan extension of ${\mathrm F}'$ relative to ${\mathcal A}$ along the embedding ${i}:{\mathrm {Env}}({\mathcal C}) \subset {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C}))$ , where ${\mathrm F}'$ is the left Kan extension of ${\mathrm F}: {\mathcal C} \to {\mathcal A} $ relative to ${\mathcal A}$ along the embedding ${\mathcal C} \to {\mathrm {Env}}({\mathcal C})$ .

So it suffices to verify that the left Kan extension ${i}_!({\mathrm H}): {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C})) \to {\mathcal D} $ relative to ${\mathcal A}$ of any functor ${\mathrm H}: {\mathrm {Env}}({\mathcal C}) \to {\mathcal D}$ over ${\mathcal A}$ preserves fiberwise small colimits.

Because ${i}: {\mathrm {Env}}({\mathcal C}) \subset {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal C}))$ is a map of cocartesian fibrations over ${\mathcal A}$ , by [Reference Lurie27, Proposition 4.3.3.10.] for every ${\mathrm A} \in {\mathcal A}$ the induced functor

$$ \begin{align*}{i}_!({\mathrm H})_{\mathrm A}: {\mathcal P}^{\mathcal A}({\mathrm{Env}}({\mathcal C}))_{\mathrm A} \simeq {\mathcal P}({\mathrm{Env}}({\mathcal C})_{\mathrm A}) \to {\mathcal D}_{\mathrm A}\end{align*} $$

on the fiber over ${\mathrm A}$ is computed as the left Kan extension of ${\mathrm H}_{\mathrm A}: {\mathrm {Env}}({\mathcal C})_{\mathrm A} \to {\mathcal D}_{\mathrm A}$ along the induced embedding $ {\mathrm {Env}}({\mathcal C})_{\mathrm A} \subset {\mathcal P}({\mathrm {Env}}({\mathcal C})_{\mathrm A})$ , which by [Reference Lurie27, Lemma 5.1.5.5.] preserves small colimits.

Lemma 3.17. Let ${\mathcal D} \to {\mathcal A}$ be a locally cocartesian fibration of small $\infty $ -categories. There is an embedding ${\mathcal D} \subset {\mathcal E}$ over ${\mathcal A}$ that induces on the fiber over every object of ${\mathcal A}$ a small limits preserving functor, where ${\mathcal E} \to {\mathcal A}$ is a cocartesian and cartesian fibration whose fibers admit small limits and are locally small.

Proof. Since ${\mathcal D} \to {\mathcal A}$ is a locally cocartesian fibration, by [Reference Heine17, Lemma A.7.] the embedding ${\mathcal D} \subset {\mathrm {Env}}({\mathcal D})$ induces on the fiber over every object of ${\mathcal A}$ a right adjoint functor. Since ${\mathcal D} \to {\mathcal A}$ is a locally cocartesian fibration of small $\infty $ -categories, also ${\mathcal D}$ is small. Take ${\mathcal E}:= {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal D})).$ The embedding ${\mathcal D} \subset {\mathrm {Env}}({\mathcal D}) \to {\mathcal P}^{\mathcal A}({\mathrm {Env}}({\mathcal D}))$ induces on every fiber a small limits preserving functor.

Remark 3.10. Proposition 3.16 gives for any functors ${\mathcal A}' \to {\mathcal A}, {\mathcal C} \to {\mathcal A}$ between small $\infty $ -categories a canonical functor

(3.8) $$ \begin{align} {\mathcal P}^{{\mathcal A}'}( {\mathcal A}' \times_{{\mathcal A}} {\mathcal C}) \to {\mathcal A}' \times_{ {\mathcal A}} {\mathcal P}^{{\mathcal A}}({\mathcal C}) \end{align} $$

over ${\mathcal A}',$ which is a map of locally cartesian fibrations over ${\mathcal A}'$ , and induces equivalences on fibers and so is an equivalence.

Lemma 3.18. Let ${\mathcal C} \to {\mathcal A}$ be a locally cartesian fibration between small $\infty $ -categories. The embedding ${\mathcal C} \subset {\mathcal P}^{\mathcal A}({\mathcal C}) $ is a map of locally cartesian fibrations over ${\mathcal A}.$ The functor ${\mathcal C} \to {\mathcal A}$ is a cartesian fibration if and only if the functor $ {\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ is a cartesian fibration.

Proof. We first prove that the embedding ${\mathcal C} \subset {\mathcal P}^{\mathcal A}({\mathcal C}) $ is a map of locally cartesian fibrations over ${\mathcal A}$ if ${\mathcal C} \to {\mathcal A}$ is a locally cartesian fibration. By Remark 3.10 for every functor ${\mathcal A}' \to {\mathcal A}$ there is a canonical equivalence

$$ \begin{align*}{\mathcal A}' \times_{ {\mathcal A}} {\mathcal P}^{{\mathcal A}}({\mathcal C}) \simeq {\mathcal P}^{{\mathcal A}'}( {\mathcal A}' \times_{{\mathcal A}} {\mathcal C}) \end{align*} $$

over ${\mathcal A}'$ so that we can reduce to the case ${\mathcal A}=[1].$ Let ${\mathcal M} \to [1]$ be a functor and ${\mathcal C}:={\mathcal M}_0,{\mathcal D}:={\mathcal M}_1$ the fibers. The functor ${\mathcal P}({\mathcal M})^{[1]} \to [1]$ is a cartesian fibration classifying the functor $\phi : {\mathcal P}({\mathcal D}) \subset {\mathcal P}({\mathcal M}) \to {\mathcal P}({\mathcal C})$ , where the first functor takes left Kan extension along the embedding ${\mathcal D} \subset {\mathcal M}$ and the second functor restricts along the embedding ${\mathcal C} \subset {\mathcal M}.$ If ${\mathcal M}\to [1]$ is a cartesian fibration classifying a functor ${\mathrm G}: {\mathcal D} \to {\mathcal C},$ then $\phi $ is the extension of the functor ${\mathcal D} \xrightarrow {{\mathrm G}} {\mathcal C} \subset {\mathcal P}({\mathcal C}).$ So the embedding ${\mathcal M} \subset {\mathcal P}({\mathcal M})^{[1]}$ is a map of cartesian fibrations over $[1].$

A locally cartesian fibration $\phi $ is a cartesian fibration if and only if the collection of $\phi $ -cartesian morphisms is closed under composition. Hence ${\mathcal C} \to {\mathcal A}$ is a cartesian fibration if the functor $ {\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ is a cartesian fibration. Conversely, if ${\mathcal C} \to {\mathcal A}$ is a cartesian fibration, the functor $ {\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ is a cartesian fibration since the fibers of ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ are generated by the representable presheaves under small colimits, and the fiber transports of ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ preserve small colimits.

Lemma 3.19. Let ${\mathcal C} \to {\mathcal D}$ be a map of locally (co)cartesian fibrations over ${\mathcal A}$ . The functor ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal P}^{\mathcal A}({\mathcal D})$ is a map of locally (co)cartesian fibrations over ${\mathcal A}$ .

Proof. By Lemma 3.18 for any locally cartesian fibration ${\mathcal C} \to {\mathcal A}$ the functor ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ is a locally cartesian fibration and the embedding ${\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal C}) $ is a map of locally cartesian fibrations over ${\mathcal A}$ . By Lemma 3.11 and Remark 3.10 for every locally cocartesian fibration ${\mathcal C} \to {\mathcal A}$ the functor ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ is a locally cocartesian and locally cartesian fibration and the embedding ${\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal C}) $ is a map of locally cocartesian fibrations over ${\mathcal A}$ . Since the fibers of ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ are generated under small colimits by the representables and the fiber transports of the locally (co)cartesian fibration ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ preserve small colimits by Proposition 3.14, the induced functor ${\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal P}^{\mathcal A}({\mathcal D})$ is a map of locally (co)cartesian fibrations over ${\mathcal A}$ .

Definition 3.20. A functor $\phi : {\mathcal D} \to {\mathcal C}$ of small $\infty $ -categories is an exponentiable fibration if the functor ${\mathcal D} \times _{\mathcal C} (-): \infty \mathrm {Cat}_{/{\mathcal C}} \to \infty \mathrm {Cat}_{/{\mathcal C}}$ taking pullback along $\phi $ preserves small colimits or equivalently admits a right adjoint.

Notation 3.21. For every exponentiable fibration $\phi : {\mathcal D} \to {\mathcal C}$ let $\mathrm {Fun}^{\mathcal C}({\mathcal D},-): \infty \mathrm {Cat}_{/{\mathcal C}} \to \infty \mathrm {Cat}_{/{\mathcal C}}$ be the right adjoint of the functor ${\mathcal D} \times _{\mathcal C} (-): \infty \mathrm {Cat}_{/{\mathcal C}} \to \infty \mathrm {Cat}_{/{\mathcal C}}$ .

The next remark is [Reference Heine18, Remark 3.69., Remark 3.71.]:

Remark 3.11. The pullback of any exponentiable fibration ${\mathcal D} \to {\mathcal C}$ along any functor ${\mathcal B} \to {\mathcal C}$ is an exponentiable fibration and for every functor ${\mathcal E} \to {\mathcal C}$ there is a canonical equivalence ${\mathcal B} \times _{\mathcal C} \mathrm {Fun}^{\mathcal C}({\mathcal D},{\mathcal E}) \simeq \mathrm {Fun}^{\mathcal B}({\mathcal B} \times _{\mathcal C} {\mathcal D},{\mathcal B} \times _{\mathcal C} {\mathcal E})$ over ${\mathcal B}.$

Proposition 3.22. Let ${\mathcal C} \to {\mathcal A}$ be a functor of small $\infty $ -categories. The following are equivalent:

  1. 1. The functor ${\mathcal C} \to {\mathcal A}$ is an exponentiable fibration.

  2. 2. The locally cartesian fibration ${\mathcal P}^{{\mathcal A}}({\mathcal C}) \to {\mathcal A}$ is a cartesian fibration.

Proof. A functor ${\mathcal B} \to {\mathcal A}$ is a cartesian fibration if and only if the pullbacks along any functors $[2] \to {\mathcal A}$ are cartesian fibrations by [Reference Lurie27, Corollary 2.4.2.10.]. A functor ${\mathcal B} \to {\mathcal A}$ is an exponentiable fibration if and only if the pullbacks along any functors $[2] \to {\mathcal A}$ are exponentiable fibrations as a consequence of [Reference Lurie27, Proposition B.3.14.] and Remark 3.11.

So by Remark 3.10 we can reduce to the case that ${\mathcal A}=[2].$ The locally cartesian fibration ${\mathcal P}^{[2]}({\mathcal C}) \to [2]$ classifies three functors ${\mathrm {f}}: {\mathcal P}({\mathcal C}_2) \to {\mathcal P}({\mathcal C}_1), {g}: {\mathcal P}({\mathcal C}_1) \to {\mathcal P}({\mathcal C}_0), {\mathrm {h}}: {\mathcal P}({\mathcal C}_2) \to {\mathcal P}({\mathcal C}_0)$ , and a natural transformation $\alpha : {g} \circ {\mathrm {f}} \to {\mathrm {h}}.$ By [Reference Lurie26, Proposition B.3.2., Proposition B.3.14.] a functor ${\mathcal C} \to [2]$ is an exponentiable fibration if and only if $\alpha $ is an equivalence. By [Reference Lurie27, Proposition 2.4.2.8.] the locally cartesian fibration ${\mathcal P}^{{\mathcal A}}({\mathcal C}) \to {\mathcal A}$ is a cartesian fibration if and only if $\alpha $ is an equivalence.

Corollary 3.23. Every functor ${\mathcal D} \to [1]$ is an exponentiable fibration. So the $\infty $ -category $\infty \mathrm {Cat}_{/[1]}$ is cartesian closed.

Proof. We apply Proposition 3.22 and use that every locally cartesian fibration over $[1] $ is a cartesian fibration.

Corollary 3.24. Let $\phi :{\mathcal A} \to {\mathcal B}$ be an inclusion of $\infty $ -categories such that for every morphisms ${\mathrm X} \to {\mathrm Y}, {\mathrm Y} \to {\mathrm Z}$ in ${\mathcal B}$ we have that ${\mathrm Y} \in {\mathcal A}$ if ${\mathrm X},{\mathrm Z} \in {\mathcal A}.$ Then $\phi $ is an exponentiable fibration.

Proof. By Proposition 3.22 the functor $\phi $ is an exponentiable fibration if and only if the locally cartesian fibration ${\mathcal P}^{{\mathcal B}}({\mathcal A}) \to {\mathcal B}$ is a cartesian fibration. By [Reference Lurie27, Proposition 2.4.2.8.] the locally cartesian fibration ${\mathcal P}^{{\mathcal B}}({\mathcal A}) \to {\mathcal B}$ is a cartesian fibration if and only if for every morphisms $\alpha : {\mathrm X} \to {\mathrm Y}, \beta : {\mathrm Y} \to {\mathrm Z} $ the induced natural transformation $\theta : \alpha ^* \circ \beta ^* \to (\beta \circ \alpha )^*: {\mathcal P}({\mathcal A}_{\mathrm Z}) \to {\mathcal P}({\mathcal A}_{\mathrm X})$ is an equivalence. If ${\mathrm X}$ does not belong to ${\mathcal A}$ , the fiber of $\phi $ over ${\mathrm X}$ is empty so that ${\mathcal P}({\mathcal A}_{\mathrm X})$ is contractible. So there is nothing to show and we assume that ${\mathrm X} $ belongs to ${\mathcal A}$ so that ${\mathcal P}({\mathcal A}_{\mathrm X})\simeq {\mathcal S}.$ If ${\mathrm Z}$ does not belong to ${\mathcal A}$ , the fiber of $\phi $ over ${\mathrm Z}$ is empty so that ${\mathcal P}({\mathcal A}_{\mathrm Z})$ is contractible. In this case there is nothing to show, too, because $\alpha ^*,\beta ^*$ preserve small colimits and so the initial object so that $\theta $ is an endomorphism of the initial object in ${\mathcal P}({\mathcal A}_{\mathrm X})\simeq {\mathcal S}$ and so an equivalence. So we can assume that ${\mathrm Z}$ belongs to ${\mathcal A}$ . By assumption we find that ${\mathrm Y}$ belongs to ${\mathcal A}$ . In this case the small colimits preserving functors $\alpha ^*,\beta ^*:{\mathcal S} \to {\mathcal S}$ are the identity on objects and so preserve the final object. This implies that $\alpha ^*,\beta ^*:{\mathcal S} \to {\mathcal S}$ are equivalences and $\theta $ is an equivalence since the component of $\theta $ at the final space is an endomorphism of the final space and so an equivalence.

Definition 3.25. A map $[{n}]\to [{m}]$ of $\Delta $ is inert if it is of the form $[{n}] \cong \{{i}+0,\ldots,{i}+{n} \} \subset [{m}]$ for some ${i} \geq 0$ .

Corollary 3.26. Every inert map $[{n}] \to [{m}]$ of $\Delta $ (viewed as a functor of $\infty $ -categories) is an exponentiable fibration.

Proof. The result follows from Corollary 3.24 since for every $ {i} \geq 0$ the ordered subset $[{n}] \cong \{{i}+0,\ldots,{i}+{n} \} \subset [{m}]$ is an interval.

Corollary 3.27. A locally cartesian fibration of small $\infty $ -categories is a cartesian fibration if and only if it is an exponentiable fibration.

Proof. Let ${\mathcal C} \to {\mathcal A}$ be a locally cartesian fibration of small $\infty $ -categories. By Lemma 3.18 the functor ${\mathcal C} \to {\mathcal A}$ is a cartesian fibration if and only if the functor $ {\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal A}$ is a cartesian fibration. By Proposition 3.22 the functor ${\mathcal C} \to {\mathcal A}$ is an exponentiable fibration if and only if the functor ${\mathcal P}^{{\mathcal A}}({\mathcal C}) \to {\mathcal A}$ is a cartesian fibration.

Notation 3.28. Let

$$ \begin{align*}\mathrm{LoCART} \subset \mathrm{Fun}([1],\infty\mathrm{Cat})\end{align*} $$

be the full subcategory of locally cartesian fibrations.

Notation 3.29. Let

$$ \begin{align*}\mathrm{LoCART}^{\mathrm L} \subset \mathrm{Lo}\widehat{{\mathrm{CART}}}\end{align*} $$

be the subcategory of locally cartesian fibrations whose target is small and whose fibers are presentable and commutative squares

such that for every ${\mathrm A} \in {\mathcal A}$ the induced functor ${\mathcal C}_{\mathrm A} \to {\mathcal D}_{\psi ({\mathrm A})}$ on the fiber over ${\mathrm A}$ preserves small colimits.

For the next corollary we use the notion of adjunction of $(\infty ,2)$ -categories, that is, $\infty $ -categories enriched in $\infty \mathrm {Cat}.$ This is an adjunction in the $(\infty ,2)$ -category of small $(\infty ,2)$ -categories, and a special case of the notion of enriched adjunction (see [Reference Heine20, Definition 2.66.] or [Reference Heine16, 6.2.6] for details).

Corollary 3.30. The inclusion of $(\infty ,2)$ -categories

$$ \begin{align*}\mathrm{LoCART}^{\mathrm L} \subset \mathrm{Fun}([1],\infty\widehat{\mathrm{Cat}})\end{align*} $$

admits a left adjoint that sends a functor ${\mathcal C} \to {\mathcal A}$ between small $\infty $ -categories to ${\mathcal P}^{\mathcal A}({\mathcal C})\to {\mathcal A}.$

Proof. By Proposition 3.16 (2) for every locally cartesian fibration ${\mathcal D} \to {\mathcal B}$ whose fibers admit small colimits, and functor ${\mathcal C} \to {\mathcal A}$ restriction along the embedding ${\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal C})$ induces an equivalence

$$ \begin{align*}\Theta({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})^{\mathrm L} \to \Theta({\mathcal C}, {\mathcal D}).\end{align*} $$

This implies the result by [Reference Heine20, Remark 2.75.] since $\Theta ({\mathcal C}, {\mathcal D})$ is the morphism $\infty $ -category of the $(\infty ,2)$ -category $\mathrm {Fun}([1],\infty \widehat {\mathrm {Cat}})$ and $\Theta ({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})^{\mathrm L}$ is the morphism $\infty $ -category of the $(\infty ,2)$ -category $\mathrm {LoCART}^{\mathrm L} $ .

Corollary 3.31. Let ${\mathcal A}$ be a small $\infty $ -category. The inclusion of $(\infty ,2)$ -categories

$$ \begin{align*}\mathrm{LoCART}^{\mathrm L}_{\mathcal A} \subset \infty\widehat{\mathrm{Cat}}_{/{\mathcal A}}\end{align*} $$

admits a left adjoint that sends a functor ${\mathcal C} \to {\mathcal A}$ , where ${\mathcal C}$ is small, to ${\mathcal P}^{\mathcal A}({\mathcal C})\to {\mathcal A}.$

Proof. By Proposition 3.16 (2) for every locally cartesian fibration ${\mathcal D} \to {\mathcal A} $ whose fibers admit small colimits, and functor ${\mathcal C} \to {\mathcal A}$ restriction along the embedding ${\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal C})$ induces an equivalence

$$ \begin{align*}\Theta({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D})^{\mathrm L} \to \Theta({\mathcal C}, {\mathcal D}).\end{align*} $$

The latter equivalence is over $\mathrm {Fun}({\mathcal A},{\mathcal A})$ and induces on the fiber over the identity of ${\mathcal A}$ the canonical functor

$$ \begin{align*}\mathrm{Fun}_{\mathcal A}^{\mathrm L}({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D}) \to \mathrm{Fun}_{\mathcal A}({\mathcal C}, {\mathcal D}),\end{align*} $$

which therefore also is an equivalence.

This implies the result by [Reference Heine20, Remark 2.75.] since $\mathrm {Fun}_{\mathcal A}({\mathcal C}, {\mathcal D})$ is the morphism $\infty $ -category of the $(\infty ,2)$ -category $\infty \widehat {\mathrm {Cat}}_{/{\mathcal A}}$ and $\mathrm {Fun}_{\mathcal A}^{\mathrm L}({\mathcal P}^{\mathcal A}({\mathcal C}), {\mathcal D}) $ is the morphism $\infty $ -category of the $(\infty ,2)$ -category $ \mathrm {LoCART}^{\mathrm L}_{\mathcal A} $ .

In the following we compare Definition 3.5 to another one (Corollary 3.37).

Notation 3.32. Let ${\mathcal L} \subset \mathrm {Fun}([1],\infty \mathrm {Cat})$ be the full subcategory of left fibrations.

Remark 3.12. The opposite $\infty $ -category involution $(-)^{\mathrm {op}}: \infty \mathrm {Cat} \simeq \infty \mathrm {Cat}$ induces an involution $ \mathrm {Fun}([1],\infty \mathrm {Cat}) \simeq \mathrm {Fun}([1],\infty \mathrm {Cat}), $ which restricts to an equivalence ${\mathcal L} \simeq {\mathcal R}$ . There is a commutative square

where the vertical functors evaluate at the target.

Proposition 3.33. There is a canonical equivalence

$$ \begin{align*}{\mathcal L} \simeq \mathrm{Fun}^{\infty\mathrm{Cat}}({\mathcal U},{\mathcal S} \times \infty\mathrm{Cat})\end{align*} $$

over $\infty \mathrm {Cat},$ where ${\mathcal L} \to \infty \mathrm {Cat}$ is evaluation at the target.

Proof. Let ${\mathcal C} \to \infty \mathrm {Cat}$ be a functor classifying a cocartesian fibration ${\mathcal B} \to {\mathcal C}.$ We prove that for any $\infty $ -category ${\mathcal C}$ functors ${\mathcal C} \to {\mathcal L}$ over $\infty \mathrm {Cat}$ naturally correspond to functors ${\mathcal C} \to \mathrm {Fun}^{\infty \mathrm {Cat}}({\mathcal U},{\mathcal S} \times \infty \mathrm {Cat})$ over $\infty \mathrm {Cat}$ . Functors ${\mathcal C} \to \mathrm {Fun}^{\infty \mathrm {Cat}}({\mathcal U},{\mathcal S} \times {\mathcal C})$ over $\infty \mathrm {Cat}$ correspond to sections of the functor $\mathrm {Fun}^{{\mathcal C}}({\mathcal B},{\mathcal S} \times {\mathcal C}) \to {\mathcal C}$ . Such sections correspond to functors ${\mathcal B} \to {\mathcal S} \times {\mathcal C}$ over ${\mathcal C}$ and so to functors ${\mathcal B} \to {\mathcal S}.$ A functor ${\mathcal B} \to {\mathcal L} \subset \mathrm {Fun}([1],\infty \mathrm {Cat})$ over $\infty \mathrm {Cat}$ is classified by a map of cocartesian fibrations ${\mathcal A} \to {\mathcal B}$ over ${\mathcal C}$ that is fiberwise a left fibration and so a left fibration by [Reference Lurie27, Proposition 2.4.2.4., Proposition 2.4.2.11.]. Such a functor corresponds to a left fibration ${\mathcal A} \to {\mathcal B}$ classifying a functor ${\mathcal B} \to {\mathcal S}.$

Corollary 3.34. The cartesian fibration $\rho : {\mathcal L} \to \infty \mathrm {Cat}$ classifies the functor

$$ \begin{align*}\mathrm{Fun}(-,\infty\mathrm{Cat}): \infty\mathrm{Cat}^{\mathrm{op}} \to \infty\widehat{\mathrm{Cat}}.\end{align*} $$

Proof. By Corollary 3.36 there is a canonical equivalence

$$ \begin{align*}{\mathcal L} \simeq \mathrm{Fun}^{\infty\mathrm{Cat}}({\mathcal U},{\mathcal S} \times \infty\mathrm{Cat})\end{align*} $$

over $\infty \mathrm {Cat}.$ By [Reference Gepner, Haugseng and Nikolaus12, Proposition 7.3.] the functor $\mathrm {Fun}^{\infty \mathrm {Cat}}({\mathcal U},{\mathcal S} \times \infty \mathrm {Cat}) \to \infty \mathrm {Cat} $ classifies the functor

$$ \begin{align*}\mathrm{Fun}(-,\infty\mathrm{Cat}): \infty\mathrm{Cat}^{\mathrm{op}} \to \infty\widehat{\mathrm{Cat}}.\\[-39pt] \end{align*} $$

Notation 3.35. Let ${\mathcal C} \to {\mathcal D}$ be a cocartesian fibration classifying a functor $\alpha : {\mathcal D} \to \infty \mathrm {Cat}.$ We write ${\mathcal C}^{\mathrm {rev}} \to {\mathcal D}$ for the cocartesian fibration classifying the composition

$$ \begin{align*}{\mathcal D} \xrightarrow{\alpha} \infty\mathrm{Cat} \xrightarrow{(-)^{\mathrm{op}}}\infty\mathrm{Cat}.\end{align*} $$

Corollary 3.36. There is a canonical equivalence

$$ \begin{align*}{\mathcal R} \simeq \mathrm{Fun}^{\infty\mathrm{Cat}}({\mathcal U}^{\mathrm{rev}},{\mathcal S} \times \infty\mathrm{Cat})\end{align*} $$

over $\infty \mathrm {Cat},$ where ${\mathcal R} \to \infty \mathrm {Cat}$ is evaluation at the target.

Proof. By Corollary 3.33 there is a canonical equivalence

$$ \begin{align*}{\mathcal L} \simeq \mathrm{Fun}^{\infty\mathrm{Cat}}({\mathcal U},{\mathcal S} \times \infty\mathrm{Cat}) \end{align*} $$

over $\infty \mathrm {Cat}.$ Pulling back the latter equivalence along the equivalence $(-)^{\mathrm {op}}: \infty \mathrm {Cat} \simeq \infty \mathrm {Cat}$ we obtain the desired equivalence

$$ \begin{align*}{\mathcal R} \simeq \mathrm{Fun}^{\infty\mathrm{Cat}}({\mathcal U}^{\mathrm{rev}},{\mathcal S} \times \infty\mathrm{Cat})\end{align*} $$

over $\infty \mathrm {Cat}.$

Corollary 3.37. Let ${\mathcal C} \to {\mathcal A}$ be a cocartesian fibration. There is a canonical equivalence

$$ \begin{align*}{\mathcal P}^{\mathcal A}({\mathcal C}) \simeq \mathrm{Fun}^{{\mathcal A}}({\mathcal C}^{\mathrm{rev}},{\mathcal S} \times {\mathcal A})\end{align*} $$

over ${\mathcal A}.$

Proof. The cocartesian fibration ${\mathcal D} \to {\mathcal C}$ classifies the functor $\psi : {\mathcal C} \to \infty \mathrm {Cat}$ . By Corollary 3.36 there is a canonical equivalence

$$ \begin{align*}{\mathcal R} \simeq \mathrm{Fun}^{\infty\mathrm{Cat}}({\mathcal U}^{\mathrm{rev}},{\mathcal S} \times \infty\mathrm{Cat})\end{align*} $$

over $\infty \mathrm {Cat}.$ The pullback of this equivalence along $\psi $ is the desired equivalence

$$ \begin{align*}{\mathcal P}^{\mathcal A}({\mathcal C}) \simeq \mathrm{Fun}^{{\mathcal A}}({\mathcal C}^{\mathrm{rev}},{\mathcal S} \times {\mathcal A})\end{align*} $$

over ${\mathcal A}.$

Corollary 3.38. Let ${\mathcal D} \to {\mathcal C}$ be a cocartesian fibration classifying a functor $\psi : {\mathcal C} \to \infty \mathrm {Cat}$ .

The cartesian fibration ${\mathcal P}^{\mathcal C}({\mathcal D}) \to {\mathcal C} $ classifies the composition

$$ \begin{align*}{\mathcal C}^{\mathrm{op}} \xrightarrow{\psi^{\mathrm{op}}} \infty\mathrm{Cat}^{\mathrm{op}} \xrightarrow{\mathrm{Fun}((-)^{\mathrm{op}},\infty\mathrm{Cat})} \infty\widehat{\mathrm{Cat}}.\end{align*} $$

Proof. By definition the functor ${\mathcal P}^{\mathcal C}({\mathcal D}) \to {\mathcal C} $ is the pullback of $\rho : {\mathcal R} \to \infty \mathrm {Cat}$ along $\psi : {\mathcal C} \to \infty \mathrm {Cat} $ and so a cartesian fibration, which by Corollary 3.34 classifies the composition

$$ \begin{align*}{\mathcal C}^{\mathrm{op}} \xrightarrow{\psi^{\mathrm{op}}} \infty\mathrm{Cat}^{\mathrm{op}} \xrightarrow{\mathrm{Fun}((-)^{\mathrm{op}},\infty\mathrm{Cat})} \infty\widehat{\mathrm{Cat}}.\\[-28pt]\end{align*} $$

Remark 3.13. Evaluation at the target ${\mathcal R} \to \infty \mathrm {Cat}$ is a cocartesian and cartesian fibration by Lemma 3.4. So for every cocartesian fibration ${\mathcal D} \to {\mathcal C}$ whose fibers are small, the functor ${\mathcal P}^{\mathcal C}({\mathcal D}) \to {\mathcal C} $ is a cocartesian and cartesian fibration.

Remark 3.14. In [Reference Barwick, Dotto, Glasman, Nardin and Shah6, Example 9.9.] the authors give a different construction of a parametrized $\infty $ -category of presheaves associated to a cocartesian fibration. Corollary 3.37 implies that our construction of parametrized $\infty $ -category of presheaves associated to a functor $\phi : {\mathcal C} \to {\mathcal A}$ agrees with the one of [Reference Barwick, Dotto, Glasman, Nardin and Shah6] in the case that $\phi $ is a cocartesian fibration.

4 A local-global principle

Now we are ready to prove the main theorem.

Theorem 4.1. Let ${\mathcal A}$ be an $\infty $ -category. The canonical commutative square of $\infty $ -categories

(4.1)

is a pullback square.

Proof. Let ${\mathcal C} \to {\mathcal A},{\mathcal D} \to {\mathcal A}$ be functors of small $\infty $ -categories. Square (4.1) induces on morphism $\infty $ -categories the commutative square

which identifies with the commutative square

(4.2)

where we use Remark 3.10. The bottom and top functors of square (4.2) are fully faithful. Therefore the functor from the left upper $\infty $ -category of square (4.2) to the pullback is fully faithful, too. Consequently, the square (4.2) is a pullback square if the latter functor is essentially surjective. This means that every functor ${\mathcal C} \to {\mathcal P}^{\mathcal A}({\mathcal D})$ over ${\mathcal A}$ whose pullback to $\iota ({\mathcal A})$ lands in ${\mathcal D}$ , already lands in ${\mathcal D}, $ which is clear.

Consequently, the functor

$$ \begin{align*}\theta: \infty\mathrm{Cat}_{/{\mathcal A}} \to \infty\mathrm{Cat}_{/\iota({\mathcal A})} \times_{\mathrm{LoCART}^{\mathrm L}_{\iota({\mathcal A})}} \mathrm{LoCART}^{\mathrm L}_{{\mathcal A}}\end{align*} $$

is fully faithful. So it remains to see that $\theta $ is essentially surjective.

Let ${\mathcal B} \to \iota ({\mathcal A})$ be a functor, $ {\mathcal D} \to {\mathcal A}$ a locally cartesian fibration whose fibers admit small colimits and whose fiber transports preserve small colimits, and $\alpha : {\mathcal P}^{\iota ({\mathcal A})}({\mathcal B}) \simeq \iota ({\mathcal A}) \times _{\mathcal A} {\mathcal D} $ an equivalence over $\iota ({\mathcal A})$ . Let ${\mathcal C} \subset {\mathcal D}$ be the essential image of the Yoneda-embedding ${\mathcal B} \subset {\mathcal P}^{\iota ({\mathcal A})}({\mathcal B}) \simeq \iota ({\mathcal A}) \times _{\mathcal A} {\mathcal D} \subset {\mathcal D}$ . Then there is a canonical equivalence $\iota ({\mathcal A}) \times _{\mathcal A}{\mathcal C} \simeq {\mathcal B}$ over $\iota ({\mathcal A})$ and the embedding ${\mathcal C} \subset {\mathcal D}$ over ${\mathcal A}$ extends to a canonical functor $\beta : {\mathcal P}^{\mathcal A}({\mathcal C}) \to {\mathcal D}$ over ${\mathcal A},$ whose pullback to $\iota ({\mathcal A})$ is the equivalence $\alpha : \iota ({\mathcal A}) \times _{\mathcal A}{\mathcal P}^{\mathcal A}({\mathcal C}) \simeq {\mathcal P}^{\iota ({\mathcal A})}({\mathcal B}) \simeq \iota ({\mathcal A}) \times _{\mathcal A}{\mathcal D}.$ Therefore it is enough to see that $\beta $ is an equivalence. For this by Remark 3.10 we can reduce to the case that ${\mathcal A}=[1]$ because a functor over ${\mathcal A}$ is an equivalence if all pullbacks along functors $[1] \to {\mathcal A}$ are equivalences. Since $\beta $ is essentially surjective, we need to check that for any ${\mathrm X} \in {\mathcal P}({\mathcal C}_0), {\mathrm Y} \in {\mathcal P}({\mathcal C}_1)$ the canonical map $\theta _{{\mathrm X},{\mathrm Y}}: {\mathcal P}^{[1]}({\mathcal C})({\mathrm X}, {\mathrm Y}) \to {\mathcal D}(\beta ({\mathrm X}),\beta ({\mathrm Y}))$ induced by $\beta $ is an equivalence. Let ${\mathrm G}: {\mathcal P}({\mathcal C}_1) \to {\mathcal P}({\mathcal C}_0)$ be the left adjoint functor classified by the cartesian fibration ${\mathcal P}^{[1]}({\mathcal C}) \to [1]$ and ${\mathrm G}': {\mathcal D}_1 \to {\mathcal D}_0$ the left adjoint functor classified by the cartesian fibration ${\mathcal D} \to [1]$ . The unique cartesian lift ${\mathrm G}({\mathrm Y}) \to {\mathrm Y}$ , where ${\mathrm G}({\mathrm Y}) \in {\mathcal P}({\mathcal C}_0)$ , is sent to a morphism $\beta ({\mathrm G}({\mathrm Y})) \to \beta ({\mathrm Y})$ that factors as $\beta ({\mathrm G}({\mathrm Y})) \xrightarrow {\rho _{\mathrm Y}} {\mathrm G}'(\beta ({\mathrm Y})) \to \beta ({\mathrm Y})$ , where ${\mathrm G}'(\beta ({\mathrm Y})) \in {\mathcal D}_0$ . The map $\theta _{{\mathrm X},{\mathrm Y}}$ identifies with the map

$$ \begin{align*}{\mathcal P}({\mathcal C}_0)({\mathrm X}, {\mathrm G}({\mathrm Y})) \to {\mathcal D}_0(\beta({\mathrm X}), \beta({\mathrm G}({\mathrm Y}))) \to {\mathcal D}_0(\beta({\mathrm X}), {\mathrm G}'(\beta({\mathrm Y}))).\end{align*} $$

Since the first map is an equivalence, it is enough to see that $\rho _{\mathrm Y}$ is an equivalence for every ${\mathrm Y} \in {\mathcal P}({\mathcal C}_1).$ Since $\beta _{\mathcal C}$ is fully faithful, $\theta _{{\mathrm X},{\mathrm Y}}$ is an equivalence if ${\mathrm X} \in {\mathcal C}_0, {\mathrm Y} \in {\mathcal C}_1$ . Because ${\mathcal P}({\mathcal C}_0)$ is generated by ${\mathcal C}_0$ under small colimits, $\theta _{{\mathrm X},{\mathrm Y}}$ is an equivalence for all ${\mathrm X} \in {\mathcal P}({\mathcal C}_0), {\mathrm Y} \in {\mathcal C}_1$ . Thus $\rho _{\mathrm Y}$ is an equivalence for every ${\mathrm Y} \in {\mathcal C}_1$ . Therefore $\rho _{\mathrm Y}$ is also an equivalence for every ${\mathrm Y} \in {\mathcal P}({\mathcal C}_1)$ because ${\mathcal P}({\mathcal C}_1)$ is generated by ${\mathcal C}_1$ under small colimits and the functors ${\mathrm G}, {\mathrm G}'$ preserve small colimits and $\rho _{\mathrm Y}$ is natural in ${\mathrm Y}$ .

Corollary 4.1. The canonical commutative square

(4.3)

of cartesian fibrations over $\infty \mathrm {Cat}$ is a pullback square.

Proof. Square (4.3) induces on the fiber over every small $\infty $ -category ${\mathcal A}$ the pullback square (4.1) of Theorem 4.1, and therefore itself is a pullback square.

Remark 4.2. We expect that the analogue of Theorem 4.1 also holds for $(\infty ,n)$ -categories for $ 1 \leq n \leq \infty $ for appropriate notions of locally cartesian fibrations. Here the role of the parametrized category of presheaves is taken by a parametrized version of presheaves of higher categories that can be conveniently described via the language of enriched presheaves [Reference Heine18], [Reference Hinich25]. This will be topic of future work.

Notation 4.2. Let

  • $\mathrm {EXP}\subset \mathrm {Fun}([1],\infty \mathrm {Cat})$ be the full subcategory of exponentiable fibrations,

  • $\mathrm {CART} \subset \mathrm {Fun}([1],\infty \mathrm {Cat}) $ be the full subcategory of cartesian fibrations,

  • ${\mathrm {CART}}^{\mathrm L} \subset \mathrm {LoCART}^{\mathrm L} $ be the full subcategory of cartesian fibrations.

Corollary 4.3. The commutative square

(4.4)

of cartesian fibrations over $\infty \mathrm {Cat}$ is a pullback square.

Proof. By Corollary 4.1 the canonical commutative square (4.3) is a pullback square. The square (4.4) embeds into the commutative square (4.3), and via Proposition 3.22 is a pullback square, too.

5 Correspondences as left fibrations

In this section we prove an equivalence between correspondences and left fibrations to a product of two $\infty $ -categories (Theorem 5.1). An enriched version of this result was proven by Hinich [Reference Hinich25, 8.3.2. Proposition] who proves that for any proto-topos ${\mathcal V}$ there is an equivalence between ${\mathcal V}$ -enriched functors over $[1]$ and ${\mathcal V}$ -enriched profunctors.

The next definition is [Reference Heine, Lopez-Avila and Spitzweck21, Notation 3.3.]:

Definition 5.1. Let ${\mathcal C}$ be an $\infty $ -category. The twisted arrow left fibration ${\mathrm {Tw}}({\mathcal C})\to {\mathcal C}^{\mathrm {op}} \times {\mathcal C}$ is the left fibration classifying the mapping space functor ${\mathcal C}^{\mathrm {op}} \times {\mathcal C} \to {\mathcal S}.$

Theorem 5.1. There is a canonical pullback square of $\infty $ -categories

(5.1)

where the right hand vertical functor evaluates at the target. The induced equivalence from the left upper corner of the square to the pullback sends a functor ${\mathcal M} \to [1]$ to the triple

$$ \begin{align*}({\mathcal M}_0, {\mathcal M}_1, {\mathcal M}_0^{\mathrm{op}} \times {\mathcal M}_1 \times_{{\mathcal M}^{\mathrm{op}} \times {\mathcal M}} {\mathrm{Tw}}({\mathcal M}) \to {\mathcal M}_0^{\mathrm{op}} \times {\mathcal M}_1).\end{align*} $$

Remark 5.2. Theorem 5.1 says that there is a canonical equivalence between the following $\infty $ -categories:

  1. 1. The $\infty $ -category $\infty \mathrm {Cat}_{/[1]}$ of small $\infty $ -categories ${\mathcal M}$ equipped with a functor ${\mathcal M} \to [1]$ .

  2. 2. The pullback $(\infty \mathrm {Cat} \times \infty \mathrm {Cat})\times _{\infty \mathrm {Cat}}{\mathcal L}$ along the functor $(-)^{\mathrm {op}}\times (-): \infty \mathrm {Cat} \times \infty \mathrm {Cat} \to \infty \mathrm {Cat},$ which is the $\infty $ -category of two $\infty $ -categories ${\mathcal C},{\mathcal D}$ equipped with a left fibration ${\mathcal A} \to {\mathcal C}^{\mathrm {op}} \times {\mathcal D}.$ The latter classifies a functor ${\mathcal C}^{\mathrm {op}} \times {\mathcal D} \to {\mathcal S}$ . Such a functor is also known as a profunctor from ${\mathcal D} $ to ${\mathcal C}.$

Proof. By Theorem 4.1 there is a canonical pullback square of $\infty $ -categories:

Consequently, it is enough to construct an equivalence between the pullbacks

and

We construct this equivalence by giving for every $\infty $ -category ${\mathcal A}$ a bijection between equivalence classes of objects of the $\infty $ -categories $ \mathrm {Fun}({\mathcal A},{\mathcal A}), \mathrm {Fun}({\mathcal A},{\mathcal B})$ natural in ${\mathcal A}.$ A functor ${\mathcal A} \to {\mathcal B}$ is classified by a pair of cocartesian fibrations ${\mathcal X} \to {\mathcal A}, {\mathcal Y} \to {\mathcal A}$ and a map of cocartesian fibrations ${\mathcal M} \to {\mathcal A} \times [1]$ over ${\mathcal A}$ that induces on the fiber over every object ${\mathrm A}\in {\mathcal A}$ a cartesian fibration ${\mathcal M}_{\mathrm A} \to [1]$ classifying a small colimits preserving functor ${\mathcal M}_{\mathrm A}^1 \to {\mathcal M}_{\mathrm A}^0$ and such that there are equivalences ${\mathcal M}_0 \simeq {\mathcal P}^{\mathcal A}({\mathcal X}), {\mathcal M}_1 \simeq {\mathcal P}^{\mathcal A}({\mathcal Y})$ over ${\mathcal A}$ . By [Reference Heine14, Lemma 2.44.] a functor ${\mathcal W} \to {\mathcal A} \times [1]$ is a map of cocartesian fibrations over ${\mathcal A}$ that induces on the fiber over every object ${\mathrm A}\in {\mathcal A}$ a cartesian fibration over $ [1]$ if and only if it is a map of cartesian fibrations over $[1]$ that induces on the fiber over every object of $[1]$ a cocartesian fibration over ${\mathcal A}$ . Consequently, a functor ${\mathcal A} \to {\mathcal B}$ is likewise classified by a pair of cocartesian fibrations ${\mathcal X} \to {\mathcal A}, {\mathcal Y} \to {\mathcal A}$ and a map of cartesian fibrations ${\mathcal M} \to {\mathcal A} \times [1]$ over $[1]$ that induces on the fibers over $0,1 \in [1]$ the cocartesian fibrations ${\mathcal P}^{\mathcal A}({\mathcal X}), {\mathcal P}^{\mathcal A}({\mathcal Y})$ , respectively, and induces on the fiber over every object ${\mathrm A}\in {\mathcal A}$ a cartesian fibration ${\mathcal M}_{\mathrm A} \to [1]$ classifying a small colimits preserving functor ${\mathcal M}_{\mathrm A}^1 \to {\mathcal M}_{\mathrm A}^0$ . In other words, a functor ${\mathcal A} \to {\mathcal B}$ is classified by a pair of cocartesian fibrations ${\mathcal X} \to {\mathcal A}, {\mathcal Y} \to {\mathcal A}$ and a functor ${\mathcal P}^{\mathcal A}({\mathcal Y}) \to {\mathcal P}^{\mathcal A}({\mathcal X})$ over ${\mathcal A}$ that induces on the fiber over every object of ${\mathcal A}$ a small colimits preserving functor. By Proposition 3.16 the latter is uniquely determined by its restriction, a functor ${\mathcal Y} \to {\mathcal P}^{\mathcal A}({\mathcal X})$ over ${\mathcal A}$ , which corresponds by Proposition 3.37 to a functor ${\mathcal X}^{\mathrm {rev}} \times _{\mathcal A} {\mathcal Y} \to {\mathcal S}$ . The latter is classified by a left fibration ${\mathcal A} \to {\mathcal X}^{\mathrm {rev}} \times _{\mathcal A} {\mathcal Y}$ or equivalently by a map of cocartesian fibrations ${\mathcal A} \to {\mathcal X}^{\mathrm {rev}} \times _{\mathcal A} {\mathcal Y} $ over ${\mathcal A}$ that induces on the fiber over every object of ${\mathcal A}$ a left fibration. So a functor ${\mathcal A} \to {\mathcal B}$ is classified by a pair of cocartesian fibrations ${\mathcal X} \to {\mathcal A}, {\mathcal Y} \to {\mathcal A}$ and a map of cocartesian fibrations ${\mathcal A} \to {\mathcal X}^{\mathrm {rev}} \times _{\mathcal A} {\mathcal Y} $ over ${\mathcal A}$ that induces on the fiber over every object of ${\mathcal A}$ a left fibration. The latter is precisely classified by a functor ${\mathcal A} \to {\mathcal A}.$

Remark 5.3. Under the equivalence

(5.2) $$ \begin{align} \infty\mathrm{Cat}_{/[1]} \simeq (\infty\mathrm{Cat} \times \infty\mathrm{Cat})\times_{\infty\mathrm{Cat}} {\mathcal L}\end{align} $$

of Theorem 5.1 the opposite $\infty $ -category involution on $\infty \mathrm {Cat}_{/[1]}$ corresponds to an involution on the right hand pullback induced by the flip action on the product $\infty \mathrm {Cat} \times \infty \mathrm {Cat}.$ This gives an easy way to understand the opposite $\infty $ -category involution on $\infty \mathrm {Cat}_{/[1]}$ and is used in [Reference Heine, Lopez-Avila and Spitzweck21, Theorem 5.21.] and [Reference Heine, Spitzweck and Verdugo22, Theorem 6.27.] to compare different models of dualities. In fact in [Reference Heine, Lopez-Avila and Spitzweck21, Proposition 5.23.] equivalence (5.2) is enhanced to a ${\mathrm C}_2$ -equivariant equivalence for the $C_2$ -actions refining the opposite $\infty $ -category involution and the flip action.

Notation 5.2. Let ${\mathrm {Cocart}} \subset \mathrm {Fun}([1],\infty \mathrm {Cat})$ be the full subcategory of cocartesian fibrations.

Corollary 5.3. Let ${\mathcal C},{\mathcal D}$ be small $\infty $ -categories. There is a canonical equivalence

$$ \begin{align*}\{({\mathcal C},{\mathcal D})\}\times_{\infty\mathrm{Cat} \times \infty\mathrm{Cat}} \mathrm{Cat}_{/[1]} \simeq \mathrm{Fun}({\mathcal C}^{\mathrm{op}}, \mathrm{Fun}({\mathcal D},{\mathcal S}))\end{align*} $$

that sends a functor ${\mathcal M} \to [1]$ and ${\mathcal M}_0 \simeq {\mathcal C}, {\mathcal M}_1 \simeq {\mathcal D}$ to the functor ${\mathcal C}^{\mathrm {op}} \times {\mathcal D} \subset {\mathcal M}^{\mathrm {op}} \times {\mathcal M} \xrightarrow {{\mathcal M}(-,-)} {\mathcal S}.$

The latter equivalence restricts to an equivalence

$$ \begin{align*}\{({\mathcal C},{\mathcal D})\}\times_{\infty\mathrm{Cat} \times \infty\mathrm{Cat}} {\mathrm{Cocart}}_{[1]} \simeq \mathrm{Fun}({\mathcal C}^{\mathrm{op}}, {\mathcal D}^{\mathrm{op}}) \simeq \mathrm{Fun}({\mathcal C},{\mathcal D})^{\mathrm{op}}\end{align*} $$

that sends a functor ${\mathcal M} \to [1]$ and ${\mathcal M}_0 \simeq {\mathcal C}, {\mathcal M}_1 \simeq {\mathcal D}$ to the functor ${\mathcal C} \to {\mathcal D}$ classified by ${\mathcal M} \to [1]$ .

Proof. By Theorem 5.1 there is a canonical equivalence

$$ \begin{align*}\{({\mathcal C},{\mathcal D})\}\times_{\infty\mathrm{Cat} \times \infty\mathrm{Cat}} \mathrm{Cat}_{/[1]} \simeq \{{\mathcal C}^{\mathrm{op}} \times {\mathcal D} \}\times_{\infty\mathrm{Cat}} {\mathcal L} \simeq \mathrm{Fun}({\mathcal C}^{\mathrm{op}}\times{\mathcal D},{\mathcal S}) \simeq \mathrm{Fun}({\mathcal C}^{\mathrm{op}}, \mathrm{Fun}({\mathcal D},{\mathcal S}))\end{align*} $$

that sends a functor ${\mathcal M} \to [1]$ and ${\mathcal M}_0 \simeq {\mathcal C}, {\mathcal M}_1 \simeq {\mathcal D}$ to the functor ${\mathcal C}^{\mathrm {op}} \times {\mathcal D} \subset {\mathcal M}^{\mathrm {op}} \times {\mathcal M} \xrightarrow {{\mathcal M}(-,-)} {\mathcal S}.$

The latter equivalence restricts to an equivalence

$$ \begin{align*}\{({\mathcal C},{\mathcal D})\}\times_{\infty\mathrm{Cat} \times \infty\mathrm{Cat}} {\mathrm{Cocart}}_{[1]} \simeq \mathrm{Fun}({\mathcal C}^{\mathrm{op}}, {\mathcal D}^{\mathrm{op}}) \simeq \mathrm{Fun}({\mathcal C},{\mathcal D})^{\mathrm{op}}\end{align*} $$

that sends a functor ${\mathcal M} \to [1]$ and ${\mathcal M}_0 \simeq {\mathcal C}, {\mathcal M}_1 \simeq {\mathcal D}$ to the functor ${\mathcal C} \to {\mathcal D}$ classified by ${\mathcal M} \to [1]$ .

For every cocartesian fibration ${\mathcal M} \to [1]$ and ${\mathcal M}_0 \simeq {\mathcal C}, {\mathcal M}_1 \simeq {\mathcal D}$ classifying a functor $\alpha : {\mathcal C} \to {\mathcal D}$ there is a canonical equivalence between the functor ${\mathcal C}^{\mathrm {op}} \times {\mathcal D} \subset {\mathcal M}^{\mathrm {op}} \times {\mathcal M} \xrightarrow {{\mathcal M}(-,-)} {\mathcal S}$ and the functor ${\mathcal C}^{\mathrm {op}} \times {\mathcal D} \xrightarrow {\alpha ^{\mathrm {op}} \times {\mathcal D}} {\mathcal D}^{\mathrm {op}} \times {\mathcal D} \xrightarrow {{\mathcal D}(-,-)} {\mathcal S}$ .

6 An end formula for mapping spaces of parametrized functor $\infty $ -categories

By Corollary 3.23 the $\infty $ -category $\infty \mathrm {Cat}_{/[1]}$ is cartesian closed. In this section we describe the mapping space functor of the internal hom $\mathrm {Fun}^{[1]}({\mathcal M},{\mathcal N})$ between two functors ${\mathcal M} \to [1],{\mathcal N} \to [1]$ (Theorem 6.2). Having this description we relate the mapping spaces of the conditionally existing internal hom $\mathrm {Fun}^{{\mathcal C}}({\mathcal M},{\mathcal N})$ between two functors ${\mathcal M} \to {\mathcal C},{\mathcal N} \to {\mathcal C}$ to the mapping space functors of ${\mathcal M},{\mathcal N}$ (Corollary 6.4). As a corollary we compute the mapping space functor of the $\infty $ -category $\mathrm {Fun}({\mathcal A},{\mathcal B})$ of functors between two $\infty $ -categories ${\mathcal A},{\mathcal B}$ (Corollary 6.6) recovering a global version of a result of [Reference Gepner, Haugseng and Nikolaus12, Proposition 5.1.].

Lemma 6.1. Let ${\mathcal V}$ be a closed monoidal $\infty $ -category, ${\mathcal W} \subset \mathrm {Fun}([1],{\mathcal V})$ a full monoidal subcategory satisfying the following conditions:

  1. 1. The base change of any object ${\mathrm X} \to {\mathrm Y}$ of ${\mathrm W}$ along any morphism ${\mathrm Z} \to {\mathrm X}$ of ${\mathcal V}$ exists and is an object of ${\mathcal W}$ .

  2. 2. For every object ${\mathrm X} \to {\mathrm Y}$ of ${\mathcal W}$ and every object ${\mathrm Z}$ of ${\mathcal V}$ the induced morphism ${\mathrm {Mor}}_{\mathcal V}({\mathrm Z},{\mathrm X}) \to {\mathrm {Mor}}_{\mathcal V}({\mathrm Z},{\mathrm Y})$ in ${\mathcal V}$ is an object of ${\mathcal W}.$

The following holds:

  1. 1. For every monoidal functor $\alpha : {\mathcal A} \to {\mathcal V}$ the pullback ${\mathcal A} \times _{{\mathcal V}} {\mathcal W}$ of the monoidal functor ${\mathcal W} \to {\mathcal V}$ evaluating at the target and $\alpha $ is a closed monoidal $\infty $ -category.

  2. 2. The internal hom of every two objects $({\mathrm A}, {\mathrm {f}}: {\mathrm X} \to \alpha ({\mathrm A})), ({\mathrm B}, {g}: {\mathrm Y} \to \alpha ({\mathrm B}))\in {\mathcal A} \times _{{\mathcal V}} {\mathcal W} $ consists of the object ${\mathrm {Mor}}_{\mathcal A}({\mathrm A},{\mathrm B}) \in {\mathcal A}$ and the projection

    $$ \begin{align*}\alpha({\mathrm{Mor}}_{\mathcal A}({\mathrm A},{\mathrm B})) \times_{{\mathrm{Mor}}_{\mathcal V}({\mathrm X}, \alpha({\mathrm B}))} {\mathrm{Mor}}_{\mathcal V}({\mathrm X},{\mathrm Y}) \to \alpha({\mathrm{Mor}}_{\mathcal A}({\mathrm A},{\mathrm B})).\end{align*} $$

Proof. For every $({\mathrm A}, {\mathrm {f}}: {\mathrm X} \to \alpha ({\mathrm A})), ({\mathrm B}, {g}: {\mathrm Y} \to \alpha ({\mathrm B}))\in {\mathcal A} \times _{{\mathcal V}} {\mathcal W}, ({\mathrm C}, {\mathrm {h}}: {\mathrm Z} \to \alpha ({\mathrm C}))\in {\mathcal A} \times _{{\mathcal V}} {\mathcal W} $ the canonical morphism

$$ \begin{align*}({\mathrm{Mor}}_{\mathcal A}({\mathrm A},{\mathrm B}), \alpha({\mathrm{Mor}}_{\mathcal A}({\mathrm A},{\mathrm B})) \times_{{\mathrm{Mor}}_{\mathcal V}({\mathrm X}, \alpha({\mathrm B}))} {\mathrm{Mor}}_{\mathcal V}({\mathrm X},{\mathrm Y}) \otimes ({\mathrm A}, {\mathrm{f}}: {\mathrm X} \to \alpha({\mathrm A})) =\end{align*} $$
$$ \begin{align*}({\mathrm{Mor}}_{\mathcal A}({\mathrm A},{\mathrm B})\otimes{\mathrm A}, \alpha({\mathrm{Mor}}_{\mathcal A}({\mathrm A},{\mathrm B})\otimes {\mathrm A}) \times_{{\mathrm{Mor}}_{\mathcal V}({\mathrm X}, \alpha({\mathrm B}))\otimes {\mathrm X}} {\mathrm{Mor}}_{\mathcal V}({\mathrm X},{\mathrm Y}) \otimes {\mathrm X}) \to ({\mathrm B}, {g}: {\mathrm Y} \to \alpha({\mathrm B}))\end{align*} $$

in ${\mathcal A} \times _{{\mathcal V}} {\mathcal W}$ induces a map

$$ \begin{align*}{\mathcal A} \times_{{\mathcal V}} {\mathcal W}(({\mathrm A}, {\mathrm{f}}: {\mathrm X} \to \alpha({\mathrm A})),\end{align*} $$
$$ \begin{align*}({\mathrm{Mor}}_{\mathcal A}({\mathrm B},{\mathrm C}), \alpha({\mathrm{Mor}}_{\mathcal A}({\mathrm B},{\mathrm C})) \times_{{\mathrm{Mor}}_{\mathcal V}({\mathrm Y}, \alpha({\mathrm C}))} {\mathrm{Mor}}_{\mathcal V}({\mathrm Y},{\mathrm Z}) \to \alpha({\mathrm{Mor}}_{\mathcal A}({\mathrm B},{\mathrm C}))) ) \simeq\end{align*} $$
$$ \begin{align*}{\mathcal A} \times_{{\mathcal V}} {\mathcal W}(({\mathrm A}, {\mathrm{f}}: {\mathrm X} \to \alpha({\mathrm A})) \otimes ({\mathrm B}, {g}: {\mathrm Y} \to \alpha({\mathrm B})),({\mathrm C}, {\mathrm{h}}: {\mathrm Z} \to \alpha({\mathrm C})))=\end{align*} $$
$$ \begin{align*}{\mathcal A} \times_{{\mathcal V}} {\mathcal W}(({\mathrm A} \otimes {\mathrm B}, {\mathrm{f}} \otimes {g}: {\mathrm X} \otimes {\mathrm Y} \to \alpha({\mathrm A} \otimes {\mathrm B})),({\mathrm C}, {\mathrm{h}}: {\mathrm Z} \to \alpha({\mathrm C})))\end{align*} $$

over ${\mathcal A}({\mathrm A}, {\mathrm {Mor}}_{\mathcal A}({\mathrm B},{\mathrm C})) \simeq {\mathcal A}({\mathrm A} \otimes {\mathrm B},{\mathrm C})$ that induces on the fiber over every morphism $\theta : {\mathrm A} \to {\mathrm {Mor}}_{\mathcal A}({\mathrm B},{\mathrm C})$ corresponding to a morphism $\theta ': {\mathrm A} \otimes {\mathrm B} \to {\mathrm C}$ the canonical equivalence

$$ \begin{align*}{\mathcal V}_{/{\mathrm{Mor}}_{\mathcal V}({\mathrm Y}, \alpha({\mathrm C}))}({\mathrm X}, {\mathrm{Mor}}_{\mathcal V}({\mathrm Y},{\mathrm Z})) \simeq {\mathcal V}_{/\alpha({\mathrm C})}({\mathrm X}\otimes{\mathrm Y},{\mathrm Z}).\\[-37pt] \end{align*} $$

Corollary 6.2. The pullback

in cartesian symmetric monoidal $\infty $ -categories is closed.

The internal hom of every $({\mathcal A},{\mathcal B}, {\mathcal C}, {\mathcal C} \to {\mathcal A}^{\mathrm {op}} \times {\mathcal B}), ({\mathcal A}',{\mathcal B}', {\mathcal C}', {\mathcal C}' \to {\mathcal A}^{\mathrm {\prime {op}}} \times {\mathcal B}')$ consists of $ \mathrm {Fun}({\mathcal A},{\mathcal A}') $ and $ \mathrm {Fun}({\mathcal B},{\mathcal B}') $ and the functor

$$ \begin{align*}\mathrm{Fun}({\mathcal A},{\mathcal A}')^{\mathrm{op}} \times \mathrm{Fun}({\mathcal B},{\mathcal B}') \times_{\mathrm{Fun}({\mathcal C}, {\mathcal A}^{\mathrm{\prime{op}}} \times {\mathcal B}')} \mathrm{Fun}({\mathcal C}, {\mathcal C}') \to \mathrm{Fun}({\mathcal A},{\mathcal A}')^{\mathrm{op}} \times \mathrm{Fun}({\mathcal B},{\mathcal B}')).\end{align*} $$

Proof. We apply Lemma 6.1 to ${\mathcal V}:=\infty \mathrm {Cat}$ and ${\mathcal W}:= {\mathcal L} \subset \mathrm {Fun}([1], {\mathcal V}).$

Notation 6.3. For every functor ${\mathcal M} \to [1]$ let $\widetilde {{\mathrm {Tw}}}({\mathcal M})$ be the pullback

$$ \begin{align*}{\mathcal M}_0^{\mathrm{op}} \times {\mathcal M}_1 \times_{{\mathcal M}^{\mathrm{op}}\times{\mathcal M}}{\mathrm{Tw}}({\mathcal M}) \to {\mathcal M}_0^{\mathrm{op}} \times {\mathcal M}_1.\end{align*} $$

Remark 6.1. Let ${\mathcal C}$ be an $\infty $ -category. Projection ${\mathcal C} \times [1]\to {\mathcal C}$ induces an equivalence $\widetilde {{\mathrm {Tw}}}({\mathcal C}\times [1]) \simeq {\mathrm {Tw}}({\mathcal C})$ over $ {\mathcal C}^{\mathrm {op}} \times {\mathcal C}.$

Theorem 6.2. Let ${\mathcal M} \to [1], {\mathcal N} \to [1]$ be functors. There is a canonical equivalence

$$ \begin{align*}\widetilde{{\mathrm{Tw}}}(\mathrm{Fun}^{[1]}({\mathcal M},{\mathcal N})) \simeq\end{align*} $$
$$ \begin{align*}\mathrm{Fun}({\mathcal M}_0,{\mathcal N}_0)^{\mathrm{op}} \times \mathrm{Fun}({\mathcal M}_1,{\mathcal N}_1) \times_{\mathrm{Fun}( \widetilde{{\mathrm{Tw}}}({\mathcal M}), {\mathcal N}_0^{\mathrm{op}} \times {\mathcal N}_1)} \mathrm{Fun}( \widetilde{{\mathrm{Tw}}}({\mathcal M}), \widetilde{{\mathrm{Tw}}}({\mathcal N}))\end{align*} $$

over

$$ \begin{align*}\mathrm{Fun}({\mathcal M}_0,{\mathcal N}_0)^{\mathrm{op}} \times \mathrm{Fun}({\mathcal M}_1,{\mathcal N}_1)\end{align*} $$

that induces on the fiber over any functors ${\mathrm F}: {\mathcal M}_0 \to {\mathcal N}_0, {\mathrm G}: {\mathcal M}_1 \to {\mathcal N}_1$ an equivalence

$$ \begin{align*}\mathrm{Fun}^{[1]}({\mathcal M},{\mathcal N})({\mathrm F},{\mathrm G}) \simeq \lim(\widetilde{{\mathrm{Tw}}}({\mathcal M}) \to {\mathcal M}_0^{\mathrm{op}} \times {\mathcal M}_1 \xrightarrow{{\mathrm F}^{\mathrm{op}} \times {\mathrm G}} {\mathcal N}_0^{\mathrm{op}} \times {\mathcal N}_1 \subset {\mathcal N}^{\mathrm{op}} \times {\mathcal N} \xrightarrow{{\mathcal N}(-,-)} {\mathcal S}).\end{align*} $$

Proof. By Theorem 5.1 there is a canonical equivalence $\theta $ between $\infty \mathrm {Cat}_{/[1]}$ and the pullback

Consequently, the internal hom of $\infty \mathrm {Cat}_{/[1]}$ corresponds under $\theta $ to the internal hom of ${\mathcal Q}$ for the cartesian monoidal structures. The description of $\theta $ of Theorem 5.1 and the description of the internal hom of Corollary 6.2 imply the result.

Corollary 6.4. Let ${\mathcal A} \to {\mathcal C},{\mathcal B} \to {\mathcal C}$ be functors such that ${\mathcal A} \to {\mathcal C}$ is an exponentiable fibration. Let ${\mathrm {f}}: {\mathrm X} \to {\mathrm Y}$ be a morphism in ${\mathcal C}$ and ${\mathrm F}: {\mathcal A}_{\mathrm X} \to {\mathcal B}_{\mathrm X}, {\mathrm G}: {\mathcal A}_{\mathrm Y} \to {\mathcal B}_{\mathrm Y}$ be functors. There is a canonical equivalence

$$ \begin{align*}\{\alpha\}\times_{{\mathcal C}({\mathrm X},{\mathrm Y})} \mathrm{Fun}^{\mathcal C}({\mathcal A},{\mathcal B})({\mathrm F},{\mathrm G}) \simeq\end{align*} $$
$$ \begin{align*}\lim(\widetilde{{\mathrm{Tw}}}([1]\times_ {\mathcal C} {\mathcal A}) \to {\mathcal A}_{\mathrm X}^{\mathrm{op}} \times {\mathcal A}_{\mathrm Y} \xrightarrow{{\mathrm F}^{\mathrm{op}} \times {\mathrm G}} {\mathcal B}_{\mathrm X}^{\mathrm{op}} \times {\mathcal B}_{\mathrm Y} \to ([1]\times_ {\mathcal C} {\mathcal B})^{\mathrm{op}} \times ([1]\times_ {\mathcal C} {\mathcal B}) \xrightarrow{([1]\times_ {\mathcal C} {\mathcal B})(-,-)} {\mathcal S}).\end{align*} $$

Proof. There is a canonical equivalence

$$ \begin{align*}\{\alpha\}\times_{{\mathcal C}({\mathrm X},{\mathrm Y})} \mathrm{Fun}^{\mathcal C}({\mathcal A},{\mathcal B})({\mathrm F},{\mathrm G}) \simeq ([1]\times_ {\mathcal C} \mathrm{Fun}^{\mathcal C}({\mathcal A},{\mathcal B}))({\mathrm F},{\mathrm G}) \simeq\end{align*} $$
$$ \begin{align*}\mathrm{Fun}^{[1]}([1]\times_ {\mathcal C} {\mathcal A},[1]\times_ {\mathcal C} {\mathcal B})({\mathrm F},{\mathrm G}) \simeq\end{align*} $$
$$ \begin{align*}\lim(\widetilde{{\mathrm{Tw}}}([1]\times_ {\mathcal C} {\mathcal A}) \to {\mathcal A}_{\mathrm X}^{\mathrm{op}} \times {\mathcal A}_{\mathrm Y} \xrightarrow{{\mathrm F}^{\mathrm{op}} \times {\mathrm G}} {\mathcal B}_{\mathrm X}^{\mathrm{op}} \times {\mathcal B}_{\mathrm Y} \to ([1]\times_ {\mathcal C} {\mathcal B})^{\mathrm{op}} \times ([1]\times_ {\mathcal C} {\mathcal B}) \xrightarrow{([1]\times_ {\mathcal C} {\mathcal B})(-,-)} {\mathcal S}).\end{align*} $$

Definition 6.5. Let ${\mathcal C},{\mathcal D}$ be $\infty $ -categories and $\phi : {\mathcal C}^{\mathrm {op}} \times {\mathcal C} \to {\mathcal D}$ be a functor. The end of $\phi $ , denoted by ${\int \phi }$ if it exists, is the limit of the functor ${\mathrm {Tw}}({\mathcal C}) \xrightarrow {{q}} {\mathcal C}^{\mathrm {op}} \times {\mathcal C} \xrightarrow {\phi } {\mathcal D}.$

Remark 6.3. Let $\phi : {\mathcal C}^{\mathrm {op}} \times {\mathcal C} \to {\mathcal S}$ be a functor classified by a left fibration ${\mathcal B} \to {\mathcal C}^{\mathrm {op}} \times {\mathcal C}.$

The limit of the functor ${\mathrm {Tw}}({\mathcal C}) \xrightarrow {{q}} {\mathcal C}^{\mathrm {op}} \times {\mathcal C} \xrightarrow {\phi } {\mathcal S}$ is the space

$$ \begin{align*}\mathrm{Fun}_{{\mathrm{Tw}}({\mathcal C})}({\mathrm{Tw}}({\mathcal C}), {q}^*({\mathcal B})).\end{align*} $$

Corollary 6.6. Let ${\mathcal C},{\mathcal D}$ be $\infty $ -categories. There is a canonical equivalence

$$ \begin{align*}{\mathrm{Tw}}(\mathrm{Fun}({\mathcal C},{\mathcal D})) \simeq \mathrm{Fun}({\mathcal C},{\mathcal D})^{\mathrm{op}} \times \mathrm{Fun}({\mathcal C},{\mathcal D}) \times_{\mathrm{Fun}({\mathrm{Tw}}({\mathcal C}), {\mathcal D}^{\mathrm{op}} \times {\mathcal D})} \mathrm{Fun}({\mathrm{Tw}}({\mathcal C}), {\mathrm{Tw}}({\mathcal D}))\end{align*} $$

over

$$ \begin{align*}\mathrm{Fun}({\mathcal C},{\mathcal D})^{\mathrm{op}} \times \mathrm{Fun}({\mathcal C},{\mathcal D}).\end{align*} $$

The latter induces on the fiber over every functors ${\mathrm F},{\mathrm G}:{\mathcal C} \to {\mathcal D}$ an equivalence

$$ \begin{align*}\mathrm{Fun}({\mathcal C},{\mathcal D})({\mathrm F},{\mathrm G}) \simeq \mathrm{Fun}_{{\mathrm{Tw}}({\mathcal C})}({\mathrm{Tw}}({\mathcal C}),{q}^*(({\mathrm F}^{\mathrm{op}}\times{\mathrm G})^*({\mathrm{Tw}}({\mathcal D}))))\simeq \int{\mathcal D}({\mathrm F}(-),{\mathrm G}(-)).\end{align*} $$

Proof. We apply Theorem 6.2 to the functors ${\mathcal M} := {\mathcal C} \times [1] \to [1], {\mathcal N}:= {\mathcal D} \times [1] \to [1] $ and use Remark 6.1.

7 A generalized Grothendieck construction

In this section we extend the Grothendieck construction to an equivalence between all $\infty $ -categories over a base $\infty $ -category ${\mathcal C}$ and lax normal functors from ${\mathcal C}$ to a double $\infty $ -category of correspondences.

As the first step we define double $\infty $ -categories [Reference Gepner and Haugseng11, Definition 2.4.3.].

Definition 7.1. A double $\infty $ -category is a cartesian fibration ${\mathcal B} \to \Delta $ such that for every $[{n}] \in \Delta $ the induced functor

$$ \begin{align*}{\mathcal B}_{[{n}]} \to {\mathcal B}_{[1]} \times_{{\mathcal B}_{[0]}}\ldots \times_{{\mathcal B}_{[0]}}{\mathcal B}_{[1]}\end{align*} $$

is an equivalence, where the ${i}$ -th map $[1] \to [{n}]$ sends $0$ to ${i}-1$ and $1$ to ${i}.$

Via the Grothendieck construction double $\infty $ -categories precisely classify functors $\Delta ^{\mathrm {op}} \to \infty \mathrm {Cat}$ satisfying the Segal condition. In this sense double $\infty $ -categories are $\infty $ -categories internal to $\infty \mathrm {Cat}.$

Example 7.1. For every $\infty $ -category ${\mathcal C}$ let $\Delta _{\mathcal C} \to \Delta $ be the cartesian fibration classifying the functor

$$ \begin{align*}\Delta^{\mathrm{op}} \to \mathrm{Set}^{\mathrm{op}} \subset \infty\mathrm{Cat}^{\mathrm{op}} \xrightarrow{\mathrm{Fun}(-,{\mathcal C})} \infty\mathrm{Cat},\end{align*} $$

where the first functor forgets the total order. The cartesian fibration $\Delta _{\mathcal C} \to \Delta $ is a double $\infty $ -category.

Lemma 7.2. The functor

$$ \begin{align*}\rho: \infty\mathrm{Cat}^{\mathrm{cart}}_{/\Delta} \to \infty\mathrm{Cat}\end{align*} $$

taking the fiber over $[0]$ admits a fully faithful right adjoint that sends any $\infty $ -category ${\mathcal C}$ to the cartesian fibration $\Delta _{\mathcal C} \to \Delta .$

Proof. By the Grothendieck construction there is a canonical equivalence

$$ \begin{align*}\infty\mathrm{Cat}^{\mathrm{cart}}_{/\Delta} \simeq \mathrm{Fun}(\Delta^{\mathrm{op}}, \infty\mathrm{Cat}).\end{align*} $$

The functor $\mathrm {Fun}(\Delta ^{\mathrm {op}}, \infty \mathrm {Cat}) \simeq \infty \mathrm {Cat}^{\mathrm {cart}}_{/\Delta } \xrightarrow {\rho } \infty \mathrm {Cat}$ is the functor evaluating at $[0]$ . By [Reference Lurie27, Corollary 4.3.2.14., Proposition 4.3.2.17.] this functor admits a right adjoint $ \gamma $ that sends any $\infty $ -category ${\mathcal C}$ to the right Kan extension of the functor $ [0] \xrightarrow {{\mathcal C}} \infty \mathrm {Cat}$ along the embedding $ \{[0] \} \subset \Delta ^{\mathrm {op}}.$ By [Reference Lurie27, Lemma 4.3.2.13., Corollary 4.3.2.14., Proposition 4.3.2.17.] this right Kan extension $\gamma ({\mathcal C}) $ sends any $[{n}] \in \Delta $ to the limit of the functor $ \{0,\ldots,{n} \} \simeq (\{[0] \} \times _{\Delta } \Delta _{/[{n}]})^{\mathrm {op}} \to [0] \xrightarrow {{\mathcal C}} \infty \mathrm {Cat}, $ which identifies with $\mathrm {Fun}(\{0,\ldots,{n} \},{\mathcal C}) \simeq {\mathcal C}^{\times {n}+1}. $ Hence $\gamma ({\mathcal C}) $ is the functor

$$ \begin{align*}\Delta^{\mathrm{op}} \to \infty\mathrm{Cat}, [{n}] \mapsto \mathrm{Fun}(\{0,\ldots,{n} \},{\mathcal C}).\end{align*} $$

This implies the result by definition of $\Delta _{/{\mathcal C}} \to \Delta. $

Remark 7.2. The functor $\rho : \infty \mathrm {Cat}^{\mathrm {cart}}_{/\Delta } \to \infty \mathrm {Cat}$ is a cartesian fibration, where a morphism ${\mathcal B} \to {\mathcal C}$ over $\Delta $ is $\rho $ -cartesian if and only if the following square is a pullback square:

This holds since for every cartesian fibration ${\mathcal A} \to \Delta $ the induced commutative square

is equivalent to the commutative square

In particular, the $\rho $ -cartesian lift to a double $\infty $ -category ${\mathcal C} \to \Delta $ of a functor $ {\mathcal A} \to {\mathcal C}_{[0]}$ is the double $\infty $ -category $ \Delta _{\mathcal A} \times _{\Delta _{{\mathcal C}_{[0]}}} {\mathcal C}.$

Notation 7.3. Let ${\mathcal A} \to \Delta , {\mathcal B} \to \Delta $ be double $\infty $ -categories. We write

$$ \begin{align*}{\mathrm{FUN}}({\mathcal A},{\mathcal B}) \subset \mathrm{Fun}_{\Delta}({\mathcal A},{\mathcal B})\end{align*} $$

for the full subcategory spanned by the functors over $\Delta $ preserving cocartesian lifts of morphisms of $\Delta .$

Definition 7.4. An $(\infty ,2)$ -precategory is a double $\infty $ -category $\phi : {\mathcal B} \to \Delta $ such that ${\mathcal B}_0$ is a space.

Remark 7.3. By [Reference Hinich25, 5.6.1. Corollary] there is an equivalence between $(\infty ,2)$ -precategories in the sense of Definition 7.4 and $\infty $ -precategories enriched in $\infty \mathrm {Cat}$ , which justifies our terminology.

Example 7.4. For every double $\infty $ -category $\phi : {\mathcal B} \to \Delta $ the pullback

$$ \begin{align*}{\Delta_{\iota({\mathcal B}_{[0]})} \times_{\Delta_{{\mathcal B}_{[0]}}} {\mathcal B}} \to \Delta_{\iota({\mathcal B}_{[0]})}\end{align*} $$

is an $(\infty ,2)$ -precategory, which we call the underlying $(\infty ,2)$ -precategory of $\phi .$

Example 7.5. Viewing spaces as $\infty $ -categories any Segal space classifies an $(\infty ,2)$ -precategory. For every $\infty $ -category ${\mathcal C}$ the nerve of ${\mathcal C}$ defined by ${\mathrm N}({\mathcal C}): \Delta ^{\mathrm {op}} \to {\mathcal S}, [{n}]\mapsto \infty \mathrm {Cat}([{n}],{\mathcal C})$ is a Segal space and so classifies an $(\infty ,2)$ -precategory.

Notation 7.5. We define the following $\infty $ -categories by the following pullback squares:

Construction 7.6. Let ${\mathrm H}: {\mathrm K} \to \infty \mathrm {Cat}$ be a functor that admits a colimit ${\mathcal A}$ . The canonical $\infty \mathrm {Cat}$ -linear functor $\mathrm {Cat}_{\infty /{\mathcal A}} \to \lim _{{k} \in {\mathrm K}}\mathrm {Cat}_{\infty /{\mathrm H}({k})}$ induces on morphism $\infty $ -categories between two functors ${\mathcal C} \to {\mathcal A},{\mathcal D} \to {\mathcal A}$ a functor

(7.1) $$ \begin{align} \theta: \mathrm{Fun}_{{\mathcal A}}({\mathcal C},{\mathcal D}) \to \lim_{{k} \in {\mathrm K}} \mathrm{Fun}_{{\mathrm H}({k})}({\mathrm H}({k}) \times_{{\mathcal A}} {\mathcal C},{\mathrm H}({k}) \times_{{\mathcal A}}{\mathcal D}). \end{align} $$

Lemma 7.7. Let ${\mathrm H}: {\mathrm K} \to \infty \mathrm {Cat}$ be a functor with colimit ${\mathcal A}$ and ${\mathcal C} \to {\mathcal A},{\mathcal D} \to {\mathcal A}$ functors. If the functor ${\mathcal C} \to {\mathcal A}$ is an exponentiable fibration, the functor (7.1) is an equivalence.

Proof. Since ${\mathcal C} \to {\mathcal A}$ is an exponentiable fibration, the functor $(-) \times _{{\mathcal A}}{\mathcal C} : \mathrm {Cat}_{\infty /{\mathcal A}} \to \mathrm {Cat}_{\infty /{\mathcal C}} \to \mathrm {Cat}_{\infty /{\mathcal A}}$ preserves small colimits. Hence the canonical functor

$$ \begin{align*}\mathrm{colim}_{{k} \in {\mathrm K}}({\mathrm H}({k}) \times_{{\mathcal A}} {\mathcal C}) \to {\mathcal C}\end{align*} $$

over $ \mathrm {colim} ({\mathrm H}) \simeq {\mathcal A} $ is an equivalence. Since the functor $\mathrm {Fun}_{{\mathcal A}}(-,{\mathcal D}): \mathrm {Cat}_{\infty /{\mathcal A}}^{\mathrm {op}} \to \infty \mathrm {Cat}$ preserves limits, the following canonical functor is an equivalence:

$$ \begin{align*}\mathrm{Fun}_{{\mathcal A}}({\mathcal C},{\mathcal D}) \to \mathrm{Fun}_{{\mathcal A}}(\mathrm{colim}_{{k} \in {\mathrm K}}{\mathrm H}({k}) \times_{{\mathcal A}} {\mathcal C},{\mathcal D}) \simeq \lim_{{k} \in {\mathrm K}} \mathrm{Fun}_{{\mathrm H}({k})}({\mathrm H}({k}) \times_{{\mathcal A}} {\mathcal C},{\mathrm H}({k}) \times_{{\mathcal A}}{\mathcal D}).\\[-47pt] \end{align*} $$

For the next corollary we use that for every ${n} \geq 0$ the category $[{n}]$ is the colimit in $\infty \mathrm {Cat}$ of the following diagram, in which all maps are inert:

Lemma 7.7 gives the following corollary:

Corollary 7.8. Let ${n} \geq 0$ and ${\mathcal B} \to {\mathcal C} $ a functor over $[{n}]$ whose pullback along any inert map $[1]\to [{n}]$ is an equivalence. For every exponentiable fibration ${\mathcal D} \to [{n}]$ the induced functor

$$ \begin{align*}\mathrm{Fun}_{[{n}]}({\mathcal D},{\mathcal B}) \to \mathrm{Fun}_{[{n}]}({\mathcal D},{\mathcal C})\end{align*} $$

is an equivalence.

Proof. There is a commutative square:

By Lemma 7.7 both horizontal functors in this square are equivalences. This implies the result.

Notation 7.9. Let ${n} \geq 0$ and $\phi : {\mathcal C} \to [{n}]$ be a functor. Pulling back diagram (7) along $\phi $ we obtain the following diagram over ${\mathcal C}:$

We write ${\mathcal C}'$ for the colimit of the latter diagram.

Corollary 7.10. Let ${n} \geq 0$ and ${\mathcal C} \to [{n}]$ be a functor.

  1. 1. The functor ${\mathcal C}' \to [{n}]$ is an exponentiable fibration.

  2. 2. For every exponentiable fibration ${\mathcal D} \to [{n}]$ the induced functor

    $$ \begin{align*}\mathrm{Fun}_{[{n}]}({\mathcal D},{\mathcal C}') \to \mathrm{Fun}_{[{n}]}({\mathcal D},{\mathcal C})\end{align*} $$

    is an equivalence.

Proof. By Corollary 3.26 for every $1 \leq {i} \leq {n}$ the inert maps $[1]\cong \{{i}-1< {i}\}\subset [{n}]$ are exponentiable fibrations. Hence the pullback of the canonical functor ${\mathcal C}' \to {\mathcal C}$ over $[{n}]$ along the map $[1]\cong \{{i}-1< {i}\}\subset [{n}]$ identifies with the canonical equivalence

$$ \begin{align*} \emptyset \coprod_{\emptyset} (\{{i}-1<{i}\}\times_{[{n}]} {\mathcal C}) \coprod_{\emptyset} \emptyset \to \{{i}-1<{i}\}\times_{[{n}]} {\mathcal C}.\end{align*} $$

This implies (2) by Corollary 7.8.

We prove (1). Since the pullback of the canonical functor ${\mathcal C}' \to {\mathcal C}$ over $[{n}]$ along the map $[1]\cong \{{i}-1< {i}\}\subset [{n}]$ is an equivalence, the functor ${\mathcal C}' \to [{n}]$ is the colimit of the following diagram:

This implies (1) by [Reference Ayala and Francis2, Corollary 2.2.13., Corollary 2.2.11.].

We obtain the following proposition:

Proposition 7.11. Let ${n} \geq 0$ . The embedding $\mathrm {EXP}_{[{n}]} \subset \infty \mathrm {Cat}_{/[{n}]}$ admits a right adjoint. A functor ${\mathcal C} \to {\mathcal D}$ over $[{n}]$ is a colocal equivalence if and only if it induces an equivalence after pulling back along any inert map $[1] \to [{n}].$

Proof. By 7.10 for every functor ${\mathcal C} \to [{n}]$ the functor ${\mathcal C}' \to [{n}]$ is an exponentiable fibration, and for every exponentiable fibration ${\mathcal D} \to [{n}]$ the induced functor

$$ \begin{align*}\mathrm{Fun}_{[{n}]}({\mathcal D},{\mathcal C}') \to \mathrm{Fun}_{[{n}]}({\mathcal D},{\mathcal C})\end{align*} $$

is an equivalence. This guarantees that the embedding $\mathrm {EXP}_{[{n}]} \subset \infty \mathrm {Cat}_{/[{n}]}$ admits a right adjoint that sends any functor ${\mathcal C} \to [{n}]$ to the functor ${\mathcal C}' \to [{n}]$ .

For the next notation let $\tau :=(-)^{\mathrm {op}}: \infty \mathrm {Cat} \to \infty \mathrm {Cat}$ be the opposite $\infty $ -category involution.

Proposition 7.12. The cartesian fibration ${\mathrm {CART}} \to \infty \mathrm {Cat}$ classifies the functor

$$ \begin{align*}{\mathrm{FUN}}(\tau^*{\mathrm N},\infty{\mathrm{CAT}}): \infty\mathrm{Cat}^{\mathrm{op}} \to \infty\widehat{\mathrm{Cat}}.\end{align*} $$

Proof. By Yoneda the cartesian fibration $\Delta \times _{\infty \mathrm {Cat}} {\mathrm {Cart}}=\tau ^*\infty {\mathrm {CAT}} \to \Delta $ classifies the functor

$$ \begin{align*}{\mathrm{FUN}}({\mathrm N}_{\mid \Delta},\tau^*\infty{\mathrm{CAT}}) \simeq {\mathrm{FUN}}(\tau^*{\mathrm N}_{\mid \Delta},\infty{\mathrm{CAT}}): \Delta^{\mathrm{op}} \to \infty\widehat{\mathrm{Cat}}.\end{align*} $$

Since the full subcategory $\Delta \subset \infty \mathrm {Cat}$ is dense, it is enough to verify that the functor $ \infty \mathrm {Cat}^{\mathrm {op}} \to \infty \widehat {\mathrm {Cat}}$ classified by the cartesian fibration ${\mathrm {CART}} \to \infty \mathrm {Cat}$ and the functor

$$ \begin{align*}{\mathrm{FUN}}(\tau^*{\mathrm N},\infty{\mathrm{CAT}}): \infty\mathrm{Cat}^{\mathrm{op}} \to \infty\widehat{\mathrm{Cat}}\end{align*} $$

send for every $\infty $ -category ${\mathcal C}$ the colimit of the functor $\rho : \Delta \times _{\infty \mathrm {Cat}} \infty \mathrm {Cat}_{/{\mathcal C}} \to \Delta \subset \infty \mathrm {Cat}$ to a limit. We first prove the second statement: because the functor

$$ \begin{align*}{\mathrm{FUN}}(-,\infty\mathrm{Cat}): \mathrm{Seg}(\infty\mathrm{Cat})^{\mathrm{op}} \to \infty\mathrm{Cat}\end{align*} $$

preserves small limits, it suffices to show that the embedding ${\mathrm N}: \infty \mathrm {Cat} \to \mathrm {Seg}({\mathcal S})\subset \mathrm {Seg}(\infty \mathrm {Cat})$ preserves the colimit of the functor $\Delta \times _{\infty \mathrm {Cat}} \infty \mathrm {Cat}_{/{\mathcal C}} \to \Delta \subset \infty \mathrm {Cat}$ . The embedding ${\mathrm N}: \infty \mathrm {Cat} \to \mathrm {Seg}({\mathcal S})$ preserves this colimit because $\mathrm {Seg}({\mathcal S})$ is a localization of ${\mathcal P}(\Delta )$ and so for every $\infty $ -category ${\mathcal C}$ the Segal space ${\mathrm N}({\mathcal C}) $ is the colimit of the functor

$$ \begin{align*}\Delta \times_{\mathrm{Seg}({\mathcal S})} \mathrm{Seg}({\mathcal S})_{/{\mathrm N}({\mathcal C})} \to \Delta \subset \infty\mathrm{Cat} \subset \mathrm{Seg}({\mathcal S}),\end{align*} $$

which factors as ${\mathrm N} \rho .$ The embedding $ \mathrm {Seg}({\mathcal S}) \subset \mathrm {Seg}(\infty \mathrm {Cat})$ preserves small colimits since the embedding $\mathrm {Fun}(\Delta ^{\mathrm {op}},{\mathcal S}) \subset \mathrm {Fun}(\Delta ^{\mathrm {op}},\infty \mathrm {Cat})$ preserve small colimits and Segal equivalences: the generating Segal equivalences for $\mathrm {Fun}(\Delta ^{\mathrm {op}},{\mathcal S})$ are the canonical morphisms

$$ \begin{align*}\Delta^1 \coprod_{\Delta^0} \ldots \coprod_{\Delta^0} \Delta^1 \to \Delta^{n}\end{align*} $$

for ${n} \geq 0$ , while the generating Segal equivalences for $\mathrm {Fun}(\Delta ^{\mathrm {op}},\infty \mathrm {Cat})$ are the canonical morphisms

$$ \begin{align*}\Delta^1 \coprod_{\Delta^0} \ldots \coprod_{\Delta^0} \Delta^1 \times {\mathcal A} \to \Delta^{n} \times {\mathcal A}\end{align*} $$

for ${n} \geq 0$ and ${\mathcal A}$ a small $\infty $ -category.

We finish the proof by showing that the cartesian fibration ${\mathrm {CART}} \to \infty \mathrm {Cat}$ classifies a small limits preserving functor $ \infty \mathrm {Cat}^{\mathrm {op}} \to \infty \widehat {\mathrm {Cat}}$ . Let ${\mathrm H}: {\mathrm K} \to \infty \mathrm {Cat}$ be a functor that admits a colimit ${\mathcal A}$ . The canonical $\infty \mathrm {Cat}$ -linear functor $\rho : {\mathrm {CART}}_{{\mathcal A}} \to \lim _{{k} \in {\mathrm K}}{\mathrm {CART}}_{{\mathrm H}({k})}$ induces on morphism $\infty $ -categories between two functors ${\mathcal C} \to {\mathcal A},{\mathcal D} \to {\mathcal A}$ the functor (7.1). The latter is an equivalence by Lemma 7.7 because by Corollary 3.27 every cartesian fibration is an exponentiable fibration. The induced map $\iota (\rho )$ is essentially surjective because it identifies with the canonical equivalence

$$ \begin{align*}\iota(\mathrm{Fun}({\mathcal A},\infty\mathrm{Cat}^{\mathrm{op}})) \to \lim_{{k} \in {\mathrm K}}\iota(\mathrm{Fun}({\mathrm H}({k}),\infty\mathrm{Cat}^{\mathrm{op}})).\end{align*} $$

Corollary 7.13. The cartesian fibration ${\mathrm {CART}}^{\mathrm L} \to \infty \widehat {\mathrm {Cat}}$ classifies the functor

$$ \begin{align*}{\mathrm{FUN}}(\tau^*{\mathrm N},{\mathrm{PR}}^{\mathrm L}): \infty\widehat{\mathrm{Cat}}^{\mathrm{op}} \to \infty\widehat{\widehat{\mathrm{Cat}}}.\end{align*} $$

Proof. By Proposition 7.12 the cartesian fibration $\widehat {{\mathrm {CART}}} \to \infty \widehat {\mathrm {Cat}}$ classifies the functor

$$ \begin{align*}{\mathrm{FUN}}(\tau^*{\mathrm N},\infty\widehat{\mathrm{Cat}}): \infty\widehat{\mathrm{Cat}}^{\mathrm{op}} \to \infty\widehat{\widehat{\mathrm{Cat}}}.\end{align*} $$

Hence the cartesian subfibration ${\mathrm {CART}}^{\mathrm L} \to \infty \widehat {\mathrm {Cat}}$ of $ \widehat {{\mathrm {CART}}} \to \infty \widehat {\mathrm {Cat}}$ classifies the subfunctor

$$ \begin{align*}{\mathrm{FUN}}(\tau^*{\mathrm N},\mathrm{Pr}^{\mathrm L}): \infty\widehat{\mathrm{Cat}}^{\mathrm{op}} \to \infty\widehat{\widehat{\mathrm{Cat}}}.\\[-37pt] \end{align*} $$

We obtain the following theorem:

Theorem 7.6.

  1. 1. The cartesian fibrations

    $$ \begin{align*}\infty{\mathrm{CAT}} \to \Delta,\end{align*} $$
    $$ \begin{align*}\mathrm{PR}^{\mathrm L}\to \Delta,\end{align*} $$
    $$ \begin{align*}{\mathrm{CORR}} \to \Delta\end{align*} $$

    are double $\infty $ -categories.

  2. 2. There is a canonical pullback square of double $\infty $ -categories:

Proof. We first prove (2). By Corollary 4.3 there is a canonical pullback square

(7.2)

of cartesian fibrations over $\infty \mathrm {Cat}$ . Taking the pullback of the latter square along the embedding $\Delta \subset \infty \mathrm {Cat}$ gives a pullback square

of cartesian fibrations over $\Delta $ . Since the full subcategory of double $\infty $ -categories within the $\infty $ -category of cartesian fibrations over $\Delta $ is closed under small limits, the latter pullback square is a pullback square of double $\infty $ -categories after we have proven that the cartesian fibrations $\infty {\mathrm {CAT}} \to \Delta , \mathrm {PR}^{\mathrm L}\to \Delta $ are double $\infty $ -categories. This will then also imply (1).

So it remains to prove that the cartesian fibrations $\infty {\mathrm {CAT}} \to \Delta , \mathrm {PR}^{\mathrm L}\to \Delta $ are double $\infty $ -categories.

The cartesian fibration $\infty {\mathrm {CAT}} \to \Delta $ is a double $\infty $ -category if for every ${n} \geq 0$ the induced functor

(7.3) $$ \begin{align} \infty{\mathrm{CAT}}_{[{n}]} \to \infty{\mathrm{CAT}}_{[1]} \times_{\infty{\mathrm{CAT}}_{[0]}} \ldots \times_{\infty{\mathrm{CAT}}_{[0]}} \infty{\mathrm{CAT}}_{[1]} \end{align} $$

is an equivalence. If this is shown, passing to a larger universe also the functor

$$ \begin{align*}\infty\widehat{{\mathrm{CAT}}}_{[{n}]} \to \infty\widehat{{\mathrm{CAT}}}_{[1]} \times_{\infty\widehat{{\mathrm{CAT}}}_{[0]}} \ldots \times_{\infty\widehat{{\mathrm{CAT}}}_{[0]}} \infty\widehat{{\mathrm{CAT}}}_{[1]}\end{align*} $$

is an equivalence, which by definition of $\mathrm {Pr}^{\mathrm L}$ restricts to an equivalence

$$ \begin{align*}\mathrm{Pr}^{\mathrm L}_{[{n}]} \to \mathrm{Pr}^{\mathrm L}_{[1]} \times_{\mathrm{Pr}^{\mathrm L}_{[0]}} \ldots \times_{\mathrm{Pr}^{\mathrm L}_{[0]}} \mathrm{Pr}^{\mathrm L}_{[1]}.\end{align*} $$

Therefore the cartesian fibration $\mathrm {PR}^{\mathrm L}\to \Delta $ is a double $\infty $ -category if the cartesian fibration $\infty {\mathrm {CAT}} \to \Delta $ is a double $\infty $ -category.

So it remains to prove that the functor (7.3) is an equivalence. By Proposition 7.12 the functor (7.3) identifies with the induced functor

$$ \begin{align*}{\mathrm{FUN}}(\tau^*\Delta^{n},\infty{\mathrm{CAT}}) \to\end{align*} $$
$$ \begin{align*}{\mathrm{FUN}}(\tau^*\Delta^1,\infty{\mathrm{CAT}}) \times_{{\mathrm{FUN}}(\tau^*\Delta^0,\infty{\mathrm{CAT}})} \ldots \times_{{\mathrm{FUN}}(\tau^*\Delta^0,\infty{\mathrm{CAT}})} {\mathrm{FUN}}(\tau^*\Delta^1,\infty{\mathrm{CAT}}).\end{align*} $$

The latter induces on maximal subspaces the induced map

$$ \begin{align*}\mathrm{Fun}([{n}]^{\mathrm{op}},\infty\mathrm{Cat}) \to \mathrm{Fun}([1]^{\mathrm{op}},\infty\mathrm{Cat}) \times_{\mathrm{Fun}([0]^{\mathrm{op}},\infty\mathrm{Cat})} \ldots \times_{\mathrm{Fun}([0]^{\mathrm{op}},\infty\mathrm{Cat})} \mathrm{Fun}([1]^{\mathrm{op}},\infty\mathrm{Cat}),\end{align*} $$

which is an equivalence since $[{n}] \simeq [1] \coprod _{[0]} \ldots \coprod _{[0]} [1]$ in $\infty \mathrm {Cat}.$

So it remains to see that the functor (7.3) is fully faithful. The functor (7.3) induces on mapping spaces between cocartesian fibrations ${\mathcal C} \to [{n}], {\mathcal D} \to [{n}]$ the map on maximal subspaces underlying the canonical functor

$$ \begin{align*}\mathrm{Fun}_{[{n}]}({\mathcal C},{\mathcal D}) \to\end{align*} $$
$$ \begin{align*}\mathrm{Fun}_{[1]}([1] \times_{[{n}]}{\mathcal C}, [1] \times_{[{n}]} {\mathcal D}) \times_{\mathrm{Fun}_{[0]}([0] \times_{[{n}]}{\mathcal C}, [0] \times_{[{n}]} {\mathcal D})} \ldots \mathrm{Fun}_{[1]}([1] \times_{[{n}]}{\mathcal C}, [1] \times_{[{n}]} {\mathcal D}).\end{align*} $$

The latter is an equivalence by Lemma 7.7 since every cocartesian fibration is exponentiable by Corollary 3.27.

For the next proposition we view $\infty \mathrm {Cat}$ as $(\infty ,2)$ -category via its internal hom:

Proposition 7.14. The $(\infty ,2)$ -category underlying the double $\infty $ -category $\infty {\mathrm {CAT}}$ is $\infty \mathrm {Cat}$ viewed as enriched in itself via the internal hom.

Proof. Let $\infty {\mathrm {CAT}}'$ be the $(\infty ,2)$ -category underlying the double $\infty $ -category $\infty {\mathrm {CAT}}$ . Then the space of objects of $\infty {\mathrm {CAT}}'$ is $\iota (\infty {\mathrm {CAT}}_{[0]}) \simeq \iota (\infty \mathrm {Cat})$ and for every ${\mathrm A},{\mathrm B} \in \infty \mathrm {Cat}$ there is a canonical equivalence

$$ \begin{align*}{\mathrm{Mor}}_{\infty{\mathrm{CAT}}'}({\mathrm A},{\mathrm B}) \simeq \{({\mathrm A},{\mathrm B})\} \times_{\infty{\mathrm{CAT}}^{\prime}_{[0]} \times \infty{\mathrm{CAT}}^{\prime}_{[0]}} \infty{\mathrm{CAT}}^{\prime}_{[1]} \simeq \{({\mathrm A},{\mathrm B})\} \times_{\infty{\mathrm{CAT}}_{[0]} \times \infty{\mathrm{CAT}}_{[0]}} \infty{\mathrm{CAT}}_{[1]}.\end{align*} $$

By the dual of Corollary 5.3 there is a canonical equivalence

$$ \begin{align*}\{({\mathrm A},{\mathrm B})\} \times_{\infty{\mathrm{CAT}}_{[0]} \times \infty{\mathrm{CAT}}_{[0]}} \infty{\mathrm{CAT}}_{[1]} \simeq \mathrm{Fun}({\mathrm A},{\mathrm B}).\end{align*} $$

In particular, for any ${\mathrm A},{\mathrm B},{\mathrm C} \in \infty \mathrm {Cat}$ there is a canonical equivalence

$$ \begin{align*}{\mathrm{Mor}}_{\infty{\mathrm{CAT}}'}({\mathrm A} \times {\mathrm B},{\mathrm C}) \simeq {\mathrm{Mor}}_{\infty{\mathrm{CAT}}'}({\mathrm A}, {\mathrm{Mor}}_{\infty{\mathrm{CAT}}'}({\mathrm B}, {\mathrm C}))\end{align*} $$

so that ${\mathrm A} \times {\mathrm B}$ is the tensor of ${\mathrm A}$ and ${\mathrm B}$ in the sense of [Reference Heine19, Definition 2.51.] of the $\infty \mathrm {Cat}$ -enriched $\infty $ -category $\infty {\mathrm {CAT}}'$ . Thus $\infty {\mathrm {CAT}}'$ admits all tensors. By [Reference Heine18, Remark 3.63., Corollary 6.13.] this implies that there is a unique 2-functor $\rho : \infty \mathrm {Cat} \to \infty {\mathrm {CAT}}'$ that preserves tensors and sends the final $\infty $ -category to the final $\infty $ -category. By [Reference Heine20, Corollary 4.50.] the 2-functor $\rho $ is an equivalence since the 2-functor ${\mathrm {Mor}}_{\infty {\mathrm {CAT}}'}(*,-): \infty \mathrm {Cat} \to \infty \mathrm {Cat}$ preserves tensors.

Notation 7.15. Let $ \infty \widehat {\mathrm {Cat}}$ be the $(\infty ,2)$ -category of large $\infty $ -categories. Let $\mathrm {Pr}^{\mathrm L} \subset \infty \widehat {\mathrm {Cat}}$ be the subcategory of the $(\infty ,2)$ -category $\infty \widehat {\mathrm {Cat}}$ of presentable $\infty $ -categories and left adjoints.

Corollary 7.16. The $(\infty ,2)$ -category underlying the double $\infty $ -category ${\mathrm {PR}}^{\mathrm L}$ is $\mathrm {Pr}^{\mathrm L}$ .

Proof. By Proposition 7.14 the $(\infty ,2)$ -category underlying the double $\infty $ -category $\infty \widehat {{\mathrm {CAT}}}$ is $\infty \widehat {\mathrm {Cat}}$ viewed as enriched in itself via the internal hom. Restricting to subcategories gives the result.

The following remark gives another interpretation of the $(\infty ,2)$ -category $\mathrm {Pr}^{\mathrm L}:$

Remark 7.7. By [Reference Lurie26, Proposition 4.8.1.15.] the underlying $\infty $ -category of $\mathrm {Pr}^{\mathrm L}$ admits a closed symmetric monoidal structure such that the inclusion ${j}: \mathrm {Pr}^{\mathrm L} \subset \infty \widehat {\mathrm {Cat}}$ of $\infty $ -categories refines to a lax symmetric monoidal functor. Being symmetric monoidal closed, the $\infty $ -category $\mathrm {Pr}^{\mathrm L}$ is enriched in itself [Reference Heine18, Proposition 6.10.] and so by transfer of enrichment along ${j}$ also enriched in $\infty \widehat {\mathrm {Cat}}$ . The lax symmetric monoidal inclusion ${j}$ gives rise to an inclusion of $(\infty ,2)$ -categories from $\mathrm {Pr}^{\mathrm L}$ - endowed with the transfered $\infty \widehat {\mathrm {Cat}}$ -enrichment - to $\infty \widehat {\mathrm {Cat}}$ endowed with the enrichment in itself by the internal hom, and so induces an equivalence from the transfered $\infty \widehat {\mathrm {Cat}}$ -enrichment on $\mathrm {Pr}^{\mathrm L}$ to the subcategory of the $(\infty ,2)$ -category $\infty \widehat {\mathrm {Cat}}$ of presentable $\infty $ -categories and left adjoint functors.

Definition 7.17. Let $\mathrm {Corr}$ be the $(\infty ,2)$ -precategory underlying the double $\infty $ -category ${\mathrm {CORR}}.$

Corollary 7.18. There is a canonical pullback square of $(\infty ,2)$ -precategories:

Proof. By Theorem 7.6 there is a canonical pullback square of double $\infty $ -categories:

Passing to underlying $(\infty ,2)$ -categories gives the result since by Corollary 7.16 the $(\infty ,2)$ -category underlying the double $\infty $ -category ${\mathrm {PR}}^{\mathrm L}$ is $\mathrm {Pr}^{\mathrm L}$ .

Corollary 7.19. The univalent completion of the $(\infty ,2)$ -precategory ${\mathrm {Corr}}$ is the full subcategory of the $(\infty ,2)$ -category $\mathrm {Pr}^{\mathrm L}$ spanned by the $\infty $ -categories of presheaves.

Proof. We prove that the canonical 2-functor $\theta : \mathrm {Corr} \to \mathrm {Pr}^{\mathrm L}$ is fully faithful, that is, induces equivalences on morphism $\infty $ -categories. This implies the result since in this case the 2-functor $\theta $ induces a fully faithful and essentially surjective 2-functor from ${\mathrm {Corr}} $ to the full subcategory of $\mathrm {Pr}^{\mathrm L}$ spanned by the $\infty $ -categories of presheaves. The latter 2-functor exhibits the target as the univalent completion of the source since by [Reference Heine18, Corollary 6.12.] the local equivalences to a local object for the univalent completion are precisely the fully faithful and essentially surjective 2-functors.

So we prove that $\theta : \mathrm {Corr} \to \mathrm {Pr}^{\mathrm L}$ is fully faithful. Evaluating the pullback square of Corollary 7.18 at $[1]\in \Delta $ gives a pullback square

of $\infty $ -categories, which induces on the fiber over any ${\mathrm X},{\mathrm Y} \in \iota (\infty \mathrm {Cat})$ the induced functor

$$ \begin{align*}{\mathrm{Mor}}_{\mathrm{Corr}}({\mathrm X},{\mathrm Y}) \to {\mathrm{Mor}}_{\mathrm{Pr}^{\mathrm L}}({\mathrm X},{\mathrm Y})\end{align*} $$

on morphism $\infty $ -categories. The latter functor is an equivalence since the square is a pullback square.

Corollary 7.20. Let ${\mathcal C}$ be a small $\infty $ -category. There is a canonical equivalence of $\infty $ -categories

$$ \begin{align*}{\mathrm{FUN}}({\mathrm N}({\mathcal C}), {\mathrm{CORR}}) \simeq \mathrm{EXP}_{{\mathcal C}^{\mathrm{op}}}.\end{align*} $$

Proof. By Corollary 4.3 and Proposition 7.13 there is a canonical equivalence

$$ \begin{align*}{\mathrm{FUN}}({\mathrm N}({\mathcal C}), {\mathrm{CORR}}) \simeq {\mathrm{FUN}}({\mathrm N}({\mathcal C}), \Delta_{\infty\mathrm{Cat}}) \times_{{\mathrm{FUN}}({\mathrm N}({\mathcal C}), \Delta_{\mathrm{Pr}^{\mathrm L}})}{\mathrm{FUN}}({\mathrm N}({\mathcal C}), {\mathrm{PR}}^{\mathrm L}) \simeq\end{align*} $$
$$ \begin{align*}\mathrm{Fun}(\iota({\mathcal C}), \infty\mathrm{Cat}) \times_{\mathrm{Fun}(\iota({\mathcal C}),\mathrm{Pr}^{\mathrm L})}{\mathrm{FUN}}({\mathrm N}({\mathcal C}), {\mathrm{PR}}^{\mathrm L}) \simeq\end{align*} $$
$$ \begin{align*}\infty\mathrm{Cat}_{/\iota({\mathcal C})} \times_{\mathrm{CART}^{\mathrm L}_{\iota({\mathcal C})} } \mathrm{CART}^{\mathrm L}_{{\mathcal C}^{\mathrm{op}}} \simeq \mathrm{EXP}_{{\mathcal C}^{\mathrm{op}}}.\\[-39pt] \end{align*} $$

In the following we prove a refinement of Corollary 7.20.

Notation 7.21. Let $\phi : {\mathcal A} \to \Delta $ be a cartesian fibration. Let ${\mathcal A}^\vee \to \Delta ^{\mathrm {op}}$ be the corresponding cocartesian fibration classifying the same functor as $\phi .$

Definition 7.22. Let ${\mathcal A} \to \Delta , {\mathcal B} \to \Delta $ be double $\infty $ -categories.

  • A lax map of double $\infty $ -categories ${\mathcal A} \to {\mathcal B}$ is a functor ${\mathcal A}^\vee \to {\mathcal B}^\vee $ over $\Delta ^{\mathrm {op}}$ preserving cocartesian lifts of inert morphisms of $\Delta $ (Definition 3.25).

  • A lax normal map of double $\infty $ -categories ${\mathcal A} \to {\mathcal B}$ is a functor ${\mathcal A}^\vee \to {\mathcal B}^\vee $ over $\Delta ^{\mathrm {op}}$ preserving cocartesian lifts of inert morphisms of $\Delta $ and cocartesian lifts of morphisms of the form $[{n}] \to [0]$ for ${n} \geq 0$ .

The embedding ${\mathrm {CORR}} \subset {\mathrm {CORR}}_{\mathrm {Lax}}$ of cartesian fibrations over $\Delta $ induces an embedding ${\mathrm {CORR}}^\vee \subset {\mathrm {CORR}}^\vee _{\mathrm {Lax}}$ of cocartesian fibrations over $\Delta ^{\mathrm {op}}.$

Corollary 7.23. The embedding ${\mathrm {CORR}}^\vee \subset {\mathrm {CORR}}_{\mathrm {Lax}}^\vee $ of cocartesian fibrations over $\Delta ^{\mathrm {op}}$ admits a right adjoint relative to $\Delta ^{\mathrm {op}}.$

Proof. To see that the embedding ${\mathrm {CORR}}^\vee \subset {\mathrm {CORR}}_{\mathrm {Lax}}^\vee $ of cocartesian fibrations over $\Delta ^{\mathrm {op}}$ admits a right adjoint relative to $\Delta ^{\mathrm {op}},$ by [Reference Lurie26, Proposition 7.3.2.6.] it suffices to see that for every $[{n}] \in \Delta $ the induced functor

$$ \begin{align*}({\mathrm{CORR}}^\vee)_{[{n}]} \subset ({\mathrm{CORR}}_{\mathrm{Lax}}^\vee)_{[{n}]}\end{align*} $$

on the fiber over $[{n}]$ admits a right adjoint. The latter functor is the embedding $\mathrm {EXP}_{[{n}]} \subset \infty \mathrm {Cat}_{/[{n}]}$ , which admits a right adjoint by Proposition 7.11.

Example 7.8. The relative right adjoint ${\mathrm {CORR}}_{\mathrm {Lax}}^\vee \to {\mathrm {CORR}}^\vee $ preserves cocartesian lifts of inert morphisms because the left adjoint does. So the right adjoint determines a lax map ${\mathrm {CORR}}_{\mathrm {Lax}} \to {\mathrm {CORR}}$ of double $\infty $ -categories, which is a lax normal map.

Remark 7.9. Let ${\mathcal A} \to \Delta , {\mathcal B} \to \Delta $ be double $\infty $ -categories. There is a canonical equivalence

$$ \begin{align*}{\mathrm{FUN}}({\mathcal A},{\mathcal B}) \simeq \mathrm{Fun}^{\mathrm{cocart}}_{\Delta^{\mathrm{op}}}({\mathcal A}^\vee,{\mathcal B}^\vee)\end{align*} $$

to the full subcategory of $ \mathrm {Fun}_{\Delta ^{\mathrm {op}}}({\mathcal A}^\vee ,{\mathcal B}^\vee )$ spanned by the maps ${\mathcal A}^\vee \to {\mathcal B}^\vee $ of cocartesian fibrations over $\Delta ^{\mathrm {op}}$ .

Notation 7.24. Let ${\mathcal A} \to \Delta , {\mathcal B} \to \Delta $ be double $\infty $ -categories.

  • Let

    $$ \begin{align*}\mathrm{Lax}\mathrm{Fun}({\mathcal A},{\mathcal B}) \subset \mathrm{Fun}_{\Delta^{\mathrm{op}}}({\mathcal A}^\vee,{\mathcal B}^\vee)\end{align*} $$

    be the full subcategory spanned by the lax maps of double $\infty $ -categories ${\mathcal A} \to {\mathcal B}.$

  • Let

    $$ \begin{align*}{\mathrm N}\mathrm{Lax}\mathrm{Fun}({\mathcal A},{\mathcal B}) \subset \mathrm{Fun}_{\Delta^{\mathrm{op}}}({\mathcal A}^\vee,{\mathcal B}^\vee)\end{align*} $$

    be the full subcategory spanned by the lax normal maps of double $\infty $ -categories ${\mathcal A} \to {\mathcal B}.$

Notation 7.25. Let ${\mathrm {Act}} \subset \mathrm {Fun}([1],\Delta )$ be the full subcategory of active morphisms, that is, order preserving maps $[{n}]\to [{m}]$ preserving the minimum and maximum.

Let ${\mathcal C} \to \Delta $ be a double $\infty $ -category. By [Reference Heine18, Proposition 3.92.] evaluation at the target

(7.4) $$ \begin{align} {\mathrm{Act}}^{\mathrm{op}} \times_{\Delta^{\mathrm{op}}} {\mathcal C}^\vee \to {\mathrm{Act}}^{\mathrm{op}} \to \Delta^{\mathrm{op}}\end{align} $$

is a cocartesian fibration, where the pullback is formed along evaluation at the source.

Notation 7.26. Let ${\mathcal C} \to \Delta $ be a double $\infty $ -category. Let ${\mathrm {Env}}({\mathcal C}) \to \Delta $ be the cartesian fibration corresponding to the cocartesian fibration (7.4).

By [Reference Heine18, Proposition 3.92.] the cartesian fibration ${\mathrm {Env}}({\mathcal C}) \to \Delta $ is a double $\infty $ -category and for every double $\infty $ -category $ {\mathcal D} \to \Delta $ the induced functor

$$ \begin{align*}{\mathrm{FUN}}({\mathrm{Env}}({\mathcal C}),{\mathcal D}) \to \mathrm{Lax}\mathrm{Fun}({\mathcal C},{\mathcal D})\end{align*} $$

is an equivalence.

Example 7.10. The diagonal embedding $\Delta \subset {\mathrm {Act}}$ induces an embedding ${\mathcal C}^\vee \subset {\mathrm {Act}}^{\mathrm {op}} \times _{\Delta ^{\mathrm {op}}} {\mathcal C}^\vee $ over $\Delta ^{\mathrm {op}}$ that determines a lax map of double $\infty $ -categories ${\mathcal C} \to {\mathrm {Env}}({\mathcal C}).$

Remark 7.11. By [Reference Heine18, Proposition 3.93.] the embedding ${\mathcal C}^\vee \subset {\mathrm {Act}}^{\mathrm {op}} \times _{\Delta ^{\mathrm {op}}} {\mathcal C}^\vee $ over $\Delta ^{\mathrm {op}}$ admits a left adjoint relative to $\Delta ^{\mathrm {op}}$ , which is a map of cocartesian fibrations over $\Delta ^{\mathrm {op}}.$ So this left adjoint corresponds to a map ${\mathrm {Env}}({\mathcal C}) \to {\mathcal C}$ of cartesian fibrations over $\Delta $ , in other words to a map of double $\infty $ -categories.

Remark 7.12. Let ${\mathcal C} \to \Delta $ be a double $\infty $ -category. There is a canonical equivalence ${\mathrm {Env}}({\mathcal C})_{[0]} \simeq {\mathcal C}^\vee _{[0]} \simeq {\mathcal C}_{[0]}$ since ${\mathrm {Act}}_{[0]/} $ is contractible. Consequently, ${\mathrm {Env}}({\mathcal C}) \to \Delta $ is an $(\infty ,2)$ -precategory if ${\mathcal C} \to \Delta $ is an $(\infty ,2)$ -precategory.

Remark 7.13. Let ${\mathcal C} \to \Delta $ be a double $\infty $ -category. Every morphism of ${\mathrm {Env}}({\mathcal C})$ , that is, object of ${\mathrm {Env}}({\mathcal C})_{[1]}$ , lies in the image of the restricted composition functor

$$ \begin{align*}{\mathcal C}_{[1]} \times_{{\mathcal C}_{[0]}} \ldots \times_{{\mathcal C}_{[0]} }{\mathcal C}_{[1]} \subset {\mathrm{Env}}({\mathcal C})_{[1]} \times_{{\mathrm{Env}}({\mathcal C})_{[0]}} \ldots \times_{{\mathrm{Env}}({\mathcal C})_{[0]} }{\mathrm{Env}}({\mathcal C})_{[1]} \to {\mathrm{Env}}({\mathcal C})_{[1]}.\end{align*} $$

In other words, any horizontal morphism of ${\mathrm {Env}}({\mathcal C})\to \Delta $ is of the form $\alpha _1 \circ \ldots \circ \alpha _{n}$ for some ${n} \geq 0$ and composable horizontal morphisms $\alpha _1 ,\ldots, \alpha _{n}$ of ${\mathcal C}$ , where $\circ $ is the horizontal composition.

Remark 7.14. Let ${\mathcal C} \to \Delta $ be an $(\infty ,2)$ -category. Then ${\mathrm {Env}}({\mathcal C}) \to \Delta $ is an $(\infty ,2)$ -category: by Remark 7.12 the canonical map $\iota ({\mathrm {Env}}({\mathcal C})_{[0]}) \to \iota ({\mathrm {Env}}({\mathcal C})_{[1]})$ factors as

$$ \begin{align*}\iota({\mathrm{Env}}({\mathcal C})_{[0]}) \simeq \iota({\mathcal C}_{[0]}) \to \iota({\mathcal C}_{[1]}) \subset \iota({\mathrm{Env}}({\mathcal C})_{[1]})\end{align*} $$

and so is an embedding if ${\mathcal C} $ is an $(\infty ,2)$ -category. Hence in view of Remark 7.13 it suffices to observe that for every ${n}, {m} \geq 0$ and composable horizontal morphisms $\alpha _1,\ldots, \alpha _{n}, \beta _1 ,\ldots, \beta _{m}$ of $ {\mathcal C}\to \Delta $ such that the horizontal composition $\alpha _1 \circ \ldots \circ \alpha _{n} \circ \beta _1 \circ \ldots \circ \beta _{m}$ in ${\mathrm {Env}}({\mathcal C}) \to \Delta $ is the 0-fold composition, we find that ${n}+{m}=0$ so that ${n}={m}=0.$

Notation 7.27. Let $\phi : {\mathcal C} \to \Delta $ be an $\infty $ -precategory and ${\mathcal W}$ a set of morphisms of ${\mathcal C}_{[1]}$ corresponding to 2-morphisms of ${\mathcal C} \to \Delta $ . For every ${n} \geq 1$ let ${\mathcal W}_{n}$ be the set of morphisms of ${\mathcal C}_{[{n}]}$ whose image under the functor ${\mathcal C}_{[{n}]}\to {\mathcal C}_{[1]} $ induced by the map $[1] \cong \{{i}-1<{i}\}\to [{n}]$ for any $0 \leq {i} < {n}$ is a morphism of ${\mathcal W}.$ Let ${\mathcal W}_0$ be the set of all morphisms of ${\mathcal C}_{[0]}.$ Let $\bar {{\mathcal W}} $ be the smallest set of morphisms of ${\mathcal C}$ containing all images of morphisms of ${\mathcal W}_{n}$ in ${\mathcal C}$ for ${n} \geq 0.$

Let $\phi : {\mathcal C} \to \Delta $ be an $\infty $ -precategory and ${\mathcal W}$ a set of morphisms of ${\mathcal C}_{[1]}$ . Let ${\mathcal C}[{\mathcal W}]:= {\mathcal C}[\bar {{\mathcal W}}]$ be the localization of the $\infty $ -category ${\mathcal C}$ with respect to the set $\bar {{\mathcal W}}$ . The functor $\phi : {\mathcal C} \to \Delta $ induces a functor ${\mathcal C}[{\mathcal W}] \to \Delta $ , which by [Reference Hinich24, 2.1.4. Proposition] is a cartesian fibration whose fiber over any $[{n}]\in \Delta $ is the localization ${\mathcal C}_{[{n}]}[{\mathcal W}_{n}].$ In particular, ${\mathcal C}[{\mathcal W}]_{[0]} \simeq {\mathcal C}_{[0]}[{\mathcal W}_0] \simeq {\mathcal C}_{[0]}.$ By the next lemma the cartesian fibration ${\mathcal C}[{\mathcal W}] \to \Delta $ is an $\infty $ -precategory.

Lemma 7.28. Let ${\mathcal C}$ be a space, ${\mathcal A} \to {\mathcal C}, {\mathcal B} \to {\mathcal C}$ functors and ${\mathcal W} $ a set of morphisms of ${\mathcal A}$ and ${\mathcal V}$ a set of morphisms of ${\mathcal B}$ containing all equivalences. The canonical functor

$$ \begin{align*}\theta: ({\mathcal A} \times_{\mathcal C} {\mathcal B})[{\mathcal W} \times_{\mathcal C} {\mathcal V}] \to {\mathcal A}[{\mathcal W}]\times_{\mathcal C} {\mathcal B}[{\mathcal V}]\end{align*} $$

is an equivalence.

Proof. The functor $\theta $ is a functor over the space ${\mathcal C}$ and so is an equivalence if it induces an equivalence on the fiber over every ${\mathrm Z} \in {\mathcal C}.$ For every ${\mathrm Z} \in {\mathcal C}$ let ${\mathcal W}_{\mathrm Z}$ be the set of morphisms of ${\mathcal A}_{\mathrm Z}$ whose image in ${\mathcal A}$ belongs to ${\mathcal W}.$ Similarly, we define ${\mathcal V}_{\mathrm Z}.$ The functor $\theta $ induces on the fiber over ${\mathrm Z}$ the canonical functor

$$ \begin{align*}({\mathcal A} \times_{\mathcal C} {\mathcal B})[{\mathcal W} \times_{\mathcal C} {\mathcal V}]_{\mathrm Z} \to {\mathcal A}[{\mathcal W}]_{\mathrm Z} \times {\mathcal B}[{\mathcal V}]_{\mathrm Z},\end{align*} $$

which by [Reference Hinich24, 2.1.4. Proposition] identifies with the canonical functor

$$ \begin{align*}({\mathcal A}_{\mathrm Z} \times {\mathcal B}_{\mathrm Z})[{\mathcal W}_{\mathrm Z} \times {\mathcal V}_{\mathrm Z}] \to {\mathcal A}_{\mathrm Z}[{\mathcal W}_{\mathrm Z}] \times {\mathcal B}_{\mathrm Z}[{\mathcal V}_{\mathrm Z}].\end{align*} $$

The latter is an equivalence by universal property of the localization using that ${\mathcal W},{\mathcal V}$ contain all equivalences.

Definition 7.29. Let ${\mathcal C} \to \Delta $ be an $\infty $ -precategory. Let ${\mathrm N}{\mathrm {Env}}({\mathcal C}) \to \Delta $ be the localization of ${\mathrm {Env}}({\mathcal C}) \to \Delta $ with respect to the smallest set of ${\mathrm {Env}}({\mathcal C})_{[1]}$ containing the morphisms $\mathrm {id}^{{\mathrm {Env}}({\mathcal C})}_{\mathrm X} \to \mathrm {id}^{\mathcal C}_{\mathrm X} $ of ${\mathrm {Env}}({\mathcal C})_{[1]}$ for ${\mathrm X} \in {\mathcal C}_{[0]}$ and all equivalences of ${\mathrm {Env}}({\mathcal C})_{[1]}$ and closed under horizontal composition of the $\infty $ -precategory ${\mathrm {Env}}({\mathcal C}) \to \Delta .$

Remark 7.15. The localization ${\mathrm {Env}}({\mathcal C})^\vee \to {\mathcal C}^\vee $ relative to $\Delta ^{\mathrm {op}}$ whose left adjoint inverts local equivalences, gives rise to a localization ${\mathrm N}{\mathrm {Env}}({\mathcal C})^\vee \to {\mathcal C}^\vee $ relative to $\Delta ^{\mathrm {op}}.$ Hence the right adjoint is an embedding ${\mathcal C}^\vee \subset {\mathrm N}{\mathrm {Env}}({\mathcal C})^\vee $ that factors as

$$ \begin{align*}{\mathcal C}^\vee \to {\mathrm{Env}}({\mathcal C})^\vee \to {\mathrm N}{\mathrm{Env}}({\mathcal C})^\vee\end{align*} $$

and so corresponds to a lax normal map ${\mathcal C} \to {\mathrm N}{\mathrm {Env}}({\mathcal C})$ of double $\infty $ -categories.

Remark 7.16. By definition the canonical functor ${\mathrm {Env}}({\mathcal C}) \to {\mathrm N}{\mathrm {Env}}({\mathcal C})$ over $\Delta $ induces an equivalence ${\mathrm {Env}}({\mathcal C})_{[0]} \simeq {\mathrm N}{\mathrm {Env}}({\mathcal C})_{[0]}.$ Thus the embedding ${\mathcal C}^\vee \subset {\mathrm N}{\mathrm {Env}}({\mathcal C})^\vee $ over $\Delta $ induces an equivalence ${\mathcal C}_{[0]} \simeq {\mathrm N}{\mathrm {Env}}({\mathcal C})_{[0]}.$

Remark 7.17. Let ${\mathcal C} \to \Delta $ be an $(\infty ,2)$ -category. Then ${\mathrm N}{\mathrm {Env}}({\mathcal C}) \to \Delta $ is an $(\infty ,2)$ -category by a similar argument like in Remark 7.14: by Remark 7.16 the canonical map $\iota ({\mathrm N}{\mathrm {Env}}({\mathcal C})_{[0]}) \to \iota ({\mathrm N}{\mathrm {Env}}({\mathcal C})_{[1]})$ factors as

$$ \begin{align*}\iota({\mathrm N}{\mathrm{Env}}({\mathcal C})_{[0]}) \simeq \iota({\mathcal C}_{[0]}) \to \iota({\mathcal C}_{[1]}) \subset \iota({\mathrm N}{\mathrm{Env}}({\mathcal C})_{[1]})\end{align*} $$

and so is an embedding if ${\mathcal C} $ is an $(\infty ,2)$ -category. So it suffices to observe that for every ${n}, {m} \geq 0$ and composable horizontal morphisms $\alpha _1,\ldots, \alpha _{n}, \beta _1 ,\ldots, \beta _{m}$ of $ {\mathcal C}\to \Delta $ different from identities such that the horizontal composition $\alpha _1 \circ \ldots \circ \alpha _{n} \circ \beta _1 \circ \ldots \circ \beta _{m}$ in ${\mathrm N}{\mathrm {Env}}({\mathcal C}) \to \Delta $ is the 0-fold composition, we have that ${n}+{m}=0$ and so ${n}={m}=0.$

Remark 7.18. Let ${\mathcal C} \to \Delta , {\mathcal D} \to \Delta $ be double $\infty $ -categories. By definition the induced functor ${\mathrm {FUN}}({\mathrm N}{\mathrm {Env}}({\mathcal C}),{\mathcal D}) \to {\mathrm {FUN}}({\mathrm {Env}}({\mathcal C}),{\mathcal D})$ is fully faithful and the equivalence

$$ \begin{align*}{\mathrm{FUN}}({\mathrm{Env}}({\mathcal C}),{\mathcal D}) \simeq \mathrm{Lax}\mathrm{Fun}({\mathcal C},{\mathcal D})\end{align*} $$

restricts to an equivalence

$$ \begin{align*}{\mathrm{FUN}}({\mathrm N}{\mathrm{Env}}({\mathcal C}),{\mathcal D}) \to {\mathrm N}\mathrm{Lax}\mathrm{Fun}({\mathcal C},{\mathcal D}).\end{align*} $$

Proposition 7.30. Let ${\mathcal C}$ be a small $(\infty ,2)$ -category. There is a canonical equivalence

$$ \begin{align*}\mathrm{Lax}\mathrm{Fun}({\mathcal C}, \infty{\mathrm{CAT}}) \simeq \mathrm{Lo}\mathrm{CART}_{\tau^*{\mathcal C}}.\end{align*} $$

Proof. There is a chain of canonical equivalences of $\infty $ -categories

$$ \begin{align*}\mathrm{Lax}\mathrm{Fun}({\mathcal C}, \infty{\mathrm{CAT}}) \simeq {\mathrm{FUN}}({\mathrm N}{\mathrm{Env}}({\mathcal C}), \infty{\mathrm{CAT}}) \simeq \mathrm{CART}_{\tau^*{\mathrm N}{\mathrm{Env}}({\mathcal C})} \simeq\end{align*} $$
$$ \begin{align*}\mathrm{CART}_{{\mathrm N}{\mathrm{Env}}(\tau^*{\mathcal C})} \simeq \mathrm{Lo}\mathrm{CART}_{\tau^*{\mathcal C}}.\end{align*} $$

The first equivalence holds by the universal property of ${\mathrm N}{\mathrm {Env}}({\mathcal C}) \to \Delta $ of Remark 7.18. The second equivalence is straightening of cartesian fibrations. The third equivalence is induced by the canonical equivalence $\tau ^*{\mathrm N}{\mathrm {Env}}({\mathcal C}) \simeq {\mathrm N}{\mathrm {Env}}(\tau ^*{\mathcal C})$ over $\Delta $ , which follows immediately from the construction of ${\mathrm {Env}}({\mathcal C})\to \Delta .$ The last equivalence is by [Reference Ayala, Mazel-Gee and Rozenblyum3, Theorem B.4.3.].

Corollary 7.31. Let ${\mathcal C}$ be a small $\infty $ -category. There is a canonical equivalence

$$ \begin{align*}\mathrm{Lax}\mathrm{Fun}({\mathrm N}({\mathcal C}), {\mathrm{CORR}}) \simeq \infty\mathrm{Cat}_{/{\mathcal C}^{\mathrm{op}}}.\end{align*} $$

Proof. By Proposition 7.30 (applied to a larger universe) there is a canonical equivalence

$$ \begin{align*}\mathrm{Lax}\mathrm{Fun}({\mathrm N}({\mathcal C}), \infty\widehat{{\mathrm{CAT}}}) \simeq \mathrm{Lo}\widehat{\mathrm{CART}}_{{\mathcal C}^{\mathrm{op}}}\end{align*} $$

that restricts to an equivalence

$$ \begin{align*}\mathrm{Lax}\mathrm{Fun}({\mathrm N}({\mathcal C}), {\mathrm{PR}}^{\mathrm L}) \simeq \mathrm{LoCART}^{\mathrm L}_{{\mathcal C}^{\mathrm{op}}}.\end{align*} $$

Hence by Corollary 4.3 and Proposition 7.13 we obtain a canonical equivalence

$$ \begin{align*}\mathrm{Lax}\mathrm{Fun}({\mathrm N}({\mathcal C}), {\mathrm{CORR}}) \simeq\end{align*} $$
$$ \begin{align*}\mathrm{Lax}\mathrm{Fun}({\mathrm N}({\mathcal C}), \Delta_{\infty\mathrm{Cat}}) \times_{\mathrm{Lax}\mathrm{Fun}({\mathrm N}({\mathcal C}), \Delta_{\mathrm{Pr}^{\mathrm L}})}\mathrm{Lax}\mathrm{Fun}({\mathrm N}({\mathcal C}), {\mathrm{PR}}^{\mathrm L}) \simeq\end{align*} $$
$$ \begin{align*}\mathrm{Fun}(\iota({\mathcal C}), \infty\mathrm{Cat}) \times_{\mathrm{Fun}(\iota({\mathcal C}),\mathrm{Pr}^{\mathrm L})}\mathrm{Lax}\mathrm{Fun}({\mathrm N}({\mathcal C}), {\mathrm{PR}}^{\mathrm L}) \simeq\end{align*} $$
$$ \begin{align*}\infty\mathrm{Cat}_{/\iota({\mathcal C})} \times_{\mathrm{LoCART}^{\mathrm L}_{\iota({\mathcal C})} } \mathrm{LoCART}^{\mathrm L}_{{\mathcal C}^{\mathrm{op}}} \simeq\end{align*} $$
$$ \begin{align*}\infty\mathrm{Cat}_{/{\mathcal C}^{\mathrm{op}}}.\\[-39pt]\end{align*} $$

Example 7.19. Let ${\mathcal A} \to {\mathcal C}$ be an exponentiable fibration and ${\mathcal B} \to {\mathcal C}$ a functor. By the defining property of exponentiability the functor

$$ \begin{align*}{\mathcal A} \times_{\mathcal C} (-) : \infty\mathrm{Cat}_{/{\mathcal C}} \to \infty\mathrm{Cat}_{/{\mathcal C}}\end{align*} $$

admits a right adjoint $\mathrm {Fun}^{\mathcal C}({\mathcal A},-).$ The internal hom $\mathrm {Fun}^{{\mathcal C}}({\mathcal A},{\mathcal B})\to {\mathcal C} $ classifies a lax normal functor ${\mathcal C}^{\mathrm {op}} \to {\mathrm {CORR}}$ that sends any morphism $\theta : X \to Y$ in ${\mathcal C}$ to a pro-functor

$$ \begin{align*}\mathrm{Fun}^{{\mathcal C}}({\mathcal A},{\mathcal B})_Y \simeq \mathrm{Fun}({\mathcal A}_Y,{\mathcal B}_Y) \to \mathrm{Fun}^{{\mathcal C}}({\mathcal A},{\mathcal B})_X \simeq \mathrm{Fun}({\mathcal A}_X,{\mathcal B}_X)\end{align*} $$

corresponding to a functor

$$ \begin{align*}\gamma: \mathrm{Fun}({\mathcal A}_X,{\mathcal B}_X)^{\mathrm{op}} \times \mathrm{Fun}({\mathcal A}_Y,{\mathcal B}_Y) \to {\mathcal S}.\end{align*} $$

The functors ${\mathcal A} \to {\mathcal C}, {\mathcal B} \to {\mathcal C}$ classify lax normal functors ${\mathcal C}^{\mathrm {op}} \to {\mathrm {CORR}}$ , where the first classifies a functor that sends the morphism $\theta : X \to Y$ to pro-functors $ {\mathrm A}_Y \to {\mathcal A}_X, {\mathcal B}_Y \to {\mathcal B}_X$ corresponding to functors

$$ \begin{align*}\alpha: {\mathcal A}_X^{\mathrm{op}} \times {\mathcal A}_Y \to {\mathcal S}, \ \beta: {\mathcal B}_X^{\mathrm{op}} \times {\mathcal B}_Y \to {\mathcal S}.\end{align*} $$

Let $\rho : {\mathcal W} \to {\mathcal A}_X^{\mathrm {op}} \times {\mathcal A}_Y$ be the left fibration classified by $\alpha $ . By construction of the Grothendieck-construction the functor $\gamma $ sends any pair $(F,G) \in \mathrm {Fun}({\mathcal A}_X,{\mathcal B}_X)^{\mathrm {op}} \times \mathrm {Fun}({\mathcal A}_Y,{\mathcal B}_Y)$ to the mapping space

$$ \begin{align*}\mathrm{Fun}^{[1]}([1] \times_{\mathcal C} {\mathcal A}, [1] \times_{\mathcal C} {\mathcal B})(F,G),\end{align*} $$

where the pullbacks are taken along $\theta .$ By Theorem 6.2 the mapping space $ \mathrm {Fun}^{[1]}([1] \times _{\mathcal C} {\mathcal A}, [1] \times _{\mathcal C} {\mathcal B})(F,G)$ is the limit of the functor $\beta \circ (F^{\mathrm {op}} \times G) \circ \rho : {\mathcal W} \to {\mathcal S}. $

Competing interests

The author has no competing interest to declare.

References

Abellán, F., Gagna, A. and Haugseng, R., ‘Straightening for lax transformations and adjunctions of $\left(\infty, 2\right)$ -categories’, Sel. Math. 31(4) (2025), 85.10.1007/s00029-025-01084-zCrossRefGoogle Scholar
Ayala, D. and Francis, J., ‘Fibrations of $\infty$ -categories’, Higher Structures 4 (2020), 168265, 02.10.21136/HS.2020.05CrossRefGoogle Scholar
Ayala, D., Mazel-Gee, A. and Rozenblyum, N., Stratified Noncommutative Geometry, vol. 297 (American Mathematical Society, Providence, Rhode Island, USA, 2024).Google Scholar
Bachmann, T. and Hoyois, M., ‘Norms in motivic homotopy theory’, Astérisque 425 (2021), 1199.10.24033/ast.1147CrossRefGoogle Scholar
Barwick, C., Dotto, E., Glasman, S., Nardin, D. and Shah, J., ‘Parametrized higher category theory and higher algebra: A general introduction’, 2016, arXiv:1608.03654.Google Scholar
Barwick, C., Dotto, E., Glasman, S., Nardin, D. and Shah, J., ‘Parametrized higher category theory and higher algebra: Exposé i–elements of parametrized higher category theory’, 2016, arXiv:1608.03657.Google Scholar
Barwick, C. and Glasman, S., ‘On the fibrewise effective Burnside $\infty$ -category’, 2016, arXiv:1607.02786.Google Scholar
Barwick, C. and Shah, J., ‘Fibrations in $\infty$ -category theory’. In 2016 MATRIX Annals (Springer, 2018), 1742.10.1007/978-3-319-72299-3_2CrossRefGoogle Scholar
Blom, T., ‘On the straightening of every functor’, 2024, arXiv preprint, arXiv:2408.16539.Google Scholar
Cnossen, B., Haugseng, R., Lenz, T. and Linskens, S., ‘Normed equivariant ring spectra and higher Tambara functors’, 2024, arXiv:2407.08399.Google Scholar
Gepner, D. and Haugseng, R., ‘Enriched $\infty$ -categories via non-symmetric $\infty$ -operads’, Adv. Math. 279 (2015), 575716.10.1016/j.aim.2015.02.007CrossRefGoogle Scholar
Gepner, D., Haugseng, R. and Nikolaus, T., ‘Lax colimits and free fibrations in $\infty$ -categories’, Doc. Math. 22 (2015), 01.Google Scholar
Haugseng, R., ‘Segal spaces, spans, and semicategories’, Proc. Am. Math. Soc. 149(3) (2021), 961975.10.1090/proc/15197CrossRefGoogle Scholar
Heine, H., ‘A monadicity theorem for higher algebraic structures’, 2017, arXiv:1712.00555.Google Scholar
Heine, H., ‘A topological model for cellular motivic spectra’, 2017, arXiv:1712.00521.Google Scholar
Heine, H., Restricted L ${}_{\infty }$ -algebras. repositorium.ub.uni-osnabrueck, 2018. https://osnadocs.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-201909201996.Google Scholar
Heine, H., ‘An equivalence between enriched $\infty$ -categories and $\infty$ -categories with weak action’, 2020, arXiv:2009.02428.Google Scholar
Heine, H., ‘An equivalence between enriched $\infty$ -categories and $\infty$ -categories with weak action’, Adv. Math. 417 (2023), 108941.10.1016/j.aim.2023.108941CrossRefGoogle Scholar
Heine, H., ‘The higher algebra of weighted colimits’, 2024, arXiv:2406.08925.Google Scholar
Heine, H., ‘On bi-enriched $\infty$ -categories’, 2024, arXiv:2406.09832.Google Scholar
Heine, H., Lopez-Avila, A. and Spitzweck, M., ‘Infinity categories with duality and hermitian multiplicative infinite loop space machines’, J. Pure Appl. Algebr. 229(6) (2025), 107929.10.1016/j.jpaa.2025.107929CrossRefGoogle Scholar
Heine, H., Spitzweck, M. and Verdugo, P., ‘Real K-theory for Waldhausen infinity categories with genuine duality’, 2019, arXiv:1911.11682.Google Scholar
Heine, H., Spitzweck, M. and Verdugo, P., ‘An equivalence between the real S-and the hermitian Q-construction’, 2024, arXiv:2410.07846.Google Scholar
Hinich, V., ‘Dwyer-Kan localization revisited’, Homol. Homotopy Appl. 18(1) (2016), 2748.10.4310/HHA.2016.v18.n1.a3CrossRefGoogle Scholar
Hinich, V., ‘Yoneda lemma for enriched $\infty$ -categories’, Adv. Math. 367 (2020), 107129.10.1016/j.aim.2020.107129CrossRefGoogle Scholar
Lurie, J.. Higher Algebra. URL: http://www.math.harvard.edu/lurie/.Google Scholar
Lurie, J., Higher Topos Theory, vol. 170 of Annals of Mathematics Studies (Princeton University Press, Princeton, NJ, 2009).10.1515/9781400830558CrossRefGoogle Scholar
Lurie, J., ‘(infinity,2)-categories and the Goodwillie Calculus i’, 2009, arXiv:0905.0462.Google Scholar
Moser, L., Rasekh, N. and Rovelli, M., ‘An $\left(\infty, n\right)$ -categorical straightening-unstraightening construction’, 2023, arXiv:2307.07259.Google Scholar
Nardin, D. and Shah, J., ‘Parametrized and equivariant higher algebra’, 2022, arXiv:2203.00072.Google Scholar
Nuiten, J., ‘On straightening for Segal spaces’, Compos. Math. 160(3) (2024), 586656.10.1112/S0010437X23007674CrossRefGoogle Scholar
Quigley, J. D and Shah, J., ‘On the parameterized Tate construction’, J. Topology 18(1) (2025), e70018.10.1112/topo.70018CrossRefGoogle Scholar
Shah, J., ‘Parametrized higher category theory ii: universal constructions’, 2021, arXiv:2109.11954.Google Scholar
Shah, J., ‘Parametrized higher category theory’, Algebr. Geom. Topol. 23(2) (2023), 509644.10.2140/agt.2023.23.509CrossRefGoogle Scholar