Skip to main content Accessibility help
×
  • Cited by 20
Publisher:
Cambridge University Press
Online publication date:
January 2014
Print publication year:
2014
Online ISBN:
9781107279087

Book description

This book presents an introduction to the representation theory of wreath products of finite groups and harmonic analysis on the corresponding homogeneous spaces. The reader will find a detailed description of the theory of induced representations and Clifford theory, focusing on a general formulation of the little group method. This provides essential tools for the determination of all irreducible representations of wreath products of finite groups. The exposition also includes a detailed harmonic analysis of the finite lamplighter groups, the hyperoctahedral groups, and the wreath product of two symmetric groups. This relies on the generalised Johnson scheme, a new construction of finite Gelfand pairs. The exposition is completely self-contained and accessible to anyone with a basic knowledge of representation theory. Plenty of worked examples and several exercises are provided, making this volume an ideal textbook for graduate students. It also represents a useful reference for more experienced researchers.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] H., Akazawa and H., Mizukawa, Orthogonal polynomials arising from the wreath products of a dihedral group with a symmetric group. J. Combin. Theory Ser.A 104 (2003), no. 2, 371–380.
[2] J.L., Alperin and R.B., Bell, Groups and Representations. Graduate Texts in Mathematics, vol. 162, Springer-Verlag, New York, 1995.
[3] R.A., Bailey, C.E., Praeger, C.A., Rowley and T.P., Speed, Generalized wreath products of permutation groups. Proc. London Math. Soc. (3) 47 (1983), no. 1, 69–82.
[4] E., Bannai and T., Ito, Algebraic Combinatorics, Benjamin, 1984.
[5] Ya.G., Berkovich and E.M., Zhmud, Characters of Finite Groups. Part 1. Translations of Mathematical Monographs, vol. 172, American Mathematical Society, 1998.
[6] Ya.G., Berkovich and E.M., Zhmud, Characters of Finite Groups. Part 2. Translated from the Russian manuscript by P., Shumyatsky, V., Zobina and Ya.G., Berkovich. Translations of Mathematical Monographs, vol. 181. American Mathematical Society, 1999.
[7] D., Bump, Lie Groups. Graduate Texts in Mathematics, vol. 225, Springer-Verlag, 2004.
[8] T., Ceccherini-Silberstein, Yu., Leonov, F., Scarabotti and F., Tolli, Generalized Kaloujnine groups, uniseriality and height of automorphisms. Internat. J. Algebra Comput. 15 (2005), no. 3, 503–527.
[9] T., Ceccherini-Silberstein, F., Scarabotti and F., Tolli, Trees, wreath products and finite Gelfand pairs. Adv. Math. 206 (2006), no. 2, 503–537.
[10] T., Ceccherini-Silberstein, F., Scarabotti and F., Tolli, Finite Gelfand pairs and applications to probability and statistics. J. Math. Sci. 141 (2007), no. 2, 1182–1229.
[11] T., Ceccherini-Silberstein, F., Scarabotti and F., Tolli, Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains. Cambridge Studies in Advanced Mathematics, vol. 108, Cambridge University Press, 2008.
[12] T., Ceccherini-Silberstein, A., Machì, F., Scarabotti and F., Tolli, Induced representation and Mackey theory. J. Math. Sci. 156 (2009), no. 1, 11–28.
[13] T., Ceccherini-Silberstein, F., Scarabotti and F., Tolli, Clifford theory and applications. J. Math. Sci. 156 (2009), no. 1, 29–43.
[14] T., Ceccherini-Silberstein, F., Scarabotti and F., Tolli, Representation theory of wreath products of finite groups. J. Math. Sci. 156 (2009), no. 1, 44–55.
[15] T., Ceccherini-Silberstein, F., Scarabotti and F., Tolli, Representation Theory of the Symmetric Groups: the Okounkov-Vershik Approach, Character Formulas, and Partition Algebras. Cambridge Studies in Advanced Mathematics, vol. 121, Cambridge University Press, 2010.
[16] A.H., Clifford, Representations induced in an invariant subgroup. Ann. Math. (2) 38 (1937), no. 3, 533–550.
[17] C.W., Curtis and I., Reiner, Representation Theory of Finite Groups and Associative Algebras. Reprint of the 1962 original. Wiley Classics Library. John Wiley & Sons, 1988.
[18] C.W., Curtis and I., Reiner, Methods of Representation Theory. With Applications to Finite Groups and Orders, Vols. I and II. Pure and Applied Mathematics Series, John Wiley & Sons, 1981 and 1987.
[19] P., Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973). Available at: http://users.wpi.edu/~martin/RESEARCH/philips.pdf
[20] P., Diaconis, Group Representations in Probability and Statistics. Institute of Mathematical Statistics Lecture Notes-Monograph Series, vol. 11, Institute of Mathematical Statistics, 1988.
[21] P., Diaconis and D., Rockmore, Efficient computation of isotypic projections for the symmetric group, in Proc. Conf. on Groups and computation (New Brunswick, NJ, 1991), pp. 87–104, American Mathematical Society, 1993.
[22] P., Diaconis and M., Shahshahani, Time to reach stationarity in the Bernoulli—Laplace diffusion model. SIAM J. Math. Anal. 18 (1987), 208–218.
[23] J.D., Dixon and B., Mortimer, Permutation groups. Graduate Texts in Mathematics, vol. 163, Springer-Verlag, 1996.
[24] L., Dornhoff, Group Representation theory. Part A: Ordinary Representation Theory. Pure and Applied Mathematics Series, 7, Marcel Dekker, 1971.
[25] C.F., Dunkl, A Krawtchouk polynomial addition theorem and wreath products of symmetric groups. Indiana Univ. Math. J. 25 (1976), 335–358.
[26] C.F., Dunkl, An addition theorem for Hahn polynomials: the spherical functions. SIAM J. Math. Anal. 9 (1978), 627–637.
[27] C.F., Dunkl, Orthogonal functions on some permutation groups. in Proc. Symp. Pure Math. vol. 34, pp. 129–147, American Mathematical Society, 1979.
[28] A., Figà-Talamanca, An application of Gelfand pairs to a problem of diffusion in compact ultrametric spaces, in Topics in Probability and Lie Groups: Boundary Theory, CRM Proc. Lecture Notes vol. 28, American Mathematical Society, 2001.
[29] W., Fulton and J., Harris, Representation Theory. A First Course. Graduate Texts in Mathematics, vol. 29, Springer-Verlag, 1991.
[30] P.X., Gallagher, Group characters and normal Hall subgroups. Nagoya Math. J. 21 (1962), 223–230.
[31] L., Geissinger and D., Kinch, Representations of the hyperoctahedral group, J. Algebra 53 (1978), 1–20.
[32] I.M., Gelfand, Spherical functions on symmetric Riemannian spaces, Dokl. Akad. Nauk. SSSR 70 (1959), 5–8 (Collected papers, Vol. II, Springer (1988), 31–35).
[33] R.I., Grigorchuk, Just infinite branch groups, in New Horizons in pro-p Groups, Progr. Math., vol. 184, pp. 121–179, Birkhäuser, 2000.
[34] L.C., Grove, Groups and Characters. Pure and Applied Mathematics John Wiley & Sons, Inc., 1997.
[35] B., Huppert, Character Theory of Finite Groups. De Gruyter Expositions in Mathematics, vol. 25, Walter de Gruyter, 1998.
[36] I.M., Isaacs, Character Theory of Finite Groups. Corrected reprint of the 1976 original (Academic Press, New York). Dover Publications, 1994.
[37] G.D., James, The Representation Theory of the Symmetric Groups. Springer Lecture Notes, vol. 682, Springer-Verlag, 1978.
[38] G.D., James and A., Kerber, The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley, 1981.
[39] L., Kaloujnine, Sur les p-groupes de Sylow du groupe symétrique du degré pm. C. R. Acad. Sci. Paris 221 (1945), 222–224.
[40] L., Kaloujnine, Sur les p-groupes de Sylow du groupe symétrique du degré pm (Suite centrale ascendante et descendante). C. R. Acad. Sci. Paris 223 (1946), 703–705.
[41] L., Kaloujnine, Sur les p-groupes de Sylow du groupe symétrique du degré pm (Sous-groupes caractéristiques, sous-groupes parallélotopiques), C. R. Acad. Sci. Paris 224 (1947), 253–255.
[42] L., Kaloujnine, La structure des p-groupes de Sylow des groupes symétriques finis. Ann. Sci. École Norm. Sup. (3) 65 (1948), 239–276.
[43] A., Kerber, Representations of Permutation Groups. I. Lecture Notes in Mathematics, vol. 240, Springer-Verlag, 1971.
[44] A., Kerber, Applied Finite Group Actions. Second edition. Algorithms and Combinatorics Series, vol. 19, Springer-Verlag, 1999.
[45] A., Kerber and J., Tappe, On permutation characters of wreath products. Discrete Math. 15 (1976), no. 2, 151–161.
[46] M., Krasner and L., Kaloujnine, Produit complet des groupes de permutations et problème d'extension de groupes I. Acta Sci. Math. Szeged 13 (1950), 208–230.
[47] M., Krasner and L., Kaloujnine, Produit complet des groupes de permutations et problème d'extension de groupes II. Acta Sci. Math. Szeged 14 (1951), 39–66.
[48] M., Krasner and L., Kaloujnine, Produit complet des groupes de permutations et problème d'extension de groupes III. Acta Sci. Math. Szeged 14 (1951), 69–82.
[49] S., Lang, SL2(R). Reprint of the 1975 edition. Graduate Texts in Mathematics, vol. 105. Springer-Verlag, 1985.
[50] S., Lang, Algebra. Revised third edition. Graduate Texts in Mathematics, vol. 211, Springer-Verlag, 2002.
[51] G., Letac, Problèmes classiques de probabilité sur un couple de Gelfand, in “Analytical Problems in Probability”, Lecture Notes in Mathematics, vol. 861, pp. 93–120, Springer Verlag, 1981.
[52] G., Letac, Les fonctions spheriques d'un couple de Gelfand symmetrique et les chaînes de Markov. Advances Appl. Prob. 14 (1982), 272–294.
[53] W.C.W., Li, Number Theory with Applications. Series on University Mathematics, vol. 7, World Scientific, 1996.
[54] J.H. van, Lint and R.M., Wilson, A Course in Combinatorics. Second edition. Cambridge University Press, 2001.
[55] G.W., Mackey, Unitary representations of group extensions. I. Acta Math. 99 (1958), 265–311.
[56] G.W., Mackey, Unitary Group Representations in Physics, Probability, and Number Theory. Second edition. Advanced Book Classics, Addison-Wesley, 1989.
[57] H., Mizukawa, Zonal spherical functions on the complex reflection groups and (n + 1, m + 1)-hypergeometric functions, Adv. Math 184 (2004), 1–17.
[58] H., Mizukawa and H., Tanaka, (n + 1, m + 1)-hypergeometric functions associated to character algebras. Proc. Amer. Math. Soc. 132 (2004), no. 9, 2613–2618.
[59] A., Okounkov and A.M., Vershik, A new approach to representation theory of symmetric groups. SelectaMath. (N.S.) 2 (1996), no. 4, 581–605.
[60] J.J., Rotman, An Introduction to the Theory of Groups. Fourth edition. Graduate Texts in Mathematics, vol. 148, Springer-Verlag, 1995.
[61] B.E., Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions. Second edition. Graduate Texts in Mathematics, 203, Springer-Verlag, 2001.
[62] J., Saxl, On multiplicity-free permutation representations, in Finite Geometries and Designs, London Mathematical Society Lecture Notes Series, vol. 48, p. 337–353, Cambridge University Press, 1981.
[63] F., Scarabotti and F., Tolli, Harmonic analysis of finite lamplighter random walks. J. Dyn. Control Syst. 14 (2008), no. 2, 251–282.
[64] F., Scarabotti and F., Tolli, Harmonic analysis on a finite homogeneous space. Proc. Lond. Math. Soc.(3) 100 (2010), no. 2, 348–376.
[65] F., Scarabotti and F., Tolli, Harmonic analysis on a finite homogeneous space II: the Gelfand-Tsetlin decomposition. Forum Math. 22 (2010), no. 5, 879–911.
[66] C.H., Schoolfield, A signed generalization of the Bernoulli–Laplace diffusion model. J. Theoret. Probab. 15 (2002), no. 1, 97–127.
[67] J.P., Serre, Linear representations of finite groups. Graduate Texts in Mathematics, vol. 42, Springer-Verlag, 1977.
[68] B., Simon, Representations of Finite and Compact Groups. American Mathematical Society, 1996.
[69] R.P., Stanley, Enumerative Combinatorics, vol. 1. Cambridge University Press, 1997.
[70] D., Stanton, Orthogonal Polynomials and Chevalley Groups, in Special Functions: Group Theoretical Aspects and Applications (R., Askeyet al., Eds.) pp. 87–128, Dordrecht, 1984.
[71] D., Stanton, Harmonics on Posets. J. Comb. Theory Ser.A 40 (1985), 136–149.
[72] D., Stanton, An introduction to group representations and orthogonal polynomials, in Orthogonal Polynomials (P., Nevai, Ed.), pp. 419–433, Kluwer Academic, 1990.
[73] S., Sternberg, Group Theory and Physics. Cambridge University Press, 1994.
[74] A., Terras, Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43, Cambridge University Press, 1999.
[75] H., Wielandt, Finite Permutation Groups. Academic Press, 1964.
[76] E., Wigner, On unitary representations of the inhomogeneous Lorentz group. Ann. Math. (2) 40 (1939), no. 1, 149–204.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.