Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-08-06T07:46:02.846Z Has data issue: false hasContentIssue false

Chapter 16 - Respiration in Brain Hemisphere and Brainstem Lesions

Published online by Cambridge University Press:  26 May 2025

Martin Groß
Affiliation:
MEDIAN Clinic Bad Tennstedt
Eelco F. M. Wijdicks
Affiliation:
Mayo Clinic
Maxwell S. Damian
Affiliation:
Basildon University Hospitals
Oliver Summ
Affiliation:
Evangelisches Krankenhaus Oldenburg
Get access

Summary

This chapter comprehensively classifies respiratory impairment acute brain injury affecting breathing and explores its clinical relevance. It focuses on common causes of acute brain injury (ischemic stroke, traumatic brain injury, spontaneous intracranial hemorrhage) and discusses which anatomical structures can be implicated. By putting together basic pathophysiological and clinical information, this chapter should enable clinicians who encounter patients with brainstem and hemispheric lesions, which significantly affect respiration, not only to better understand the presumed anatomical structures involved but also to manage these conditions.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Wijdicks, EFM. The neurology of acutely failing respiratory mechanics. Ann Neurol. 2017;81(4):485–94.CrossRefGoogle ScholarPubMed
Wijdicks, EFM. Recording neurogenic breathing patterns in acute brain injury. Neurocrit Care. 2021;34(2):674–6. doi: 10.1007/s12028-020-00922-6.CrossRefGoogle ScholarPubMed
Nogués, MA, Roncoroni, AJ, Benarroch, E. Breathing control in neurological diseases. Clin Auton Res. 2002;12(6):440–9.CrossRefGoogle ScholarPubMed
Guz, A. Brain, breathing and breathlessness. Respir Physiol. 1997;109(3):197204. doi: 10.1016/s0034-5687(97)00050-9.CrossRefGoogle ScholarPubMed
Krohn, F, Novello, M, van der Giessen, RS, et al. The integrated brain network that controls respiration. Elife. 2023;12:e83654. doi: 10.7554/eLife.83654.CrossRefGoogle ScholarPubMed
Stornetta, RL, Sevigny, CP, Guyenet, PG. Inspiratory augmenting bulbospinal neurons express both glutamatergic and enkephalinergic phenotypes. J Comp Neurol. 2003;455(1):113–24. doi: 10.1002/cne.10486.CrossRefGoogle ScholarPubMed
Fuller, DD, Rana, S, Smuder, AJ, Dale, EA. The phrenic neuromuscular system. Handb Clin Neurol. 2022;188:393408. doi: 10.1016/B978-0-323-91534-2.00012-6.CrossRefGoogle ScholarPubMed
Shevtsova, NA, Marchenko, V, Bezdudnaya, T. Modulation of respiratory system by limb muscle afferents in intact and injured spinal cord. Front Neurosci. 2019;13:289. doi: 10.3389/fnins.2019.00289.CrossRefGoogle ScholarPubMed
Smith, JC, Abdala, AP, Rybak, JA, Paton, JF. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci. 2009;364(1529):2577–87. doi: 10.1098/rstb.2009.0081.CrossRefGoogle ScholarPubMed
Smith, JC, Abdala, AP, Borgmann, A, et al. Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 2013;36(3):152–62. doi: 10.1016/j.tins.2012.11.004.CrossRefGoogle ScholarPubMed
Cinelli, E, Iovino, L, Bongianni, F, et al. Essential role of the cVRG in the generation of both the expiratory and inspiratory components of the cough reflex. Physiol Res. 2020;69(suppl 1):S19S27. doi: 10.33549/physiolres.934396.CrossRefGoogle ScholarPubMed
Moss, IR. Canadian Association of Neuroscience Review: respiratory control and behavior in humans: lessons from imaging and experiments of nature. Can J Neurol Sci. 2005;32(3):287–97. doi: 10.1017/s0317167100004157.CrossRefGoogle ScholarPubMed
McKay, LC, Evans, KC, Frackowiak, RS, Corfield, DR. Neural correlates of voluntary breathing in humans. J Appl Physiol (1985). 2003;95(3):1170–8. doi: 10.1152/japplphysiol.00641.2002.CrossRefGoogle ScholarPubMed
Herrero, JL, Khuvis, S, Yeagle, E, et al. Breathing above the brain stem: volitional control and attentional modulation in humans. J Neurophysiol. 2018;119(1):145–59. doi: 10.1152/jn.00551.2017.CrossRefGoogle ScholarPubMed
Ciumas, C, Rheims, S, Ryvlin, P. fMRI studies evaluating central respiratory control in humans. Front Neural Circuits. 2022;16:982963. doi: 10.3389/fncir.2022.982963.CrossRefGoogle ScholarPubMed
Schottelkotte, KM, Crone, SA. Forebrain control of breathing: anatomy and potential functions. Front Neurol. 2022;13:1041887. doi: 10.3389/fneur.2022.1041887.CrossRefGoogle ScholarPubMed
Vaporidi, K, Akoumianaki, E, Telias, I, et al. Respiratory drive in critically ill patients: pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201(1):2032. doi: 10.1164/rccm.201903-0596SO.CrossRefGoogle ScholarPubMed
Jonkman, AH, de Vries, HJ, Heunks, LMA. Physiology of the respiratory drive in ICU patients: implications for diagnosis and treatment. Crit Care. 2020;24(1):104. doi: 10.1186/s13054-020-2776-z.CrossRefGoogle ScholarPubMed
Hutchinson, J. On the capacity of the lungs, and on the respiratory functions, with a view of establishing a precise and easy method of detecting disease by the spirometer. Med Chir Trans. 1846;29:137252. doi: 10.1177/095952874602900113.CrossRefGoogle ScholarPubMed
Needham, CD, Rogan, MC, McDonald, I. Normal standards for lung volumes, intrapulmonary gas-mixing, and maximum breathing capacity. Thorax. 1954;9(4):313–25. doi: 10.1136/thx.9.4.313.CrossRefGoogle ScholarPubMed
Koch, B, Friedrich, N, Völzke, H, et al. Static lung volumes and airway resistance reference values in healthy adults. Respirology. 2013;18(1):170–8. doi: 10.1111/j.1440-1843.2012.02268.x.CrossRefGoogle ScholarPubMed
Tobin, MJ, Mador, MJ, Guenther, SM, et al. Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol (1985). 1988;65(1):309–17. doi: 10.1152/jappl.1988.65.1.309.CrossRefGoogle ScholarPubMed
Natarajan, A, Su, HW, Heneghan, C, et al. Measurement of respiratory rate using wearable devices and applications to COVID-19 detection. NPJ Digit Med. 2021;4(1):136. doi: 10.1038/s41746-021-00493-6.CrossRefGoogle Scholar
Gutierrez, G, Williams, J, Alrehaili, GA, et al. Respiratory rate variability in sleeping adults without obstructive sleep apnea. Physiol Rep. 2016;4(17):e12949. doi: 10.14814/phy2.12949.CrossRefGoogle ScholarPubMed
Duffin, J, Mohan, RM, Vasiliou, P, et al. A model of the chemoreflex control of breathing in humans: model parameters measurement. Respir Physiol. 2000;120(1):1326. doi: 10.1016/s0034-5687(00)00095-5.CrossRefGoogle Scholar
Guyenet, PG, Bayliss, DA. Central respiratory chemoreception. Handb Clin Neurol. 2022;188:3772. doi: 10.1016/B978-0-323-91534-2.00007-2.CrossRefGoogle ScholarPubMed
Dereli, AS, Yaseen, Z, Carrive, P, Kumar, NN. Adaptation of respiratory-related brain regions to long-term hypercapnia: focus on neuropeptides in the RTN. Front Neurosci. 2019;13:1343. doi: 10.3389/fnins.2019.01343.CrossRefGoogle ScholarPubMed
Nattie, E, Li, A. Central chemoreceptors: locations and functions. Compr Physiol. 2012;2(1):221–54. doi: 10.1002/cphy.c100083.CrossRefGoogle ScholarPubMed
Nielsen, M, Smith, H. Studies on the regulation of respiration in acute hypoxia; preliminary report. Acta Physiol Scand. 1951;22(1):44–6. doi: 10.1111/j.1748-1716.1951.tb00748.x.CrossRefGoogle ScholarPubMed
Peers, C, Wyatt, CN, Evans, AM. Mechanisms for acute oxygen sensing in the carotid body. Respir Physiol Neurobiol. 2010;174(3):292–8. doi: 10.1016/j.resp.2010.08.010.CrossRefGoogle ScholarPubMed
Lopez-Barneo, J, Gonzalez-Rodriguez, P, Gao, L, et al. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol. 2016;310(8):C629–42. doi: 10.1152/ajpcell.00265.2015.CrossRefGoogle ScholarPubMed
Yu, J. A historical perspective of pulmonary rapidly adapting receptors. Respir Physiol Neurobiol. 2021;287:103595. doi:10.1016/j.resp.2020.103595.CrossRefGoogle ScholarPubMed
Tipton, MJ, Harper, A, Paton, JFR, Costello, JT. The human ventilatory response to stress: rate or depth? J Physiol. 2017;595(17):5729–52. doi: 10.1113/JP274596.CrossRefGoogle ScholarPubMed
Vaporidi, K, Akoumianaki, E, Telias, I, et al. Respiratory drive in critically ill patients. pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201(1):2032. doi: 10.1164/rccm.201903-0596SO.CrossRefGoogle ScholarPubMed
Horn, EM, Waldrop, TG. Suprapontine control of respiration. Respir Physiol. 1998;114(3):201–11. doi: 10.1016/s0034-5687(98)00087-5.CrossRefGoogle ScholarPubMed
Leitch, AG, McLennan, JE, Balkenhol, S, et al. Ventilatory response to transient hyperoxia in head injury hyperventilation. J Appl Physiol Respir Environ Exerc Physiol. 1980;49(1):52–8. doi: 10.1152/jappl.1980.49.1.52.Google ScholarPubMed
Summ, O, Hassanpour, N, Mathys, C, Groß, M. Disordered breathing in severe cerebral illness: towards a conceptual framework. Respir Physiol Neurobiol. 2022;300:103869. doi: 10.1016/j.resp.2022.103869.CrossRefGoogle ScholarPubMed
Summ, O, Mathys, C, Grimm, T, Groß, M. Central bradypnea and ataxic breathing in myotonic dystrophy type 1: a clinical case report. J Neuromuscul Dis. 2023;10(3):465-471. doi: 10.3233/JND-221652.CrossRefGoogle ScholarPubMed
Meyer, PG, Meyer, F, Orliaguet, G, et al. Combined high cervical spine and brain stem injuries: a complex and devastating injury in children. J Pediatr Surg. 2005;40(10):1637–42. doi: 10.1016/j.jpedsurg.2005.05.049.CrossRefGoogle ScholarPubMed
Joffe, AR, Anton, N, Blackwood, J. Brain death and the cervical spinal cord: a confounding factor for the clinical examination. Spinal Cord. 2010;48(1):29. doi: 10.1038/sc.2009.115.CrossRefGoogle ScholarPubMed
Prakkamakul, S, Schaefer, S, Gonzalez, P, Rapalino, O. MRI patterns of isolated lesions in the medulla oblongata. J Neuroimaging. 2017;27(1):135–43. doi: 10.1111/jon.12361.CrossRefGoogle ScholarPubMed
Lewis, A, Bakkar, A, Kreiger-Benson, E, et al. Determination of death by neurologic criteria around the world. Neurology. 2020;95(3):e299e309. doi: 10.1212/WNL.0000000000009888.CrossRefGoogle ScholarPubMed
Orr, JE, Malhotra, A, Sands, SA. Pathogenesis of central and complex sleep apnoea. Respirology. 2017;22(1):4352. doi: 10.1007/s11910-022-01199-2.CrossRefGoogle ScholarPubMed
Rudrappa, M, Modi, P, Bollu, PC. Cheyne Stokes respirations. In: StatPearls. StatPearls Publishing; 2023. Accessed June 14, 2024. PMID: 28846350. https://pubmed.ncbi.nlm.nih.gov/28846350/.Google Scholar
Fisher, CM. The neurological examination of the comatose patient. Acta Neurol Scand. 1969;45(S36):556. doi: 10.1111/j.1600-0404.1969.tb04785.x.Google ScholarPubMed
Wijdicks, EF. Biot’s breathing. J Neurol Neurosurg Psychiatry. 2007;78(5):512–3. doi: 10.1136/jnnp.2006.104919.Google ScholarPubMed
Battista, JP, Robbins, MS. Transient cluster breathing associated with anoxic encephalopathy. Neurohospitalist. 2014;4(1):44–5. doi: 10.1177/1941874413493186.CrossRefGoogle ScholarPubMed
Freeman, WD, Sen, S, Roy, TK, Wijdicks, EF. Cluster breathing associated with bihemispheric infarction and sparing of the brainstem. Arch Neurol. 2006;63(10):1487–90. doi: 10.1001/archneur.63.10.1487.CrossRefGoogle ScholarPubMed
Posner, JB, Saper, CB, Schiff, ND, Plum, F. Plum and Posner´s Diagnosis of Stupor and Coma. Oxford University Press; 2007.Google Scholar
Plum, F, Alvord, EC. Apneustic breathing in man. Arch Neurol. 1964;10:101–12. doi: 10.1001/archneur.1964.00460130105014.CrossRefGoogle ScholarPubMed
Stewart, J, Howard, RS, Rudd, AG, et al. Apneustic breathing provoked by limbic influences. Postgrad Med J. 1996;72(851):559–61. doi: 10.1136/pgmj.72.851.559.CrossRefGoogle ScholarPubMed
Wilken, B, Lalley, P, Bischoff, AM, et al. Treatment of apneustic respiratory disturbance with a serotonin-receptor agonist. J Pediatr. 1997. 130(1):8994. doi: 10.1016/s0022-3476(97)70315-9.CrossRefGoogle ScholarPubMed
Saito, Y. Hashimoto, T. Iwata, H. Apneustic breathing in children with brainstem damage due to hypoxic-ischemic encephalopathy. Dev Med Child Neurol. 1999;41(8):560–7. doi: 10.1017/s0012162299001188.CrossRefGoogle ScholarPubMed
Kirkwood, WD, Myers, B. A case of inspiratory apnoea in a new-born infant. Lancet. 1923;5211:65–8. doi 10.1016/S0140–6736(01)37754-1.Google Scholar
Nikić, PM, Jovanović, D, Paspalj, D, et al. Clinical characteristics and outcome in the acute phase of ischemic locked-in syndrome: case series of twenty patients with ischemic LIS. Eur Neurol. 2013;69(4):207–12. doi: 10.1159/000345272.CrossRefGoogle ScholarPubMed
Dutschmann, M, Herbert, H. The Kölliker-Fuse nucleus gates the postinspiratory phase of the respiratory cycle to control inspiratory off-switch and upper airway resistance in rat. Eur J Neurosci. 2006;24(4):1071–84. doi: 10.1111/j.1460-9568.2006.04981.x.CrossRefGoogle ScholarPubMed
Cochrane, DD, Adderley, R, White, CP, et al. Apnea in patients with myelomeningocele. Pediatr Neurosurg. 1990-1991;16(4-5):232–9. doi: 10.1159/000120533.Google Scholar
Zafar, A, Hussain, N. Prolonged expiratory apnoea with cyanosis in Arnold Chiari II malformation. JRSM Open. 2017;8(3):2054270416669303. doi: 10.1177/2054270416669303.CrossRefGoogle ScholarPubMed
Southall, DP, Talbert, DG, Johnson, P, et al. Prolonged expiratory apnoea: a disorder resulting in episodes of severe arterial hypoxaemia in infants and young children. Lancet. 1985;2(8455):571–7. doi: 10.1016/s0140-6736(85)90583-5.Google ScholarPubMed
Holinger, PC, Holinger, LD, Reichert, TJ, Holinger, PH. Respiratory obstruction and apnea in infants with bilateral abductor vocal cord paralysis, meningomyelocele, hydrocephalus, and Arnold-Chiari malformation. J Pediatr. 1978;92(3):368–73. doi: 10.1016/s0022-3476(78)80421-1.CrossRefGoogle ScholarPubMed
Mizuguchi, K, Morota, N, Kubota, M. Respiratory complications in children with Chiari malformation type II associated with myelomeningocele. No To Hattatsu. 2016;48(1):25–8.Google ScholarPubMed
Nishimura, T, Mori, K, Sada, Y, Fujii, M. Apneic spells in a patient with myelomeningocele without Chiari type II malformation: case report. Neurol Med Chir (Tokyo). 1995;35(12):876–81. doi: 10.2176/nmc.35.876.CrossRefGoogle Scholar
Kim, I, Hopson, B, Aban, I, et al. Decompression for Chiari malformation type II in individuals with myelomeningocele in the National Spina Bifida Patient Registry. J Neurosurg Pediatr. 2018;22(6):652–8. doi: 10.3171/2018.5.PEDS18160.Google ScholarPubMed
Burke, PG, Kanbar, R, Basting, TM, et al. State-dependent control of breathing by the retrotrapezoid nucleus. J Physiol. 2015 Jul 1;593(13):2909–26. doi: 10.1113/JP270053.CrossRefGoogle ScholarPubMed
Sugawara, E, Okamoto, M, Tanaka, F, Takahashi, T. Central respiratory failure occurred in the subacute phase of unilateral Wallenberg’s syndrome: a case report. Rinsho Shinkeigaku. 2014;54(4):303–7. doi: 10.5692/clinicalneurol.54.303.CrossRefGoogle ScholarPubMed
Prabhakar, A, Sivadasan, A, Shaikh, A, et al. Network localization of central hypoventilation syndrome in lateral medullary infarction. J Neuroimaging. 2020;30(6):875–81. doi: 10.1111/jon.12765.CrossRefGoogle ScholarPubMed
Terao, S, Miura, N, Osano, Y, et al. Rapidly progressive fatal respiratory failure (Ondine’s curse) in the lateral medullary syndrome. J Stroke Cerebrovasc Dis. 2004;13(1):41–4. doi: 10.1016/j.jstrokecerebrovasdis.2003.11.026.CrossRefGoogle ScholarPubMed
Carvalho, FA, Bernardino, T, Maciel, RO, et al. Central neurogenic respiratory failure: a challenging diagnosis. Case Rep Neurol. 2011;3(1):7581. doi: 10.1159/000324823.CrossRefGoogle ScholarPubMed
Smyth, A, Riley, M. Chronic respiratory failure: an unusual cause and treatment. Thorax. 2002;57(9):835–6. doi: 10.1136/thorax.57.9.835.CrossRefGoogle Scholar
Planjar-Prvan, M, Krmpotić, P, Jergović, I, Bielen, I. Ondine’s curse syndrome in medullary infarction. Acta Med Croatica. 2010;64(4):297301.Google ScholarPubMed
Kumral, E, Uzunköprü, C, Çiftçi, S, Demirci, T. Acute respiratory failure due to unilateral dorsolateral bulbar infarction. Eur Neurol.;66(2):70–4. doi: 10.1159/000327538.Google Scholar
Tanaka, K, Kanamaru, H, Morikawa, A, Kawaguchi, K. Central hypoventilation syndrome complicated with lateral medullary infarction after endovascular treatment of the vertebral artery dissecting aneurysm: a case report. NMC Case Rep J. 2016;3(4):133–6. doi: 10.2176/nmccrj.cr.2016-0067.CrossRefGoogle ScholarPubMed
Bogousslavsky, J, Khurana, R, Deruaz, JP, et al. Respiratory failure and unilateral caudal brainstem infarction. Ann Neurol. 1990;28(5):668–73. doi: 10.1002/ana.410280511.CrossRefGoogle ScholarPubMed
Hui, SH, Wing, YK, Poon, W, et al. Alveolar hypoventilation syndrome in brainstem glioma with improvement after surgical resection. Chest. 2000;118(1):266–8. doi: 10.1378/chest.118.1.266.CrossRefGoogle ScholarPubMed
Lee, DK, Wahl, GW, Swinburne, AJ, Fedullo, AJ. Recurrent acoustic neuroma presenting as central alveolar hypoventilation. Chest. 1994;105(3):949–50. doi: 10.1378/chest.105.3.949.CrossRefGoogle ScholarPubMed
Lee, KS, Higgins, MJ, Patel, BM, et al. Paraneoplastic coma and acquired central alveolar hypoventilation as a manifestation of brainstem encephalitis in a patient with ANNA-1 antibody and small-cell lung cancer. Neurocrit Care. 2006;4(2):137–9. doi: 10.1385/NCC:4:2:137.CrossRefGoogle Scholar
Gómez-Choco, MJ, Zarranz, JJ, Saiz, A, et al. Central hypoventilation as the presenting symptom in Hu associated paraneoplastic encephalomyelitis. J Neurol Neurosurg Psychiatry. 2007;78(10):1143–5. doi: 10.1136/jnnp.2007.117994.CrossRefGoogle Scholar
Ball, JA, Warner, T, Reid, P, et al. Central alveolar hypoventilation associated with paraneoplastic brain-stem encephalitis and anti-Hu antibodies. J Neurol. 1994;241(9):561–6. doi: 10.1007/BF00873520.CrossRefGoogle ScholarPubMed
Kunchok, A, Barnes, D, Boyer, M, Halmagyi, GM. Paraneoplastic cerebellar ataxia with central hypoventilation. Neurol Neuroimmunol Neuroinflamm. 2016;4(1):e305. doi: 10.1212/NXI.0000000000000305.CrossRefGoogle ScholarPubMed
Vitaliani, R, Mason, W, Ances, B, et al. Paraneoplastic encephalitis, psychiatric symptoms, and hypoventilation in ovarian teratoma. Ann Neurol. 2005;58(4):594604. doi: 10.1002/ana.20614.CrossRefGoogle ScholarPubMed
White, DP, Miller, F, Erickson, RW. Sleep apnea and nocturnal hypoventilation after western equine encephalitis. Am Rev Respir Dis. 1983;127(1):132–3. doi: 10.1164/arrd.1983.127.1.132.CrossRefGoogle ScholarPubMed
Isakadze, M, Zwain, B, Velander, AJ, Lovera, J. Cytomegalovirus and varicella zoster virus coinfection-associated central hypoventilation syndrome (Ondine’s curse). eNeurologicalSci. 2023;34:100488. doi: 10.1016/j.ensci.2023.100488.CrossRefGoogle ScholarPubMed
Launois, SH, Siyanko, N, Joyeux-Faure, M, et al. Acquired central hypoventilation following Listeria monocytogenes rhombencephalitis. Thorax. 2017;72(8):763–5. doi: 10.1136/thoraxjnl-2016-208786.CrossRefGoogle ScholarPubMed
Gouder, C, Fsadni, P, Montefort, S. Outcome of central hypoventilation secondary to childhood pertussis encephalitis in adulthood. BMJ Case Rep. 2015;2015:bcr2014206471. doi: 10.1136/bcr-2014-206471.CrossRefGoogle ScholarPubMed
Herrick, KS, Woltjer, R, Pham, T, et al. Central hypoventilation in progressive supranuclear palsy. Mov Disord Clin Prac. 2017;4(1):42–5. doi: 10.1002/mdc3.12348.Google ScholarPubMed
Williams, L, Olszewska, DA, Fearon, C, et al. Ondine’s curse in frontotemporal dementia with Parkinsonism linked to chromosome 17 caused by MAPT variants. Mov Disord Clin Pract. 2021;8(6):954–8. doi: 10.1002/mdc3.13265.CrossRefGoogle ScholarPubMed
Gupta, R, Oh, U, Spessot, AL. Resolution of Ondine’s curse after suboccipital decompression in a 72-year-old woman. Neurology. 2003;61(2):275–6. doi: 10.1212/01.wnl.0000068528.29653.8d.CrossRefGoogle ScholarPubMed
Vasani, VM, Konar, SK, Satish, S. Hypercapnic respiratory failure in case of Chiari 1.5 malformation: case report and review of the literature. Indian J Crit Care Med. 2017;21(10):707–9. doi: 10.4103/ijccm.IJCCM_179_17.CrossRefGoogle ScholarPubMed
Heckmann, JG, Ernst, S. Central alveolar hypoventilation (Ondine’s curse) caused by megadolichobasilar artery. J Stroke Cerebrovasc Dis. 2014. 23(2):390–2. doi: 10.1016/j.jstrokecerebrovasdis.2013.02.003.CrossRefGoogle ScholarPubMed
Varela, OJ, Sepúlveda, IG, Sepúlveda, CJ, et al. Diaphragm pacing in a pediatric patient with acquired central hypoventilation syndrome. Rev Chil Pediatr. 2020;91(2):255–9. doi: 10.32641/rchped.v91i2.1144.Google Scholar
Wang, F, Darby, J. Case report: central alveolar hypoventilation in a survivor of cardiopulmonary arrest. Front Neurol. 2023;14:1195008. doi: 10.3389/fneur.2023.1195008. PMID: 37602250; PMCID: PMC10435288.CrossRefGoogle Scholar
Morrell, MJ, Heywood, P, Moosavi, SH, et al. Unilateral focal lesions in the rostrolateral medulla influence chemosensitivity and breathing measured during wakefulness, sleep, and exercise. J Neurol Neurosurg Psychiatry. 1999; 67(5):637–45. doi: 10.1136/jnnp.67.5.637.CrossRefGoogle ScholarPubMed
Levy, J, Droz-Bartholet, F, Achour, M, et al. Parafacial neurons in the human brainstem express specific markers for neurons of the retrotrapezoid nucleus. J Comp Neurol. 2021;529(13):3313–20. doi: 10.1002/cne.25191.CrossRefGoogle ScholarPubMed
Lavezzi, AM, Weese-Mayer, DE, Yu, MY, et al. Developmental alterations of the respiratory human retrotrapezoid nucleus in sudden unexplained fetal and infant death. Auton Neurosci. 2012;170(1-2):1219. doi: 10.1016/j.autneu.2012.06.005.CrossRefGoogle ScholarPubMed
Plum, F, Swanson, AG. Central neurogenic hyperventilation in man. AMA Arch Neurol Psychiatry. 1959;81(5):535–49. doi: 10.1001/archneurpsyc.1959.02340170001001.CrossRefGoogle ScholarPubMed
Murata, S, Takahashi, S, Kunieda, H, et al. A case of central neurogenic hyperventilation without tachypnoea. Respirol Case Rep. 2019 Jul 16;7(7):e00462. doi: 10.1002/rcr2.462.CrossRefGoogle ScholarPubMed
Vural, A, Arsava, EM, Dericioglu, N, Topcuoglu, MA. Central neurogenic hyperventilation in anti-NMDA receptor encephalitis. Intern Med. 2012;51(19):2789–92. doi: 10.2169/internalmedicine.51.8215.CrossRefGoogle ScholarPubMed
Shahar, E, Postovsky, S, Bennett, O. Central neurogenic hyperventilation in a conscious child associated with glioblastoma multiforme. Pediatr Neurol. 2004;30(4):287–90. doi: 10.1016/j.pediatrneurol.2003.10.003.CrossRefGoogle Scholar
Gençpinar, P, Karaali, K, Haspolat, Ş, Dursun, O. Central neurogenic hyperventilation related to post-hypoxic thalamic lesion in a child. Neurol Int. 2016;8(1):6428. doi: 10.4081/ni.2016.6428.CrossRefGoogle ScholarPubMed
Neves Briard, J, Beaulieu, MC, Lemoine, É, et al. Central neurogenic hyperventilation in conscious patients due to CNS neoplasm: a case report and review of the literature on treatment. Neurooncol Pract. 2020;7(5):559–68. doi: 10.1093/nop/npaa016.Google ScholarPubMed
Sentíes Madrid, H, Téllez Zenteno, JF, García Ramos, G, et al. Central neurogenic hyperventilation associated with a pontine infarction. Rev Invest Clin. 2000;52(5):584–6.Google ScholarPubMed
Johnston, SC, Singh, V, Ralston, HJ, Gold, WM. Chronic dyspnea and hyperventilation in an awake patient with small subcortical infarcts. Neurology. 2001;57(11):2131–3. doi: 10.1212/wnl.57.11.2131.CrossRefGoogle Scholar
Williamson, CA, Sheehan, KM, Tipirneni, R, et al. The association between spontaneous hyperventilation, delayed cerebral ischemia, and poor neurological outcome in patients with subarachnoid hemorrhage. Neurocrit Care. 2015;23(3):330–8. doi: 10.1007/s12028-015-0138-5.CrossRefGoogle ScholarPubMed
Kubota, M, Matsuda, F, Hashizume, M, et al. Periventricular leukomalacia associated with hypocarbia. Acta Paediatr Jpn. 1996;38(1):5760. doi: 10.1111/j.1442-200x.1996.tb03436.x.CrossRefGoogle ScholarPubMed
Kramer, CL, Wijdicks, EF. Central neurogenic hyperventilation. Neurology. 2014;83(4):376. doi: 10.1212/WNL.0000000000000624.CrossRefGoogle ScholarPubMed
Takahashi, M, Tsunemi, T, Miyayosi, T, Mizusawa, H. Reversible central neurogenic hyperventilation in an awake patient with multiple sclerosis. J Neurol. 2007;254(12):1763–4. doi: 10.1007/s00415-007-0662-0.CrossRefGoogle Scholar
Alkhachroum, AM, Saeed, S, Kaur, J, et al. A case of neuro-Behcet’s disease presenting with central neurogenic hyperventilation. Am J Case Rep. 2016;17:154–9. doi: 10.12659/ajcr.895382.CrossRefGoogle ScholarPubMed
Hool, GJ, Marsh, HM, Groover, RV, et al. Episodic central neurogenic hyperventilation in an awake child with systemic histiocytosis. J Paediatr Child Health. 1993;29(2):154–5. doi: 10.1111/j.1440-1754.1993.tb00471.x.CrossRefGoogle Scholar
Baker, NH, Messer, B. Acute intermittent porphyria with central neurogenic hyperventilation. Neurology. 1967;17(6):559–66 passim. doi: 10.1212/wnl.17.6.559.CrossRefGoogle ScholarPubMed
Lee, HM, Shin, KB, Kim, SH, Jee, DL. An acute postoperative intractable hyperventilation after an endoscopic third ventriculostomy. J Korean Neurosurg Soc. 2012;51(3):173–6. doi: 10.3340/jkns.2012.51.3.173.CrossRefGoogle ScholarPubMed
Tarulli, AW, Lim, C, Bui, JD, et al. Central neurogenic hyperventilation: a case report and discussion of pathophysiology. Arch Neurol. 2005;62(10):1632–4. doi: 10.1001/archneur.62.10.1632.CrossRefGoogle ScholarPubMed
Rout, MW, Lane, DJ, Wollner, L. Prognosis in acute cerebrovascular accidents in relation to respiratory pattern and blood gas tensions. Br Med J. 1971;3(5765):79. doi: 10.1136/bmj.3.5765.7.CrossRefGoogle ScholarPubMed
Bachmutsky, I, Wei, XP, Kish, E, Yackle, K. Opioids depress breathing through two small brainstem sites. Elife. 2020 Feb;9:e52694. doi: 10.7554/eLife.52694.CrossRefGoogle ScholarPubMed
Takayama, K, Miura, M. Respiratory responses to microinjection of excitatory amino acid agonists in ventrolateral regions of the lateral parabrachial nucleus in the cat. Brain Res. 1993;604(1–2):217–23. doi: 10.1016/0006-8993(93)90372-t.CrossRefGoogle ScholarPubMed
Burke, PG, Kambar, R, Viar, KE, et al. Selective optogenetic stimulation of the retrotrapezoid nucleus in sleeping rats activates breathing without changing blood pressure or causing arousal or sighs. J Appl Physiol (1985). 2015;118(12):1491–501. doi: 10.1152/japplphysiol.00164.2015.CrossRefGoogle ScholarPubMed
Joels, N, White, H. The contribution of the arterial chemoreceptors to the stimulation of respiration by adrenaline and noradrenaline in the cat. J Physiol. 1968;197(1):123. doi: 10.1113/jphysiol.1968.sp008541.CrossRefGoogle Scholar
Li, A, Emond, L, Nattie, E. Brainstem catecholaminergic neurons modulate both respiratory and cardiovascular function. Adv Exp Med Biol. 2008;605:371–6. doi: 10.1007/978-0-387-73693-8_65.CrossRefGoogle ScholarPubMed
Jennett, S, North, JB. Effect of intermittently raised intracranial pressure on breathing pattern, ventilatory response to CO2, and blood gases in anesthetized cats. J Neurosurg. 1976;44(2):156–67. doi: 10.3171/jns.1976.44.2.0156.CrossRefGoogle ScholarPubMed
Aquino, YC, Cabral, LM, Miranda, NC, et al. Respiratory disorders of Parkinson’s disease. J Neurophysiol. 2022 127(1):115. doi: 10.1152/jn.00363.2021.CrossRefGoogle ScholarPubMed
Gaig, C, Iranzo, A. Sleep-disordered breathing in neurodegenerative diseases. Curr Neurol Neurosci Rep. 2012;12(2):205–17. doi: 10.1007/s11910-011-0248-1.CrossRefGoogle ScholarPubMed
Wang, Y, Shao, WB, Gao, L, et al. Abnormal pulmonary function and respiratory muscle strength findings in Chinese patients with Parkinson’s disease and multiple system atrophy: comparison with normal elderly. PLoS ONE. 2014;9(12):e116123. doi: 10.1371/journal.pone.0116123.CrossRefGoogle ScholarPubMed
Tikare, SK, Krishnamurthi, S, Dasgupta, D, Tikare, S. Evaluation of muscle relaxants in tetanus. Clin Pharmacol Ther. 1972 Mar-Apr;13(2):193–5. doi: 10.1002/cpt1972132193.CrossRefGoogle ScholarPubMed
Ezeugwu, VE, Olaogun, M, Mbada, CE, Adedoyin, R. Comparative lung function performance of stroke survivors and age-matched and sex-matched controls. Physiother Res Int. 2013 Dec;18(4):212–9. doi: 10.1002/pri.1547.CrossRefGoogle ScholarPubMed
Hutzler, Y, Chacham, A, Bergman, U, Szeinberg, A. Effects of a movement and swimming program on vital capacity and water orientation skills of children with cerebral palsy. Dev Med Child Neurol. 1998;40(3):176–81. doi: 10.1111/j.1469-8749.1998.tb15443.x.CrossRefGoogle ScholarPubMed
Lampe, R, Blumenstein, T, Turova, V, Alves-Pinto, A. Lung vital capacity and oxygen saturation in adults with cerebral palsy. Patient Prefer Adherence. 2014;8:1691–7. doi: 10.2147/PPA.S72575.Google ScholarPubMed
Crosta, F, Desideri, G, Marini, C. Obstructive sleep apnea syndrome in Parkinson’s disease and other parkinsonisms. Funct Neurol. 2017;32(3):137–41. doi: 10.11138/fneur/2017.32.3.137.Google ScholarPubMed
Yeh, NC, Tien, KJ, Yang, CM, et al. Increased risk of Parkinson’s disease in patients with obstructive sleep apnea: a population-based, propensity score-matched, longitudinal follow-up study. Medicine (Baltimore). 2016;95(2):e2293. doi: 10.1097/MD.0000000000002293.CrossRefGoogle ScholarPubMed
Sugiyama, A, Terada, J, Shionoya, Y, et al. Sleep-related hypoventilation and hypercapnia in multiple system atrophy detected by polysomnography with transcutaneous carbon dioxide monitoring. Sleep Breath. 2022 Dec;26(4):1779–89. doi: 10.1007/s11325-022-02568-4. Epub 2022 Jan 13. PMID: 35025012; PMCID: PMC8756414.CrossRefGoogle ScholarPubMed
Nagashima, T, Oda, M, Tanabe, H, et al. Sleep apnea and sudden death in multiple system atrophy: polysomnographic studies and brain stem neuropathology. In: Togawa, K, Katayama, S, Hishikawa, Y, Ohta, Y, Horie, T eds. Sleep Apnea and Rhonchopathy. Karger; 1993:128–31.Google Scholar
Jin, K, Okabe, S, Chida, K, et al. Tracheostomy can fatally exacerbate sleep-disordered breathing in multiple system atrophy. Neurology. 2007;68(19):1618–21. doi: 10.1212/01.wnl.0000260975.74618.d7.CrossRefGoogle ScholarPubMed
Roy, EP, Riggs, JE, Martin, JD, et al. Familial parkinsonism, apathy, weight loss, and central hypoventilation: successful long-term management. Neurology. 1988;38(4):637–9. doi: 10.1212/wnl.38.4.637.CrossRefGoogle ScholarPubMed
Perry, TL, Wright, JM, Berry, K, et al. Dominantly inherited apathy, central hypoventilation, and Parkinson’s syndrome: clinical, biochemical, and neuropathologic studies of 2 new cases. Neurology. 1990;40(12):1882–7. doi: 10.1212/wnl.40.12.1882.CrossRefGoogle ScholarPubMed
Purdy, A, Hahn, A, Barnett, HJ, et al. Familial fatal Parkinsonism with alveolar hypoventilation and mental depression. Ann Neurol. 1979;6(6):523–31. doi: 10.1002/ana.410060611.CrossRefGoogle ScholarPubMed
Naito, H, Sugimoto, T, Kimoto, K, et al. Detection of episodic nocturnal hypercapnia in patients with neurodegenerative disorders. Sleep Breath. 2024;28(1):393–9. doi: 10.1007/s11325-023-02876-3.CrossRefGoogle ScholarPubMed
Gandor, F, Vogel, A, Claus, I, et al. Laryngeal movement disorders in multiple system atrophy: a diagnostic biomarker? Mov Disord. 2020;35(12):2174–83. doi: 10.1002/mds.28220.CrossRefGoogle ScholarPubMed
Giannini, G, Provini, F, Cani, I, et al. Tracheostomy is associated with increased survival in multiple system atrophy patients with stridor. Eur J Neurol. 2022;29(8):2232–40. doi: 10.1111/ene.15347.CrossRefGoogle ScholarPubMed
Yiannakopoulou, E. Serious and long-term adverse events associated with the therapeutic and cosmetic use of botulinum toxin. Pharmacology. 2015;95(1–2):65–9. doi: 10.1159/000370245.CrossRefGoogle ScholarPubMed
Javed, M, Bogdanov, A. Oral dantrolene and severe respiratory failure in a patient with chronic spinal cord injury. Anaesthesia. 2010;65(8):855–6. doi: 10.1111/j.1365-2044.2010.06409.x.CrossRefGoogle Scholar
Ayyoubm, Z, Brashear, A, Banach, M, et al. Safety and stability of pulmonary function in patients with decreased respiratory function treated for spasticity with onabotulinumtoxinA. Toxins (Basel). 2020;12(10):661. doi: 10.3390/toxins12100661.CrossRefGoogle Scholar
North, JB, Jennett, S. Abnormal breathing patterns associated with acute brain damage. Arch Neurol. 1974;31(5):338–44. doi: 10.1001/archneur.1974.00490410086010.CrossRefGoogle ScholarPubMed
Howard, RS, Rudd, AG, Wolfe, CD, Williams, AJ. Pathophysiological and clinical aspects of breathing after stroke. Postgrad Med J. 2001;77(913):700–2. doi: 10.1136/pmj.77.913.700.CrossRefGoogle ScholarPubMed
Parasram, M, Segal, AZ. Sleep disorders and stroke: does treatment of obstructive sleep apnea decrease risk of ischemic stroke? Curr Treat Options. Neurol 2019;21(7):29. doi: 10.1007/s11940-019-0575-0.CrossRefGoogle ScholarPubMed
Baillieul, S, Dekkers, M, Brill, AK. Sleep apnoea and ischaemic stroke: current knowledge and future directions. Lancet Neurol. 2022;21(1):7888. doi: 10.1016/S1474-4422(21)00321-5.CrossRefGoogle ScholarPubMed
Kim, Y, Kim, S, Ryu, DR, Lee, SY, Im, KB. Factors associated with Cheyne - Stokes respiration in acute ischemic stroke. J Clin Neurol. 2018;14(4):542–8. doi: 10.3988/jcn.2018.14.4.542.CrossRefGoogle ScholarPubMed
Rowat, AM, Wardlaw, JM, Dennis, MS. Abnormal breathing patterns in stroke: relationship with location of acute stroke lesion and prior cerebrovascular disease. J Neurol Neurosurg Psychiatry. 2007;78(3):277–9. doi: 10.1136/jnnp.2006.102228.Google ScholarPubMed
Devereaux, MW, Keane, JR, Davis, RL. Automatic respiratory failure associated with infarction of the medulla: report of two cases with pathologic study of one. Arch Neurol. 1973;29(1):4652. doi: 10.1001/archneur.1973.00490250064007.CrossRefGoogle ScholarPubMed
Patterson, JR., Grabois, M. Locked-in syndrome: a review of 139 cases. Stroke. 1986;17(4):758–64. doi: 10.1161/01.str.17.4.758.CrossRefGoogle ScholarPubMed
Lee, MC, Klassen, AC, Heaney, LM, Resch, JA. Respiratory rate and pattern disturbances in acute brain stem infarction. Stroke. 1976;7(4):382–5. doi: 10.1161/01.str.7.4.382.CrossRefGoogle ScholarPubMed
Hextrum, S, Minhas, JS, Liotta, EM,et al. Hypocapnia, ischemic lesions, and outcomes after intracerebral hemorrhage. J Neurol Sci. 2020;418:117139. doi: 10.1016/j.jns.2020.117139.CrossRefGoogle ScholarPubMed
Solaiman, O, Singh, JM. Hypocapnia in aneurysmal subarachnoid hemorrhage: incidence and association with poor clinical outcomes. J Neurosurg Anesthesiol. 2013;25(3):254–61. doi: 10.1097/ANA.0b013e3182806465.CrossRefGoogle ScholarPubMed
Langer, T, Zadek, F, Carbonara, M, et al. Cerebrospinal fluid and arterial acid-base equilibrium of spontaneously breathing patients with aneurismal subarachnoid hemorrhage. Neurocrit Care. 2022;37(1):102–10. doi: 10.1007/s12028-022-01450-1.CrossRefGoogle ScholarPubMed
Komiyama, M, Boo, YE, Yagura, H, et al. A clinical analysis of 32 brainstem haemorrhages; with special reference to surviving but severely disabled cases. Acta Neurochir (Wien). 1989;101(1-2):4651. doi: 10.1007/BF01410068.CrossRefGoogle ScholarPubMed
Carrera, E, Schmidt, JM, Fernandez, L, et al. Spontaneous hyperventilation and brain tissue hypoxia in patients with severe brain injury. J Neurol Neurosurg Psychiatry. 2010;81(7):793–7. doi: 10.1136/jnnp.2009.174425.CrossRefGoogle ScholarPubMed
Esnault, P, Roubin, J, Cardinale, M, et al. Spontaneous hyperventilation in severe traumatic brain injury: incidence and association with poor neurological outcome. Neurocrit Care. 2019;30(2):405–13. doi: 10.1007/s12028-018-0639-0.CrossRefGoogle ScholarPubMed
Lacuey, N, Zonjy, B, Hampson, JP, et al. The incidence and significance of periictal apnea in epileptic seizures. Epilepsia. 2018;59(3):573–82. doi: 10.1111/epi.14006.CrossRefGoogle ScholarPubMed
Dlouhy, BJ, Gehlbach, BK, Kreple, CJ, et al. Breathing inhibited when seizures spread to the amygdala and upon amygdala stimulation. J Neurosci. 2015;35(28):10281–9. doi: 10.1523/JNEUROSCI.0888-15.2015.CrossRefGoogle Scholar
Tezer, FI, Rémi, J, Noachtar, S. Ictal apnea of epileptic origin. Neurology. 2009;72(9):855–7. doi: 10.1212/01.wnl.0000343956.80074.e7CrossRefGoogle ScholarPubMed
Micalizzi, E, Vaudano, AE, Ballerini, A, et al. Ictal apnea: a prospective monocentric study in patients with epilepsy. Eur J Neurol. 2022;29(12):3701–10. doi: 10.1111/ene.15547.CrossRefGoogle ScholarPubMed
Sainju, RK, Dragon, DN, Winnike, HB, et al. Ventilatory response to CO2 in patients with epilepsy. Epilepsia. 2019;60(3):508–17. doi: 10.1111/epi.14660.CrossRefGoogle ScholarPubMed
Massey, CA, Sowers, LP, Dlouhy, BJ, Richerson, GB. Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat Rev Neurol. 2014;10(5):271–82. doi: 10.1038/nrneurol.2014.64.CrossRefGoogle ScholarPubMed
Goligher, EC, Jonkman, AH, Dianti, J, et al. Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med. 2020;46(12):2314–26. doi: 10.1007/s00134-020-06288-9.CrossRefGoogle ScholarPubMed
Maur, T, Grasselli, G, Suriano, G, et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. 2016;125(1):159–67. doi: 10.1097/ALN.0000000000001103.Google Scholar
Bassi, TG, Rohrs, EC, Fernandez, KC, et al. Brain injury after 50 h of lung-protective mechanical ventilation in a preclinical model. Sci Rep. 2021;11(1):5105. doi: 10.1038/s41598-021-84440-1.CrossRefGoogle Scholar
Bassi, TG, Rohrs, EC, Fernandez, KC, et al. Phrenic nerve stimulation mitigates hippocampal and brainstem inflammation in an ARDS model. Front Physiol. 2023;14:1182505. doi: 10.3389/fphys.2023.1182505.CrossRefGoogle Scholar
Bellani, G, Mauri, T, Coppadoro, A, et al. Estimation of patient’s inspiratory effort from the electrical activity of the diaphragm. Crit Care Med. 2013;41(6):1483–91. doi: 10.1097/CCM.0b013e31827caba0.CrossRefGoogle ScholarPubMed
Morais, CCA, Koyama, Y, Yoshida, T, et al. High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med. 2018;197(10):1285–96. doi: 10.1164/rccm.201706-1244OC.CrossRefGoogle ScholarPubMed
Jansen, D, Jonkman, AH, Vries, HJ, et al. Positive end-expiratory pressure affects geometry and function of the human diaphragm. J Appl Physiol (1985). 2021;131(4):1328–39. doi: 10.1152/japplphysiol.00184.2021.Google Scholar
Asehnoune, K, Rooze, P, Robba, C, et al. Mechanical ventilation in patients with acute brain injury: a systematic review with meta-analysis. Crit Care. 2023;27(1):221. doi: 10.1186/s13054-023-04509-3.CrossRefGoogle ScholarPubMed
Li, HP, Lin, YN, Cheng, ZH, et al. Intracranial-to-central venous pressure gap predicts the responsiveness of intracranial pressure to PEEP in patients with traumatic brain injury: a prospective cohort study. BMC Neurol. 2020;20(1):234. doi: 10.1186/s12883-020-01764-7.CrossRefGoogle ScholarPubMed
Tiruvoipati, R, Pilcher, D, Botha, J, et al. Association of hypercapnia and hypercapnic acidosis with clinical outcomes in mechanically ventilated patients with cerebral injury. JAMA Neurol. 2018;75(7):818–26. doi: 10.1001/jamaneurol.2018.0123.CrossRefGoogle ScholarPubMed
Citerio, G, Robba, C, Rebora, P, et al. Management of arterial partial pressure of carbon dioxide in the first week after traumatic brain injury: results from the CENTER-TBI study. Intensive Care Med. 2021;47(9):961–73. doi: 10.1007/s00134-021-06470-7.Google ScholarPubMed
Cook, AM, Morgan Jones, G, Hawryluk, GWJ, et al. Guidelines for the acute treatment of cerebral edema in neurocritical care patients. Neurocrit Care. 2020;32(3):647–66. doi: 10.1007/s12028-020-00959-7.CrossRefGoogle ScholarPubMed
Robba, C, Iannuzzi, F, Taccone, FS. Tier-three therapies for refractory intracranial hypertension in adult head trauma. Minerva Anestesiol. 2021;87(12):1359–66. doi: 10.23736/S0375-9393.21.15827-4.CrossRefGoogle ScholarPubMed
Robba, C, Poole, D, McNett, M, et al. Mechanical ventilation in patients with acute brain injury: recommendations of the European Society of Intensive Care Medicine consensus. Intensive Care Med. 2020;46(12):2397–410. doi: 10.1007/s00134-020-06283-0.CrossRefGoogle ScholarPubMed
Zhang, Z, Guo, Q, Wang, E. Hyperventilation in neurological patients: from physiology to outcome evidence. Curr Opin Anaesthesiol. 2019;32(5):568–73. doi: 10.1097/ACO.0000000000000764.CrossRefGoogle ScholarPubMed
Lewis, A, Kirschen, M, Greer, D. The 2023 AAN/AAP/CNS/SCCM Pediatric and Adult Brain Death/Death by Neurologic Criteria Consensus Practice Guideline: a comparison with the 2010 and 2011 guidelines. Neurol Clin Pract. 2023;13(6):e200189. doi: 10.1212/CPJ.0000000000200189.CrossRefGoogle ScholarPubMed
Nattanmai, P, Newey, CR, Singh, I, Premkumar, K. Prolonged duration of apnea test during brain death examination in a case of intraparenchymal hemorrhage. SAGE Open Med Case Rep. 2017;5:2050313X17716050. doi: 10.1177/2050313X17716050.CrossRefGoogle Scholar
Hocker, S, Whalen, F, Wijdicks, EF. Apnea testing for brain death in severe acute respiratory distress syndrome: a possible solution. Neurocrit Care. 2014;20(2):298300. doi: 10.1007/s12028-013-9932-0.CrossRefGoogle ScholarPubMed
van der Jagt, M, Lin, MS, Briegel, J. Optimizing apnea testing to determine brain death. Intensive Care Med. 2016;42(1):117–8. doi: 10.1007/s00134-015-4132-3.CrossRefGoogle ScholarPubMed
Greer, DM, Shemie, SD, Lewis, A, et al. Determination of brain death/death by neurologic criteria: the World Brain Death Project. JAMA. 2020;324(11):1078–97. doi: 10.1001/jama.2020.11586.CrossRefGoogle ScholarPubMed
Walter, U, Eggert, M, Walther, U, et al. A red flag for diagnosing brain death: decompressive craniectomy of the posterior fossa. Can J Anaesth. 2022;69(7):900–6. doi: 10.1007/s12630-022-02265-6.CrossRefGoogle ScholarPubMed
Schwarz, G, Errath, M, Arguelles Delgado, P, et al. Ventilator autotriggering : an underestimated phenomenon in the determination of brain death. Anaesthesist. 2019;68(3):171–6. doi: 10.1007/s00101-019-0555-5.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×