Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T14:04:31.545Z Has data issue: false hasContentIssue false

21 - Stress Hormones in Psychophysiological Research: Emotional, Behavioral, and Cognitive Implications

from Topical Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnati, L. F., Bjelke, B., & Fuxe, K. (1992). Volume transmission in the brain. American Scientist, 80: 362373.Google Scholar
al’Absi, M., Bongard, S., Buchanan, T., Pincomb, G. A., Licinio, J., & Lovallo, W. R. (1997). Cardiovascular and neuroendocrine adjustment to public speaking and mental arithmetic stressors. Psychophysiology, 34: 266275.Google Scholar
al’Absi, M., Hugdahl, K., & Lovallo, W. R. (2002). Adrenocortical stress responses and altered working memory performance. Psychophysiology, 39: 9599.Google Scholar
al’Absi, M., Lovallo, W. R., McKey, B. S., & Pincomb, G. A. (1994). Borderline hypertensives produce exaggerated adrenocortical responses to mental stress. Psychosomatic Medicine, 56: 245250.Google Scholar
Amaral, D. G. (2002). The primate amygdala and the neurobiology of social behavior: implications for understanding social anxiety. Biological Psychiatry, 51: 1117.Google Scholar
Amaral, D. G., Price, J. L., Pitkanen, A., & Carmichael, S. T. (1992). Anatomical organization of the primate amygdaloid complex. In Aggleton, J. P. (ed.), The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (pp. 166). New York: Wiley-Liss.Google Scholar
Atsak, P., Hauer, D., Campolongo, P., Schelling, G., Fornari, R. V., & Roozendaal, B. (2015). Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation. Neuropsychopharmacology, 40: 14851494.CrossRefGoogle ScholarPubMed
Averill, J. R. (1973). Personal control over aversive stimuli and its relation to stress. Psychological Bulletin, 80: 286303.Google Scholar
Banks, W. A. (2012). Brain meets body: the blood–brain barrier as an endocrine interface. Endocrinology, 153: 41114119.Google Scholar
Barsegyan, A., Mackenzie, S. M., Kurose, B. D., McGaugh, J. L., & Roozendaal, B. (2010). Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proceedings of the National Academy of Sciences of the USA, 107: 1665516660.Google Scholar
Basu, A., Levendosky, A. A., & Lonstein, J. S. (2013). Trauma sequelae and cortisol levels in women exposed to intimate partner violence. Psychodynamic Psychiatry, 41: 247275.Google Scholar
Bauer, C. R., Lambert, B. L., Bann, C. M., Lester, B. M., Shankaran, S., Bada, H. S., … & Higgins, R. D. (2011). Long-term impact of maternal substance use during pregnancy and extrauterine environmental adversity: stress hormone levels of preadolescent children. Pediatric Research, 70: 213219.Google Scholar
Bauer, M. E. (2008). Chronic stress and immunosenescence: a review. Neuroimmunomodulation, 15: 241250.Google Scholar
Baumgartner, A. M., Jones, P. F., Baumgartner, W. A., & Black, C. T. (1979). Radioimmunoassay of hair for determining opiate-abuse histories. Journal of Nuclear Medicine, 20: 748752.Google Scholar
Baumler, D., Kliegel, M., Kirschbaum, C., Miller, R., Alexander, N., & Stalder, T. (2014a). Effect of a naturalistic prospective memory-related task on the cortisol awakening response in young children. Biological Psychology, 103: 2426.CrossRefGoogle ScholarPubMed
Baumler, D., Voigt, B., Miller, R., Stalder, T., Kirschbaum, C., & Kliegel, M. (2014b). The relation of the cortisol awakening response and prospective memory functioning in young children. Biological Psychology, 99: 4146.Google Scholar
Bernard, C. (1865/1927). An Introduction to the Study of Experimental Medicine, trans. Greene, H. C.. London: Macmillan.Google Scholar
Bernardy, N. C., King, A. C., Parsons, O. A., & Lovallo, W. R. (1996). Altered cortisol response in sober alcoholics: an examination of contributing factors. Alcohol, 13: 493498.Google Scholar
Berridge, C. W. & Dunn, A. J. (1989). Restraint-stress-induced changes in exploratory behavior appear to be mediated by norepinephrine-stimulated release of CRF. Journal of Neuroscience, 9: 35133521.Google Scholar
Bevalot, F., Gaillard, Y., Lhermitte, M. A., & Pepin, G. (2000). Analysis of corticosteroids in hair by liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 740: 227236.Google Scholar
Blombery, P. A. & Heinzow, B. G. (1983). Cardiac and pulmonary norepinephrine release and removal in the dog. Circulation Research, 53: 688694.Google Scholar
Bodnar, R. J. (2014). Endogenous opiates and behavior: 2013. Peptides, 62: 67136.Google Scholar
Bosch, J. A., de Geus, E. J., Veerman, E. C., Hoogstraten, J., & Nieuw Amerongen, A. V. (2003). Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosomatic Medicine, 65: 245258.Google Scholar
Bosch, J. A., Veerman, E. C., de Geus, E. J., & Proctor, G. B. (2011). Alpha-amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology, 36: 449453.Google Scholar
Boyson, C. O., Holly, E. N., Shimamoto, A., Albrechet-Souza, L., Weiner, L. A., DeBold, J. F., & Miczek, K. A. (2014). Social stress and CRF-dopamine interactions in the VTA: role in long-term escalation of cocaine self-administration. Journal of Neuroscience, 34: 66596667.Google Scholar
Brady, J. V., Porter, R. W., Conrad, D. G., & Mason, J. W. (1958). Avoidance behavior and the development of gastroduodenal ulcers. Journal of the Experimental Analysis of Behavior, 1: 6972.Google Scholar
Brantley, P. J., Dietz, L. S., McKnight, G. T., Jones, G. N., & Tulley, R. (1988). Convergence between the Daily Stress Inventory and endocrine measures of stress. Journal of Consulting and Clinical Psychology, 56: 549551.CrossRefGoogle ScholarPubMed
Bremner, J. D. (2005). Effects of traumatic stress on brain structure and function: relevance to early responses to trauma. Journal of Trauma & Dissociation, 6: 5168.Google Scholar
Bremner, J. D., Randall, P., Scott, T. M., Bronen, R. A., Seibyl, J. P., Southwick, S. M., … & Innis, R. B. (1995). MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. American Journal of Psychiatry, 152: 973981.Google Scholar
Bremner, J. D., Vythilingam, M., Anderson, G., Vermetten, E., McGlashan, T., Heninger, G., … & Charney, D. S. (2003). Assessment of the hypothalamic–pituitary–adrenal axis over a 24-hour diurnal period and in response to neuroendocrine challenges in women with and without childhood sexual abuse and posttraumatic stress disorder. Biological Psychiatry, 54: 710718.Google Scholar
Brown, M. R., Fisher, L. A., Spiess, J., Rivier, C., Rivier, J., & Vale, W. (1982). Corticotropin-releasing factor: actions on the sympathetic nervous system and metabolism. Endocrinology, 111: 928931.Google Scholar
Bublitz, M. H. & Stroud, L. R. (2013). Maternal history of child abuse moderates the association between daily stress and diurnal cortisol in pregnancy: a pilot study. Stress, 16: 706710.CrossRefGoogle ScholarPubMed
Buchanan, T. W., al’Absi, M., & Lovallo, W. R. (1999). Cortisol fluctuates with increases and decreases in negative affect. Psychoneuroendocrinology, 24: 227241.Google Scholar
Buchanan, T. W., Brechtel, A., Sollers, J. J., & Lovallo, W. R. (2001). Exogenous cortisol exerts effects on the startle reflex independent of emotional modulation. Pharmacology, Biochemistry and Behavior, 68: 203210.CrossRefGoogle ScholarPubMed
Buchanan, T. W., Kern, S., Allen, J. S., Tranel, D., & Kirschbaum, C. (2004). Circadian regulation of cortisol after hippocampal damage in humans. Biological Psychiatry, 56: 651656.Google Scholar
Buchanan, T. W. & Lovallo, W. R. (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology, 26: 307317.Google Scholar
Buchanan, T. W., Tranel, D., & Kirschbaum, C. (2009). Hippocampal damage abolishes the cortisol response to psychosocial stress in humans. Hormones and Behavior, 56: 4450.Google Scholar
Buijs, R. M., van Eden, C. G., Goncharuk, V. D., & Kalsbeek, A. (2003). The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. Journal of Endocrinology, 177: 1726.Google Scholar
Busch, L., Sterin-Borda, L., & Borda, E. (2006). An overview of autonomic regulation of parotid gland activity: influence of orchiectomy. Cells, Tissues, Organs, 182: 117128.Google Scholar
Cacioppo, J. T., Malarkey, W. B., Kiecolt-Glaser, J. K., Uchino, B. N., Sgoutas-Emch, S. A., Sheridan, J. F., … & Glaser, R. (1995). Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosomatic Medicine, 57: 154164.Google Scholar
Cake, M. H. & Litwack, G. (1975). The glucocorticoid receptor. In Litwack, G. (ed.), Biochemical Actions of Hormones, vol. 3 (pp. 317390). New York: Elsevier.CrossRefGoogle Scholar
Cannon, W. B. (1929). Bodily Changes in Pain, Hunger, Fear, and Rage, 2nd edn. New York: Appleton.Google Scholar
Cannon, W. B. (1935). Stresses and strains of homeostasis (Mary Scott Newbold Lecture). American Journal of Medical Sciences, 189: 114.Google Scholar
Carpenter, L. L., Carvalho, J. P., Tyrka, A. R., Wier, L. M., Mello, A. F., Mello, M. F., … & Price, L. H. (2007). Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biological Psychiatry, 62: 10801087.Google Scholar
Carpenter, L. L., Shattuck, T. T., Tyrka, A. R., Geracioti, T. D., & Price, L. H. (2011). Effect of childhood physical abuse on cortisol stress response. Psychopharmacology, 214: 367375.CrossRefGoogle ScholarPubMed
Carroll, D., Lovallo, W. R., & Phillips, A. C. (2009). Are large physiological reactions to acute psychological stress always bad for health? Social and Personality Psychology Compass, 3: 725743.Google Scholar
Carroll, D., Phillips, A. C., & Lovallo, W. R. (2011). The behavioral and health correlates of blunted physiological reactions to acute psychological stress: revising the reactivity hypothesis. In Wright, R. & Gendolla, G. H. E. (eds.), How Motivation Affects Cardiovascular Response (pp. 223241). Washington, DC: American Psychological Association.Google Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., … & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297: 851854.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … & Poulton, R. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301: 386389.Google Scholar
Charvat, J., Dell, P., & Folkow, B. (1964). Mental factors and cardiovascular diseases. Cardiologia, 44: 124141.Google Scholar
Chatterton, R. T. Jr., Vogelsong, K. M., Lu, Y. C., Ellman, A. B., & Hudgens, G. A. (1996). Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clinical Physiology, 16: 433448.Google Scholar
Chida, Y. & Steptoe, A. (2009). Cortisol awakening response and psychosocial factors: a systematic review and meta-analysis. Biological Psychology, 80: 265278.Google Scholar
Cirimele, V., Tracqui, A., Kintz, P., & Ludes, B. (1999). First identification of prednisone in human hair by liquid chromatography-ionspray mass spectrometry. Journal of Analytical Toxicology, 23: 225226.Google Scholar
Cone, E. J. (1996). Mechanisms of drug incorporation into hair. Therapeutic Drug Monitoring, 18: 438443.Google Scholar
Czeisler, C. A. & Klerman, E. B. (1999). Circadian and sleep-dependent regulation of hormone release in humans. Recent Progress in Hormone Research, 54: 97130; discussion 130–132.Google Scholar
Dale, H. H. (1909). The action of extracts of the pituitary body. Biochemical Journal, 4: 427447.Google Scholar
Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A., & Meyer, J. S. (2006). Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. General and Comparative Endocrinology, 147: 255261.Google Scholar
Davies, A. O. & Lefkowitz, R. J. (1984). Regulation of beta-adrenergic receptors by steroid hormones. Annual Review of Physiology, 46: 119130.CrossRefGoogle ScholarPubMed
Davis, M. (2000). The role of the amygdala in conditioned and unconditioned fear and anxiety. In Aggleton, J. P. (ed.), The Amygdala: A Functional Analysis (pp. 213287). Oxford University Press.Google Scholar
de Kloet, E. R., Joels, M., & Holsboer, F. (2005a). Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience, 6: 463475.Google Scholar
de Kloet, E. R., Sibug, R. M., Helmerhorst, F. M., & Schmidt, M. V. (2005b). Stress, genes and the mechanism of programming the brain for later life. Neuroscience & Biobehavioral Reviews, 29: 271281.CrossRefGoogle ScholarPubMed
de Leon, M. J., McRae, T., Tsai, J. R., George, A. E., Marcus, D. L., Freedman, M., … & McEwen, B. (1988). Abnormal cortisol response in Alzheimer’s disease linked to hippocampal atrophy. Lancet, 2: 391392.Google Scholar
de Quervain, D. J. & McGaugh, J. L. (2014). Stress and the regulation of memory: from basic mechanisms to clinical implications. Neurobiology of Learning and Memory, Special Issue, 112: 1.Google Scholar
De Souza, E. B., Insel, T. R., Perrin, M. H., Rivier, J., Vale, W. W., & Kuhar, M. J. (1985). Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: an autoradiographic study. Journal of Neuroscience, 5: 31893203.Google Scholar
Dettenborn, L., Rosenloecher, F., & Kirschbaum, C. (2007). No effects of repeated forced wakings during three consecutive nights on morning cortisol awakening responses (CAR): a preliminary study. Psychoneuroendocrinology, 32: 915921.Google Scholar
Dettenborn, L., Tietze, A., Bruckner, F., & Kirschbaum, C. (2010). Higher cortisol content in hair among long-term unemployed individuals compared to controls. Psychoneuroendocrinology, 35: 14041409.Google Scholar
Dettenborn, L., Tietze, A., Kirschbaum, C., & Stalder, T. (2012). The assessment of cortisol in human hair: associations with sociodemographic variables and potential confounders. Stress, 15: 578588.Google Scholar
Dickerson, S. S. & Kemeny, M. E. (2004). Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130: 355391.Google Scholar
Duan, H., Yuan, Y., Zhang, L., Qin, S., Zhang, K., Buchanan, T. W., & Wu, J. (2013). Chronic stress exposure decreases the cortisol awakening response in healthy young men. Stress, 16: 630637.Google Scholar
Ducat, E., Ray, B., Bart, G., Umemura, Y., Varon, J., Ho, A., & Kreek, M. J. (2013). Mu-opioid receptor A118G polymorphism in healthy volunteers affects hypothalamic–pituitary–adrenal axis adrenocorticotropic hormone stress response to metyrapone. Addiction Biology, 18: 325331.CrossRefGoogle ScholarPubMed
Ehlert, U. (2013). Enduring psychobiological effects of childhood adversity. Psychoneuroendocrinology, 38: 18501857.Google Scholar
Ellertsen, B., Johnsen, T. B., & Ursin, H. (1977). Relationship between the hormonal responses to activation and coping. In Ursin, H., Baade, E., & Levine, S. (eds.), Psychobiology of Stress: A Study of Coping Men (pp. 243248). New York: Academic Press.Google Scholar
Ennis, M. & Aston-Jones, G. (1988). Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain. Journal of Neuroscience, 8: 36443657.Google Scholar
Enoch, M. A., Steer, C. D., Newman, T. K., Gibson, N., & Goldman, D. (2010). Early life stress, MAOA, and gene–environment interactions predict behavioral disinhibition in children. Genes, Brain, and Behavior, 9: 6574.Google Scholar
Epel, E. S., McEwen, B., Seeman, T., Matthews, K., Castellazzo, G., Brownell, K. D., … & Ickovics, J. R. (2000). Stress and body shape: stress-induced cortisol secretion is consistently greater among women with central fat. Psychosomatic Medicine, 62: 623632.Google Scholar
Errico, A. L., Parsons, O. A., King, A. C., & Lovallo, W. R. (1993). Attenuated cortisol response to biobehavioral stressors in sober alcoholics. Journal of Studies on Alcohol, 54: 393398.Google Scholar
Esler, M., Hasking, G. J., Willett, I. R., Leonard, P. W., & Jennings, G. L. (1985). Noradrenaline release and sympathetic nervous system activity. Journal of Hypertension, 3: 117129.Google Scholar
Esler, M., Jennings, G., Korner, P., Willett, I., Dudley, F., Hasking, G., … & Lambert, G. (1988). Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension, 11: 320.Google Scholar
Esler, M., Jennings, G., Leonard, P., Sacharias, N., Burke, F., Johns, J., & Blombery, P. (1984). Contribution of individual organs to total noradrenaline release in humans. Acta Physiologica Scandinavica. Supplementum, 527: 1116.Google ScholarPubMed
Evans, P. D., Fredhoi, C., Loveday, C., Hucklebridge, F., Aitchison, E., Forte, D., & Clow, A. (2011). The diurnal cortisol cycle and cognitive performance in the healthy old. International Journal of Psychophysiology, 79: 371377.Google Scholar
Everson, S. A., Kaplan, G. A., Goldberg, D. E., & Salonen, J. T. (1996). Anticipatory blood pressure response to exercise predicts future high blood pressure in middle-aged men. Hypertension, 27: 10591064.Google Scholar
Faix, J. D. (2013). Principles and pitfalls of free hormone measurements. Best Practice & Research: Clinical Endocrinology & Metabolism, 27: 631645.Google Scholar
Fastenrath, M., Coynel, D., Spalek, K., Milnik, A., Gschwind, L., Roozendaal, B., … & de Quervain, D. J. (2014). Dynamic modulation of amygdala–hippocampal connectivity by emotional arousal. Journal of Neuroscience, 34: 1393513947.Google Scholar
Fauss, D., Motter, R., Dofiles, L., Rodrigues, M. A., You, M., Diep, L., … & Bergeron, M. (2013). Development of an enzyme-linked immunosorbent assay (ELISA) to measure the level of tyrosine hydroxylase protein in brain tissue from Parkinson’s disease models. Journal of Neuroscience Methods, 215: 245257.CrossRefGoogle ScholarPubMed
Federenko, I., Wust, S., Hellhammer, D. H., Dechoux, R., Kumsta, R., & Kirschbaum, C. (2004). Free cortisol awakening responses are influenced by awakening time. Psychoneuroendocrinology, 29: 174184.Google Scholar
Folkman, S. (1984). Personal control and stress and coping processes: a theoretical analysis. Journal of Personality and Social Psychology, 46: 839852.Google Scholar
Francis, K. T. (1979). Psychologic correlates of serum indicators of stress in man: a longitudinal study. Psychosomatic Medicine, 41: 617628.Google Scholar
Francis, S. J., Walker, R. F., Riad-Fahmy, D., Hughes, D., Murphy, J. F., & Gray, O. P. (1987). Assessment of adrenocortical activity in term newborn infants using salivary cortisol determinations. Journal of Pediatrics, 111: 129133.Google Scholar
Frankenhaeuser, M. & Rissler, A. (1970). Effects of punishment on catecholamine release and efficiency of performance. Psychopharmacologia, 17: 378390.CrossRefGoogle ScholarPubMed
Frankenhaeuser, M., von Wright, M. R., Collins, A., von Wright, J., Sedvall, G., & Swahn, C. G. (1978). Sex differences in psychoneuroendocrine reactions to examination stress. Psychosomatic Medicine, 40: 334343.Google Scholar
Fries, E., Dettenborn, L., & Kirschbaum, C. (2009). The cortisol awakening response (CAR): facts and future directions. International Journal of Psychophysiology, 72: 6773.Google Scholar
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30: 10101016.Google Scholar
Fryer, S. M., Dickson, T., Hillier, S., Stoner, L., Scarrott, C., & Draper, N. (2014). A comparison of capillary, venous, and salivary cortisol sampling after intense exercise. International Journal of Sports Physiology and Performance, 9: 973977.Google Scholar
Gianaros, P. J., Horenstein, J. A., Cohen, S., Matthews, K. A., Brown, S. M., Flory, J. D., … & Hariri, A. R. (2007). Perigenual anterior cingulate morphology covaries with perceived social standing. Social Cognitive and Affective Neuroscience, 2: 161173.Google Scholar
Gianaros, P. J. & Manuck, S. B. (2010). Neurobiological pathways linking socioeconomic position and health. Psychosomatic Medicine, 72: 450461.Google Scholar
Goldstein, D. S., Dionne, R., Sweet, J., Gracely, R., Brewer, H. B. Jr., Gregg, R., & Keiser, H. R. (1982). Circulatory, plasma catecholamine, cortisol, lipid, and psychological responses to a real-life stress (third molar extractions): effects of diazepam sedation and of inclusion of epinephrine with the local anesthetic. Psychosomatic Medicine, 44: 259272.CrossRefGoogle ScholarPubMed
Gonzalez, A., Jenkins, J. M., Steiner, M., & Fleming, A. S. (2009). The relation between early life adversity, cortisol awakening response and diurnal salivary cortisol levels in postpartum women. Psychoneuroendocrinology, 34: 7686.Google Scholar
Gonzalez-Cabrera, J., Fernandez-Prada, M., Iribar-Ibabe, C., & Peinado, J. M. (2014). Acute and chronic stress increase salivary cortisol: a study in the real-life setting of a national examination undertaken by medical graduates. Stress, 17: 149156.CrossRefGoogle ScholarPubMed
Gow, R., Thomson, S., Rieder, M., Van Uum, S., & Koren, G. (2010). An assessment of cortisol analysis in hair and its clinical applications. Forensic Science International, 196: 3237.Google Scholar
Grimm, S., Pestke, K., Feeser, M., Aust, S., Weigand, A., Wang, J., … & Bajbouj, M. (2014). Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress. Social Cognitive and Affective Neuroscience, 9: 18281835.Google Scholar
Groeneweg, F. L., Karst, H., de Kloet, E. R., & Joels, M. (2012). Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Molecular and Cellular Endocrinology, 350: 299309.Google Scholar
Guilleman, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., … & Bloom, F. (1977). Beta-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science, 197: 13671369.Google Scholar
Halgren, E. (1992). Emotional neurophysiology of the amygdala within the context of human cognition. In Aggleton, J. P. (ed.), The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (pp. 191228). New York: Wiley-Liss.Google Scholar
Hansen, A. M., Hogh, A., Persson, R., Karlson, B., Garde, A. H., & Orbaek, P. (2006). Bullying at work, health outcomes, and physiological stress response. Journal of Psychosomatic Research, 60: 6372.Google Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., … & Davidson, R. J. (2015). Behavioral problems after early life stress: contributions of the hippocampus and amygdala. Biological Psychiatry, 77: 314323.Google Scholar
Harris, B., Cook, N. J., Walker, R. F., Read, G. F., & Riad-Fahmy, D. (1989). Salivary steroids and psychometric parameters in male marathon runners. British Journal of Sports Medicine, 23: 8993.Google Scholar
Harris, B., Read, G. F., Walker, R. F., & Riad-Fahmy, D. (1988). Salivary cortisol and adrenal function. Biological Psychiatry, 24: 954956.Google Scholar
Harris, B., Watkins, S., Cook, N., Walker, R. F., Read, G. F., & Riad-Fahmy, D. (1990). Comparisons of plasma and salivary cortisol determinations for the diagnostic efficacy of the dexamethasone suppression test. Biological Psychiatry, 27: 897904.Google Scholar
Henckens, M. J., Pu, Z., Hermans, E. J., van Wingen, G. A., Joels, M., & Fernandez, G. (2012). Dynamically changing effects of corticosteroids on human hippocampal and prefrontal processing. Human Brain Mapping, 33: 28852897.Google Scholar
Henckens, M. J., van Wingen, G. A., Joels, M., & Fernandez, G. (2010). Time-dependent effects of corticosteroids on human amygdala processing. Journal of Neuroscience, 30: 1272512732.Google Scholar
Henry, M., Thomas, K. G., & Ross, I. L. (2014). Episodic memory impairment in Addison’s disease: results from a telephonic cognitive assessment. Metabolic Brain Disease, 29: 421430.Google Scholar
Herbert, J. (2013). Cortisol and depression: three questions for psychiatry. Psychological Medicine, 43: 449469.Google Scholar
Hermans, E. J., Battaglia, F. P., Atsak, P., de Voogd, L. D., Fernandez, G., & Roozendaal, B. (2014). How the amygdala affects emotional memory by altering brain network properties. Neurobiology of Learning and Memory, 112: 216.Google Scholar
Herrera, A. Y. & Mather, M. (2015). Actions and interactions of estradiol and glucocorticoids in cognition and the brain: implications for aging women. Neuroscience & Biobehavioral Reviews, 55: 3652.Google Scholar
Het, S., Rohleder, N., Schoofs, D., Kirschbaum, C., & Wolf, O. T. (2009). Neuroendocrine and psychometric evaluation of a placebo version of the “Trier Social Stress Test.” Psychoneuroendocrinology, 34: 10751086.Google Scholar
Hilton, S. M. (1982). The defence-arousal system and its relevance for circulatory and respiratory control. Journal of Experimental Biology, 100: 159174.Google Scholar
Hines, E. A. Jr. (1937). Reaction of the blood pressure of 400 school children to a standard stimulus. Journal of the American Medical Association, 108: 12491250.Google Scholar
Hobbs, S. (1982). Central command during exercise: parallel activation of the cardiovascular and motor systems by descending command signals. In Smith, O. A., Galosy, R. A., & Weiss, S. M. (eds.), Circulation, Neurobiology and Behavior (pp. 217231). New York: Elsevier.Google Scholar
Hoyle, C. H. V. (1992). Transmission: purines. In Burnstock, G. & Hoyle, C. H. V. (eds.), Autonomic Neuroeffector Mechanisms (pp. 367408). Reading: Harwood Academic Publishers.Google Scholar
Hunter, A. L., Minnis, H., & Wilson, P. (2011). Altered stress responses in children exposed to early adversity: a systematic review of salivary cortisol studies. Stress, 14: 614626.Google Scholar
Insel, T. R. (1992). Oxytocin: a neuropeptide for affiliation – evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology, 17: 335.Google Scholar
Inslicht, S. S., Marmar, C. R., Neylan, T. C., Metzler, T. J., Hart, S. L., Otte, C., … & Baum, A. (2006). Increased cortisol in women with intimate partner violence-related posttraumatic stress disorder. Annals of the New York Academy of Sciences, 1071: 428429.Google Scholar
Introini-Collison, I. B. & McGaugh, J. L. (1986). Epinephrine modulates long-term retention of an aversively motivated discrimination. Behavioral and Neural Biology, 45: 358365.Google Scholar
Irwin, M., Hauger, R. L., Brown, M., & Britton, K. T. (1988). CRF activates autonomic nervous system and reduces natural killer cytotoxicity. American Journal of Physiology, 255: R744R747.Google Scholar
Jacobson, L. & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocrine Reviews, 12: 118134.CrossRefGoogle ScholarPubMed
Jensen, J. L., Brodin, P., Berg, T., & Aars, H. (1991). Parotid secretion of fluid, amylase and kallikrein during reflex stimulation under normal conditions and after acute administration of autonomic blocking agents in man. Acta Physiologica Scandinavica, 143: 321329.Google Scholar
Jessop, D. S., Dallman, M. F., Fleming, D., & Lightman, S. L. (2001). Resistance to glucocorticoid feedback in obesity. Journal of Clinical Endocrinology and Metabolism, 86: 41094114.Google Scholar
Joels, M. (2001). Corticosteroid actions in the hippocampus. Journal of Neuroendocrinology, 13: 657669.Google Scholar
Joels, M., Sarabdjitsingh, R. A., & Karst, H. (2012). Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacological Reviews, 64: 901938.Google Scholar
Johansson, G. & Frankenhaeuser, M. (1973). Temporal factors in sympatho-adrenomedullary activity following acute behavioral activation. Biological Psychology, 1: 6373.Google Scholar
Johansson, G. & Post, B. (1974). Catecholamine output of males and females over a one-year period. Acta Physiologica Scandinavica, 92: 557565.Google Scholar
Jurado, C., Kintz, P., Menendez, M., & Repetto, M. (1997). Influence of the cosmetic treatment of hair on drug testing. International Journal of Legal Medicine, 110: 159163.Google Scholar
Kalra, S., Einarson, A., Karaskov, T., Van Uum, S., & Koren, G. (2007). The relationship between stress and hair cortisol in healthy pregnant women. Clinical and Investigative Medicine, 30: E103E107.Google Scholar
Kaplan, J. R., Manuck, S. B., Clarkson, T. B., Lusso, F. M., Taub, D. M., & Miller, E. W. (1983). Social stress and atherosclerosis in normocholesterolemic monkeys. Science, 220: 733735.Google Scholar
Kennedy, B., Dillon, E., Mills, P. J., & Ziegler, M. G. (2001). Catecholamines in human saliva. Life Sciences, 69: 8799.Google Scholar
Kidd, T., Carvalho, L. A., & Steptoe, A. (2014). The relationship between cortisol responses to laboratory stress and cortisol profiles in daily life. Biological Psychology, 99: 3440.Google Scholar
Kim, H. K., Tiberio, S. S., Capaldi, D. M., Shortt, J. W., Squires, E. C., & Snodgrass, J. J. (2015). Intimate partner violence and diurnal cortisol patterns in couples. Psychoneuroendocrinology, 51: 3546.Google Scholar
Kintz, P., Cirimele, V., Jeanneau, T., & Ludes, B. (1999). Identification of testosterone and testosterone esters in human hair. Journal of Analytical Toxicology, 23: 352356.Google Scholar
Kirschbaum, C. & Hellhammer, D. H. (1989). Salivary cortisol in psychobiological research: an overview. Neuropsychobiology, 22: 150169.Google Scholar
Kirschbaum, C., Pirke, K. M., & Hellhammer, D. H. (1993). The “Trier Social Stress Test”: a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28: 7681.Google Scholar
Kirschbaum, C., Tietze, A., Skoluda, N., & Dettenborn, L. (2009). Hair as a retrospective calendar of cortisol production: increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology, 34: 3237.Google Scholar
Kirschbaum, C., Wolf, O. T., May, M., Wippich, W., & Hellhammer, D. H. (1996). Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sciences, 58: 14751483.Google Scholar
Kirschbaum, C., Wust, S., & Hellhammer, D. (1992). Consistent sex differences in cortisol responses to psychological stress. Psychosomatic Medicine, 54: 648657.Google Scholar
Kivlighan, K. T., Granger, D. A., Schwartz, E. B., Nelson, V., Curran, M., & Shirtcliff, E. A. (2004). Quantifying blood leakage into the oral mucosa and its effects on the measurement of cortisol, dehydroepiandrosterone, and testosterone in saliva. Hormones and Behavior, 46: 3946.Google Scholar
Klein, L. C., Jamner, L. D., Alberts, J., Orenstein, M. D., Levine, L., & Leigh, H. (2000). Sex differences in salivary cortisol levels following naltrexone administration. Journal of Applied Biobehavioral Research, 5: 144153.Google Scholar
Kovacs, G. L., Szabo, G., Sarnyai, Z., & Telegdy, G. (1987). Neurohypophyseal hormones and behavior. Progress in Brain Research, 72: 109118.Google Scholar
Kudielka, B. M., Buske-Kirschbaum, A., Hellhammer, D. H., & Kirschbaum, C. (2004). HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: impact of age and gender. Psychoneuroendocrinology, 29: 8398.Google Scholar
Kudielka, B. M., Federenko, I. S., Hellhammer, D. H., & Wust, S. (2006). Morningness and eveningness: the free cortisol rise after awakening in “early birds” and “night owls.” Biological Psychology, 72: 141146.Google Scholar
Kudielka, B. M., Gierens, A., Hellhammer, D. H., Wust, S., & Schlotz, W. (2012). Salivary cortisol in ambulatory assessment: some dos, some don’ts, and some open questions. Psychosomatic Medicine, 74: 418431.Google Scholar
Kudielka, B. M., Hellhammer, D. H., & Wust, S. (2009). Why do we respond so differently? Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology, 34: 218.Google Scholar
Kudielka, B. M., Hellhammer, J., Hellhammer, D. H., Wolf, O. T., Pirke, K. M., Varadi, E., … & Kirschbaum, C. (1998). Sex differences in endocrine and psychological responses to psychosocial stress in healthy elderly subjects and the impact of a 2-week dehydroepiandrosterone treatment. Journal of Clinical Endocrinology and Metabolism, 83: 17561761.Google Scholar
Kumari, M., Badrick, E., Chandola, T., Adam, E. K., Stafford, M., Marmot, M. G., … & Kivimaki, M. (2009). Cortisol secretion and fatigue: associations in a community based cohort. Psychoneuroendocrinology, 34: 14761485.Google Scholar
Kumari, M., Shipley, M., Stafford, M., & Kivimaki, M. (2011). Association of diurnal patterns in salivary cortisol with all-cause and cardiovascular mortality: findings from the Whitehall II study. Journal of Clinical Endocrinology and Metabolism, 96: 14781485.Google Scholar
Kumsta, R., Entringer, S., Hellhammer, D. H., & Wust, S. (2007). Cortisol and ACTH responses to psychosocial stress are modulated by corticosteroid binding globulin levels. Psychoneuroendocrinology, 32: 11531157.Google Scholar
Kunz-Ebrecht, S. R., Kirschbaum, C., Marmot, M., & Steptoe, A. (2004). Differences in cortisol awakening response on work days and weekends in women and men from the Whitehall II cohort. Psychoneuroendocrinology, 29: 516528.Google Scholar
Kunz-Ebrecht, S. R., Mohamed-Ali, V., Feldman, P. J., Kirschbaum, C., & Steptoe, A. (2003). Cortisol responses to mild psychological stress are inversely associated with proinflammatory cytokines. Brain, Behavior, and Immunity, 17: 373383.Google Scholar
Laudenslager, M. L., Noonan, C., Jacobsen, C., Goldberg, J., Buchwald, D., Bremner, J. D., … & Manson, S. M. (2009). Salivary cortisol among American Indians with and without posttraumatic stress disorder (PTSD): gender and alcohol influences. Brain, Behavior, and Immunity, 23: 658662.Google Scholar
Lazarus, R. S., Baker, R. W., Broverman, D. M., & Mayer, J. (1957). Personality and psychological stress. Journal of Personality, 25: 559577.Google Scholar
Lazarus, R. S. & Folkman, S. (1984). Stress, Appraisal and Coping. New York: Springer.Google Scholar
Lemola, S., Perkinson-Gloor, N., Hagmann-von Arx, P., Brand, S., Holsboer-Trachsler, E., Grob, A., & Weber, P. (2015). Morning cortisol secretion in school-age children is related to the sleep pattern of the preceding night. Psychoneuroendocrinology, 52: 297301.Google Scholar
Leproult, R., Copinschi, G., Buxton, O., & Van Cauter, E. (1997). Sleep loss results in an elevation of cortisol levels the next evening. Sleep, 20: 865870.Google Scholar
Liang, K. C., Juler, R. G., & McGaugh, J. L. (1986). Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Research, 368: 125133.Google Scholar
Lovallo, W. R. (2011). Do low levels of stress reactivity signal poor states of health? Biological Psychology, 86: 121128.Google Scholar
Lovallo, W. R. (2013). Early life adversity reduces stress reactivity and enhances impulsive behavior: implications for health behaviors. International Journal of Psychophysiology, 90: 816.Google Scholar
Lovallo, W. R. (2016). Stress and Health: Biological and Psychological Interactions, 3rd edn. Los Angeles, CA: Sage.Google Scholar
Lovallo, W. R., Dickensheets, S. L., Myers, D. A., Thomas, T. L., & Nixon, S. J. (2000). Blunted stress cortisol response in abstinent alcoholic and polysubstance-abusing men. Alcoholism, Clinical and Experimental Research, 24: 651658.Google Scholar
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Acheson, A., Cohoon, A. J., & Vincent, A. S. (2013). Early life adversity contributes to impaired cognition and impulsive behavior: studies from the Oklahoma Family Health Patterns Project. Alcoholism, Clinical and Experimental Research, 37: 616623.Google Scholar
Lovallo, W. R., Farag, N. H., Sorocco, K. H., Cohoon, A. J., & Vincent, A. S. (2012a). Lifetime adversity leads to blunted stress axis reactivity: studies from the Oklahoma Family Health Patterns Project. Biological Psychiatry, 71: 344349.Google Scholar
Lovallo, W. R., Farag, N. H., & Vincent, A. S. (2010a). Use of a resting control day in measuring the cortisol response to mental stress: diurnal patterns, time of day, and gender effects. Psychoneuroendocrinology, 35: 12531258.CrossRefGoogle Scholar
Lovallo, W. R. & Gerin, W. (2003). Psychophysiological reactivity: mechanisms and pathways to cardiovascular disease. Psychosomatic Medicine, 65: 3645.Google Scholar
Lovallo, W. R., King, A. C., Farag, N. H., Sorocco, K. H., Cohoon, A. J., & Vincent, A. S. (2012b). Naltrexone effects on cortisol secretion in women and men in relation to a family history of alcoholism: studies from the Oklahoma Family Health Patterns Project. Psychoneuroendocrinology, 37: 19221928.Google Scholar
Lovallo, W. R., Pincomb, G. A., Brackett, D. J., & Wilson, M. F. (1990). Heart rate reactivity as a predictor of neuroendocrine responses to aversive and appetitive challenges. Psychosomatic Medicine, 52: 1726.Google Scholar
Lovallo, W. R., Robinson, J. L., Glahn, D. C., & Fox, P. T. (2010b). Acute effects of hydrocortisone on the human brain: an fMRI study. Psychoneuroendocrinology, 35: 1520.Google Scholar
Lovallo, W. R., Wilson, M. F., Pincomb, G. A., Edwards, G. L., Tompkins, P., & Brackett, D. J. (1985). Activation patterns to aversive stimulation in man: passive exposure versus effort to control. Psychophysiology, 22: 283291.Google Scholar
Lundberg, U. & Frankenhaeuser, M. (1980). Pituitary–adrenal and sympathetic–adrenal correlates of distress and effort. Journal of Psychosomatic Research, 24: 125130.Google Scholar
Lupien, S. J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N. P.,… & Meaney, M. J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1(1), 6973.Google Scholar
Lupien, S. J., Lecours, A. R., Lussier, I., Schwartz, G., Nair, N. P., & Meaney, M. J. (1994). Basal cortisol levels and cognitive deficits in human aging. Journal of Neuroscience, 14: 28932903.Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10: 434445.Google Scholar
Malarkey, W. B., Pearl, D. K., Demers, L. M., Kiecolt-Glaser, J. K., & Glaser, R. (1995). Influence of academic stress and season on 24-hour mean concentrations of ACTH, cortisol, and beta-endorphin. Psychoneuroendocrinology, 20: 499508.Google Scholar
Mason, B. L., Pariante, C. M., Jamel, S., & Thomas, S. A. (2010). Central nervous system (CNS) delivery of glucocorticoids is fine-tuned by saturable transporters at the blood–CNS barriers and nonbarrier regions. Endocrinology, 151: 52945305.Google Scholar
Mason, J. W. (1968). Organization of psychoendocrine mechanisms. Psychosomatic Medicine, 30: 565808.Google Scholar
Mazzeo, R. S., Rajkumar, C., Jennings, G., & Esler, M. (1997). Norepinephrine spillover at rest and during submaximal exercise in young and old subjects. Journal of Applied Physiology, 82: 18691874.Google Scholar
McArdle, W. D., Foglia, G.F., & Patti, A. V. (1967). Telemetered cardiac response to selected running events. Journal of Applied Physiology, 23: 566570.Google Scholar
McCann, B. S., Carter, J., Vaughan, M., Raskind, M., Wilkinson, C. W., & Veith, R. C. (1993). Cardiovascular and neuroendocrine responses to extended laboratory challenge. Psychosomatic Medicine, 55: 497504.Google Scholar
McCubbin, J. A., Kaplan, J. R., Manuck, S. B., & Adams, M. R. (1993). Opioidergic inhibition of circulatory and endocrine stress responses in cynomolgus monkeys: a preliminary study. Psychosomatic Medicine, 55: 2328.Google Scholar
McEwen, B. S. (1997). Possible mechanisms for atrophy of the human hippocampus. Molecular Psychiatry, 2: 255262.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Review, 87: 873904.Google Scholar
McEwen, B. S. (2015). Biomarkers for assessing population and individual health and disease related to stress and adaptation. Metabolism: Clinical and Experimental, 64: S2S10.CrossRefGoogle ScholarPubMed
McEwen, B. S., Biron, C. A., Brunson, K. W., Bulloch, K., Chambers, W. H., Dhabhar, F. S., … & Weiss, J. M. (1997). The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Research Reviews, 23: 79133.Google Scholar
McEwen, B. S. & Sapolsky, R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5: 205216.Google Scholar
McEwen, B. S., Weiss, J. M., & Schwartz, L. S. (1968). Selective retention of corticosterone by limbic structures in rat brain. Nature, 220: 911912.Google Scholar
McGaugh, J. L. (1983). Hormonal influences on memory. Annual Review of Psychology, 34: 297323.Google Scholar
McGaugh, J. L. & Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting memories in the brain. Current Opinion in Neurobiology, 12: 205210.Google Scholar
McIntyre, C. K. & Roozendaal, B. (2007). Adrenal stress hormones and enhanced memory for emotionally arousing experiences. In Bermudez-Rattoni, F. (ed.), Neural Plasticity and Memory: From Genes to Brain Imaging. Boca Raton, FL: CRC Press.Google Scholar
Mendelson, J. H., Mello, N. K., Cristofaro, P., Skupny, A., & Ellingboe, J. (1986). Use of naltrexone as a provocative test for hypothalamic-pituitary hormone function. Pharmacology, Biochemistry, and Behavior, 24: 309313.Google Scholar
Menkes, M. S., Matthews, K. A., Krantz, D. S., Lundberg, U., Mead, L. A., Qaqish, B., … & Pearson, T. A. (1989). Cardiovascular reactivity to the cold pressor test as a predictor of hypertension. Hypertension, 14: 524530.Google Scholar
Miller, G. E., Chen, E., Fok, A. K., Walker, H., Lim, A., Nicholls, E. F., … & Kobor, M. S. (2009). Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proceedings of the National Academy of Sciences of the USA, 106: 1471614721.Google Scholar
Miller, R. & Plessow, F. (2013). Transformation techniques for cross-sectional and longitudinal endocrine data: application to salivary cortisol concentrations. Psychoneuroendocrinology, 38: 941946.Google Scholar
Miller, R., Plessow, F., Rauh, M., Groschl, M., & Kirschbaum, C. (2013). Comparison of salivary cortisol as measured by different immunoassays and tandem mass spectrometry. Psychoneuroendocrinology, 38: 5057.Google Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene–environment interactions in psychopathology. Perspectives in Psychological Science, 1: 527.Google Scholar
Montag, C. & Reuter, M. (2014). Disentangling the molecular genetic basis of personality: from monoamines to neuropeptides. Neuroscience & Biobehavioral Reviews, 43: 228239.Google Scholar
Mulert, C., Menzinger, E., Leicht, G., Pogarell, O., & Hegerl, U. (2005). Evidence for a close relationship between conscious effort and anterior cingulate cortex activity. International Journal of Psychophysiology, 56: 6580.Google Scholar
Munck, A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5: 2544.Google Scholar
Nater, U. M. & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology, 34: 486496.Google Scholar
Netter, F. H. (1953). A Compilation of Paintings on the Normal and Pathologic Anatomy of the Nervous System, vol. 1. Summit, NJ: CIBA Pharmaceutical Company.Google Scholar
Nieuwenhuizen, A. G. & Rutters, F. (2008). The hypothalamic–pituitary–adrenal axis in the regulation of energy balance. Physiology & Behavior, 94: 169177.Google Scholar
Obradovic, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: the interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81: 270289.Google Scholar
Pariante, C. M. & Miller, A. H. (2001). Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biological Psychiatry, 49: 391404.Google Scholar
Perogamvros, I., Aarons, L., Miller, A. G., Trainer, P. J., & Ray, D. W. (2011). Corticosteroid-binding globulin regulates cortisol pharmacokinetics. Clinical Endocrinology, 74: 3036.Google Scholar
Perogamvros, I., Ray, D. W., & Trainer, P. J. (2012). Regulation of cortisol bioavailability: effects on hormone measurement and action. Nature Reviews Endocrinology, 8: 717727.Google Scholar
Petrowski, K., Herold, U., Joraschky, P., Wittchen, H. U., & Kirschbaum, C. (2010). A striking pattern of cortisol non-responsiveness to psychosocial stress in patients with panic disorder with concurrent normal cortisol awakening responses. Psychoneuroendocrinology, 35: 414421.Google Scholar
Petrusz, P. & Merchenthaler, I. (1992). The corticotropin-releasing factor system. In Nemeroff, C. B. (ed.), Neuroendocrinology (pp. 129183). Boca Raton, FL: CRC Press.Google Scholar
Pfaff, D. W., Silva, M. T., & Weiss, J. M. (1971). Telemetered recording of hormone effects on hippocampal neurons. Science, 172: 394395.Google Scholar
Pincomb, G. A., Lovallo, W. R., Passey, R. B., Brackett, D. J., & Wilson, M. F. (1987). Caffeine enhances the physiological response to occupational stress in medical students. Health Psychology, 6: 101112.Google Scholar
Powell, L. H., Lovallo, W. R., Matthews, K. A., Meyer, P., Midgley, A. R., Baum, A., … & Ory, M. G. (2002). Physiologic markers of chronic stress in premenopausal, middle-aged women. Psychosomatic Medicine, 64: 502509.Google Scholar
Preston, S. D. (2013). The origins of altruism in offspring care. Psychological Bulletin, 139: 13051341.Google Scholar
Proctor, G. B. & Carpenter, G. H. (2007). Regulation of salivary gland function by autonomic nerves. Autonomic Neuroscience, 133: 318.Google Scholar
Proulx, L., Giguere, V., Lefevre, G., & Labrie, F. (1984). Interactions between catecholamines, CRF and vasopressin in the control of ACTH secretion in the rat. In Usdin, E., Kvetnansky, R., & Axelrod, J. (eds.), Stress: The Role of Catecholamines and Other Neurotransmitters, vol. 1 (pp. 211214). New York: Gordon & Breach.Google Scholar
Pruessner, J. C., Wolf, O. T., Hellhammer, D. H., Buske-Kirschbaum, A., von Auer, K., Jobst, S., … & Kirschbaum, C. (1997). Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sciences, 61: 25392549.Google Scholar
Ranjit, N., Young, E. A., & Kaplan, G. A. (2005). Material hardship alters the diurnal rhythm of salivary cortisol. International Journal of Epidemiology, 34: 11381143.Google Scholar
Read, G. F. & Riad-Fahmy, D. (1992). Direct assays for adrenal steroids in neonates. Annals of Clinical Biochemistry, 29: 117118.Google Scholar
Reul, J. M. & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology, 117: 25052511.Google Scholar
Reul, J. M. & de Kloet, E. R. (1986). Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. Journal of Steroid Biochemistry, 24: 269272.Google Scholar
Reyes, B. A., Bangasser, D. A., Valentino, R. J., & Van Bockstaele, E. J. (2014). Using high resolution imaging to determine trafficking of corticotropin-releasing factor receptors in noradrenergic neurons of the rat locus coeruleus. Life Sciences, 112: 29.Google Scholar
Riad-Fahmy, D., Read, G. F., & Walker, R. F. (1983). Salivary steroid assays for assessing variation in endocrine activity. Journal of Steroid Biochemistry, 19: 265272.Google Scholar
Riad-Fahmy, D., Read, G. F., Walker, R. F., & Griffiths, K. (1982). Steroids in saliva for assessing endocrine function. Endocrine Reviews, 3: 367395.Google Scholar
Richardson Morton, K. D., Van de Kar, L. D., Brownfield, M. S., Lorens, S. A., Napier, T. C., & Urban, J. H. (1990). Stress-induced renin and corticosterone secretion is mediated by catecholaminergic nerve terminals in the hypothalamic paraventricular nucleus. Neuroendocrinology, 51: 320327.Google Scholar
Rivier, C. & Vale, W. (1985). Effects of corticotropin-releasing factor, neurohypophyseal peptides, and catecholamines on pituitary function. Federation Proceedings, 44: 189195.Google Scholar
Roche, D. J., Childs, E., Epstein, A. M., & King, A. C. (2010). Acute HPA axis response to naltrexone differs in female vs. male smokers. Psychoneuroendocrinology, 35: 596606.Google Scholar
Roche, D. J. & King, A. C. (2015). Sex differences in acute hormonal and subjective response to naltrexone: the impact of menstrual cycle phase. Psychoneuroendocrinology, 52: 5971.Google Scholar
Roche, D. J., King, A. C., Cohoon, A. J., & Lovallo, W. R. (2013). Hormonal contraceptive use diminishes salivary cortisol response to psychosocial stress and naltrexone in healthy women. Pharmacology, Biochemistry and Behavior, 109: 8490.Google Scholar
Rohleder, N. & Nater, U. M. (2009). Determinants of salivary alpha-amylase in humans and methodological considerations. Psychoneuroendocrinology, 34: 469485.Google Scholar
Rolls, E. T. (2015). Limbic systems for emotion and for memory, but no single limbic system. Cortex, 62: 119157.Google Scholar
Russell, E., Kirschbaum, C., Laudenslager, M. L., Stalder, T., de Rijke, Y., van Rossum, E. F., … & Koren, G. (2015). Toward standardization of hair cortisol measurement: results of the first international interlaboratory round robin. Therapeutic Drug Monitoring, 37: 7175.Google Scholar
Saab, P. G., Matthews, K. A., Stoney, C. M., & McDonald, R. H. (1989). Premenopausal and postmenopausal women differ in their cardiovascular and neuroendocrine responses to behavioral stressors. Psychophysiology, 26: 270280.Google Scholar
Saitoh, M., Uzuka, M., & Sakamoto, M. (1967). Rate of hair growth. In Montagna, M. & Dobson, R. L. (eds.), Advances in Biology of Skin: Hair Growth, vol. 9 (pp. 183194). London: Pergamon Press.Google Scholar
Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (2000). Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. Journal of Neuroscience, 20: 46574668.Google Scholar
Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1985). Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. Journal of Neuroscience, 5: 12221227.Google Scholar
Sapolsky, R. M., Zola-Morgan, S., & Squire, L. R. (1991). Inhibition of glucocorticoid secretion by the hippocampal formation in the primate. Journal of Neuroscience, 11: 36953704.Google Scholar
Sausen, K. P., Lovallo, W. R., Pincomb, G. A., & Wilson, M. F. (1992). Cardiovascular responses to occupational stress in medical students: a paradigm for ambulatory monitoring studies. Health Psychology, 11: 5560.Google Scholar
Schelling, G., Roozendaal, B., Krauseneck, T., Schmoelz, M., de Quervain, D., & Briegel, J. (2006). Efficacy of hydrocortisone in preventing posttraumatic stress disorder following critical illness and major surgery. Annals of the New York Academy of Sciences, 1071: 4653.Google Scholar
Schultebraucks, K., Wingenfeld, K., Heimes, J., Quinkler, M., & Otte, C. (2015). Cognitive function in patients with primary adrenal insufficiency (Addison’s disease). Psychoneuroendocrinology, 55: 17.Google Scholar
Schwabe, L. & Wolf, O. T. (2013). Stress and multiple memory systems: from “thinking” to “doing.” Trends in Cognitive Sciences, 17: 6068.Google Scholar
Seligman, M. E. P., Maier, S., & Solomon, R. L. (1971). Unpredictable and uncontrollable aversive events. In Brush, F. R. (ed.), Aversive Conditioning and Learning (pp. 347400). New York: Academic Press.Google Scholar
Seltzer, L. J., Ziegler, T., Connolly, M. J., Prososki, A. R., & Pollak, S. D. (2014). Stress-induced elevation of oxytocin in maltreated children: evolution, neurodevelopment, and social behavior. Child Development, 85: 501512.Google Scholar
Selye, H. (1936). Thymus and adrenals in the response of the organism to injuries and intoxications. British Journal of Experimental Pathology, 17: 234248.Google Scholar
Sgoutas-Emch, S. A., Cacioppo, J. T., Uchino, B. N., Malarkey, W., Pearl, D., Kiecolt–Glaser, J. K., & Glaser, R. (1994). The effects of an acute psychological stressor on cardiovascular, endocrine, and cellular immune responses: a prospective study of individuals high and low in heart rate reactivity. Psychophysiology, 31: 264271.Google Scholar
Shepard, J. D., Barron, K. W., & Myers, D. A. (2000). Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Research, 861: 288295.Google Scholar
Shepard, J. D., Barron, K. W., & Myers, D. A. (2003). Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo–pituitary–adrenal responses to behavioral stress. Brain Research, 963: 203213.Google Scholar
Sheridan, M. A., Sarsour, K., Jutte, D., D’Esposito, M., & Boyce, W. T. (2012). The impact of social disparity on prefrontal function in childhood. PLoS One, 7: e35744.Google Scholar
Sherman, J. E. & Kalin, N. H. (1988). ICV-CRH alters stress-induced freezing behavior without affecting pain sensitivity. Pharmacology, Biochemistry and Behavior, 30: 801807.Google Scholar
Shirtcliff, E. A., Granger, D. A., Schwartz, E., & Curran, M. J. (2001). Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology, 26: 165173.Google Scholar
Sinha, R., Lovallo, W. R., & Parsons, O. A. (1992). Cardiovascular differentiation of emotions. Psychosomatic Medicine, 54: 422435.Google Scholar
Sjogren, E., Leanderson, P., & Kristenson, M. (2006). Diurnal saliva cortisol levels and relations to psychosocial factors in a population sample of middle-aged Swedish men and women. International Journal of Behavioral Medicine, 13: 193200.Google Scholar
Sjors, A., Ljung, T., & Jonsdottir, I. H. (2014). Diurnal salivary cortisol in relation to perceived stress at home and at work in healthy men and women. Biological Psychology, 99: 193197.Google Scholar
Smith, A. S. & Wang, Z. (2014). Hypothalamic oxytocin mediates social buffering of the stress response. Biological Psychiatry, 76: 281288.Google Scholar
Smith, E. E., Guyton, A. C., Manning, R. D., & White, R. J. (1976). Integrated mechanisms of cardiovascular response and control during exercise in the normal human. Progress in Cardiovascular Disease, 28: 421443.Google Scholar
Smith, O. A., DeVito, J. L., & Astley, C. A. (1982). Cardiovascular control centers in the brain: one more look. In Smith, O. A., Galosy, R. A., & Weiss, S. M. (eds.), Circulation, Neurobiology and Behavior (pp. 233246). New York: Elsevier.Google Scholar
Smyth, J., Ockenfels, M. C., Porter, L., Kirschbaum, C., Hellhammer, D. H., & Stone, A. A. (1998). Stressors and mood measured on a momentary basis are associated with salivary cortisol secretion. Psychoneuroendocrinology, 23: 353370.Google Scholar
Snyder, S. H. (1977). Opiate receptors in the brain. New England Journal of Medicine, 296: 266271.CrossRefGoogle ScholarPubMed
Sorocco, K. H., Carnes, N. C., Cohoon, A. J., Vincent, A. S., & Lovallo, W. R. (2015). Risk factors for alcoholism in the Oklahoma Family Health Patterns project: impact of early life adversity and family history on affect regulation and personality. Drug and Alcohol Dependence, 150: 3845.Google Scholar
Sorocco, K. H., Lovallo, W. R., Vincent, A. S., & Collins, F. L. (2006). Blunted hypothalamic–pituitary–adrenocortical axis responsivity to stress in persons with a family history of alcoholism. International Journal of Psychophysiology, 59: 210217.Google Scholar
Stalder, T., Steudte, S., Miller, R., Skoluda, N., Dettenborn, L., & Kirschbaum, C. (2012). Intraindividual stability of hair cortisol concentrations. Psychoneuroendocrinology, 37: 602610.Google Scholar
Starkman, M. N., Gebarski, S. S., Berent, S., & Schteingart, D. E. (1992). Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biological Psychiatry, 32: 756765.Google Scholar
Starkman, M. N., Giordani, B., Gebarski, S. S., & Schteingart, D. E. (2003). Improvement in learning associated with increase in hippocampal formation volume. Biological Psychiatry, 53: 233238.Google Scholar
Starkman, M. N., Schteingart, D. E., & Schork, M. A. (1981). Depressed mood and other psychiatric manifestations of Cushing’s syndrome: relationship to hormone levels. Psychosomatic Medicine, 43: 318.Google Scholar
Starr-Phillips, E. J. & Beery, A. K. (2014). Natural variation in maternal care shapes adult social behavior in rats. Developmental Psychobiology, 56: 10171026.Google Scholar
Staufenbiel, S. M., Penninx, B. W., Spijker, A. T., Elzinga, B. M., & van Rossum, E. F. (2013). Hair cortisol, stress exposure, and mental health in humans: a systematic review. Psychoneuroendocrinology, 38: 12201235.Google Scholar
Stawski, R. S., Cichy, K. E., Piazza, J. R., & Almeida, D. M. (2013). Associations among daily stressors and salivary cortisol: findings from the National Study of Daily Experiences. Psychoneuroendocrinology, 38: 26542665.Google Scholar
Steinheuser, V., Ackermann, K., Schonfeld, P., & Schwabe, L. (2014). Stress and the city: impact of urban upbringing on the (re)activity of the hypothalamus–pituitary–adrenal axis. Psychosomatic Medicine, 76: 678685.Google Scholar
Steptoe, A. (1987). The assessment of sympathetic nervous function in human stress research. Journal of Psychosomatic Research, 31: 141152.Google Scholar
Steptoe, A., Kunz-Ebrecht, S. R., Brydon, L., & Wardle, J. (2004). Central adiposity and cortisol responses to waking in middle-aged men and women. International Journal of Obesity and Related Metabolic Disorders, 28: 11681173.Google Scholar
Suarez-Hitz, K. A., Otto, B., Bidlingmaier, M., Schwizer, W., Fried, M., & Ehlert, U. (2012). Altered psychobiological responsiveness in women with irritable bowel syndrome. Psychosomatic Medicine, 74: 221231.Google Scholar
Sung, B. H., Lovallo, W. R., Pincomb, G. A., & Wilson, M. F. (1990). Effects of caffeine on blood pressure response during exercise in normotensive healthy young men. American Journal of Cardiology, 65: 909913.Google Scholar
Swanson, L. W. & Petrovich, G. D. (1998). What is the amygdala?Trends in Neurosciences, 21: 323331.Google Scholar
Swanson, L. W., Sawchenko, P. E., Rivier, J., & Vale, W. W. (1983). Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology, 36: 165186.Google Scholar
Szabo, B., Hedler, L., Schurr, C., & Starke, K. (1988). ACTH increases noradrenaline release in the rabbit heart. Naunyn-Schmiedebergs Archives of Pharmacology, 338: 368372.Google Scholar
Takahashi, L. K., Kalin, N. H., Vanden Burgt, J. A., & Sherman, J. E. (1989). Corticotropin-releasing factor modulates defensive-withdrawal and exploratory behavior in rats. Behavioral Neuroscience, 103: 648654.Google Scholar
Tops, M., Koole, S. L., IJzerman, H., & Buisman-Pijlman, F. T. (2014). Why social attachment and oxytocin protect against addiction and stress: insights from the dynamics between ventral and dorsal corticostriatal systems. Pharmacology, Biochemistry and Behavior, 119: 3948.Google Scholar
Trainer, P. J., McHardy, K. C., Harvey, R. D., & Reid, I. W. (1993). Urinary free cortisol in the assessment of hydrocortisone replacement therapy. Hormone and Metabolic Research, 25: 117120.Google Scholar
Treiber, F. A., Kamarck, T., Schneiderman, N., Sheffield, D., Kapuku, G., & Taylor, T. (2003). Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosomatic Medicine, 65: 4662.Google Scholar
Turner, B. B. & Weaver, D. A. (1985). Sexual dimorphism of glucocorticoid binding in rat brain. Brain Research, 343: 1623.Google Scholar
Uvnas-Moberg, K., Handlin, L., & Petersson, M. (2014). Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Frontiers in Psychology, 5: 1529.Google Scholar
Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213: 13941397.Google Scholar
Valentino, R. J., Foote, S. L., & Aston-Jones, G. (1983). Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus. Brain Research, 270: 363367.Google Scholar
Van Bockstaele, E. J. & Valentino, R. J. (2013). Neuropeptide regulation of the locus coeruleus and opiate-induced plasticity of stress responses. Advances in Pharmacology, 68: 405420.Google Scholar
Van Cauter, E., Shapiro, E. T., Tillil, H., & Polonsky, K. S. (1992). Circadian modulation of glucose and insulin responses to meals: relationship to cortisol rhythm. American Journal of Physiology, 262: E467E475.Google Scholar
van Stegeren, A. H., Roozendaal, B., Kindt, M., Wolf, O. T., & Joels, M. (2010). Interacting noradrenergic and corticosteroid systems shift human brain activation patterns during encoding. Neurobiology of Learning and Memory, 93: 5665.Google Scholar
Voellmin, A., Winzeler, K., Hug, E., Wilhelm, F. H., Schaefer, V., Gaab, J., … & Bader, K. (2015). Blunted endocrine and cardiovascular reactivity in young healthy women reporting a history of childhood adversity. Psychoneuroendocrinology, 51: 5867.Google Scholar
von Polier, G. G., Herpertz-Dahlmann, B., Konrad, K., Wiesler, K., Rieke, J., Heinzel-Gutenbrunner, M., … & Vloet, T. D. (2013). Reduced cortisol in boys with early-onset conduct disorder and callous-unemotional traits. BioMed Research International, 2013: 349530.Google Scholar
Vranjkovic, O., Gasser, P. J., Gerndt, C. H., Baker, D. A., & Mantsch, J. R. (2014). Stress-induced cocaine seeking requires a beta-2 adrenergic receptor-regulated pathway from the ventral bed nucleus of the stria terminalis that regulates CRF actions in the ventral tegmental area. Journal of Neuroscience, 34: 1250412514.Google Scholar
Walker, R. F., Robinson, J. A., Roberts, S., Ford, P. D., & Riad-Fahmy, D. (1990). Experience with the Sarstedt Salivette in salivary steroid determinations. Annals of Clinical Biochemistry, 27: 503505.Google Scholar
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54: 10631070.Google Scholar
Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., … & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7: 847854.Google Scholar
Weckesser, L. J., Plessow, F., Pilhatsch, M., Muehlhan, M., Kirschbaum, C., & Miller, R. (2014). Do venepuncture procedures induce cortisol responses? A review, study, and synthesis for stress research. Psychoneuroendocrinology, 46: 8899.Google Scholar
Weller, J. A., Buchanan, T. W., Shackleford, C., Morganstern, A., Hartman, J. J., Yuska, J., & Denburg, N. L. (2014). Diurnal cortisol rhythm is associated with increased risky decision-making in older adults. Psychology and Aging, 29: 271283.Google Scholar
Wetherell, M. A., Lovell, B., & Smith, M. A. (2015). The effects of an anticipated challenge on diurnal cortisol secretion. Stress, 18: 4248.Google Scholar
Wiegratz, I., Kutschera, E., Lee, J. H., Moore, C., Mellinger, U., Winkler, U. H., & Kuhl, H. (2003). Effect of four different oral contraceptives on various sex hormones and serum-binding globulins. Contraception, 67: 2532.Google Scholar
Wiemers, U. S., Schoofs, D., & Wolf, O. T. (2013). A friendly version of the trier social stress test does not activate the HPA axis in healthy men and women. Stress, 16: 254260.Google Scholar
Williams, R. B. Jr., Lane, J. D., Kuhn, C. M., Melosh, W., White, A. D., & Schanberg, S. M. (1982). Type A behavior and elevated physiological and neuroendocrine responses to cognitive tasks. Science, 218: 483485.Google Scholar
Wolf, O. T. (2009). Stress and memory in humans: twelve years of progress? Brain Research, 1293: 142154.Google Scholar
Wolf, O. T., Fujiwara, E., Luwinski, G., Kirschbaum, C., & Markowitsch, H. J. (2005). No morning cortisol response in patients with severe global amnesia. Psychoneuroendocrinology, 30: 101105.Google Scholar
Wolfram, M., Bellingrath, S., Feuerhahn, N., & Kudielka, B. M. (2013). Cortisol responses to naturalistic and laboratory stress in student teachers: comparison with a non-stress control day. Stress and Health, 29: 143149.Google Scholar
Wosu, A. C., Gelaye, B., Valdimarsdottir, U., Kirschbaum, C., Stalder, T., Shields, A. E., & Williams, M. A. (2015). Hair cortisol in relation to sociodemographic and lifestyle characteristics in a multiethnic US sample. Annals of Epidemiology, 25: 9095.Google Scholar
Wosu, A. C., Valdimarsdottir, U., Shields, A. E., Williams, D. R., & Williams, M. A. (2013). Correlates of cortisol in human hair: implications for epidemiologic studies on health effects of chronic stress. Annals of Epidemiology, 23: 797811.Google Scholar
Wust, S., Wolf, J., Hellhammer, D. H., Federenko, I., Schommer, N., & Kirschbaum, C. (2000). The cortisol awakening response: normal values and confounds. Noise and Health, 2: 7988.Google Scholar
Yehuda, R., Flory, J. D., Pratchett, L. C., Buxbaum, J., Ising, M., & Holsboer, F. (2010). Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology, 212: 405417.Google Scholar
Zalachoras, I., Houtman, R., Atucha, E., Devos, R., Tijssen, A. M., Hu, P., … & Meijer, O. C. (2013). Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proceedings of the National Academy of Sciences of the USA, 110: 79107915.Google Scholar
Ziegler, M. G. (1989). Catecholamine measurement in behavioral research. In Schneiderman, N., Weiss, S. M., & Kaufmann, P. G. (eds.), Handbook of Research Methods in Cardiovascular Behavioral Medicine (pp. 167183). New York: Plenum Press.Google Scholar
Ziegler, M. G., Aung, M., & Kennedy, B. (1997). Sources of human urinary epinephrine. Kidney International, 51: 324327.Google Scholar
Zoladz, P. R. & Diamond, D. M. (2013). Current status on behavioral and biological markers of PTSD: a search for clarity in a conflicting literature. Neuroscience & Biobehavioral Reviews, 37: 860895.CrossRefGoogle Scholar
Zorrilla, E. P., Logrip, M. L., & Koob, G. F. (2014). Corticotropin releasing factor: a key role in the neurobiology of addiction. Frontiers in Neuroendocrinology, 35: 234244.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×