Skip to main content Accessibility help
×
  • Cited by 84
Publisher:
Cambridge University Press
Online publication date:
June 2014
Print publication year:
2014
Online ISBN:
9781107415874

Book description

This rigorous, self-contained book describes mathematical and, in particular, stochastic and graph theoretic methods to assess the performance of complex networks and systems. It comprises three parts: the first is a review of probability theory; Part II covers the classical theory of stochastic processes (Poisson, Markov and queueing theory), which are considered to be the basic building blocks for performance evaluation studies; Part III focuses on the rapidly expanding new field of network science. This part deals with the recently obtained insight that many very different large complex networks – such as the Internet, World Wide Web, metabolic and human brain networks, utility infrastructures, social networks – evolve and behave according to general common scaling laws. This understanding is useful when assessing the end-to-end quality of Internet services and when designing robust and secure networks. Containing problems and solved solutions, the book is ideal for graduate students taking courses in performance analysis.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents


Page 1 of 2



Page 1 of 2


References
Abramowitz, M. and Stegun, I. A. (1968). Handbook of Mathematical Functions. (Dover Publications, Inc., New York).
Addario-Berry, L., Broutin, N., Goldschmidt, C., and Miermont, G. (2013). The scaling limit of the minimum spanning tree of the complete graph. arXiv:1301.1664v1.
Addario-Berry, L., Broutin, N., and Reed, B. (2009). Critical random graphs and the structure of a minimum spanning tree. Random Structures and Algorithms 35, 3 (October), 323-347.
Aldous, D. (2001). The ϛ(2) limit in the random assignment problem. Random Structures and Algorithms 18, 4, 381-418.
Allen, A. O. (1978). Probability, Statistics, and Queueing Theory. Computer Science and Applied Mathematics, (Academic Press, Inc., Orlando).
Almkvist, G. and Berndt, B. C. (1988). Gauss, Landen, Ramanuyan, the Arithmic-Geometric Mean, Ellipses, π and the Ladies Diary. American Mathematical Monthly 95, 585-608.
Anderson, R. M. and May, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. (Oxford University Press, Oxford, U.K.).
Anick, D., Mitra, D., and Sondhi, M. M. (1982). Stochastic theory of a data-handling system with multiple sources. The Bell System Technical Journal 61, 8 (October), 1871-1894.
Anupindi, R., Chopra, S., Deshmukh, S. D., Van Mieghem, J. A., and Zemel, E.(2006). Managing Business Flows. Principles of Operations Management, 2nd edn. (Prentice Hall, Upper Saddle River).
Ashcroft, N. W. and Mermin, N. D.(1981). Solid State Physics. (Holt-Saunders International Editions, Tokyo).
Athreya, K. B. and Ney, P. E. (1972). Branching Processes. (Springer-Verlag, Berlin).
Bailey, N. T. J. (1975). The Mathematical Theory of Infectious Diseases and its Applications, 2nd edn. (Charlin Griffin & Company, London).
Bak, P. (1996). How Nature Works: The Science of Self-organized Criticality. (Copernicus, Springer-Verlag, New York).
Barabási, A. L. (2002). Linked, The New Science of Networks. (Perseus, Cambridge, MA).
Barabási, A. L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509-512.
Baran, P. (2002). The beginnings of packet switching - some underlying concepts: The Franklin Institute and Drexel University seminar on the evolution of packet switching and the Internet. IEEE Communications Magazine, 2-8.
Barrat, A., Bartelemy, M., and Vespignani, A. (2008). Dynamical Processes on Complex Networks. (Cambridge University Press, Cambridge, U. K.).
Berger, M. A. (1993). An Introduction to Probabiliy and Stochastic Processes. (Springer-Verlag, New York).
Bertsekas, D. and Gallager, R. (1992). Data Networks, 2nd edn. (Prentice-Hall International Editions, London).
Bhamidi, S., van der Hofstad, R., and Hooghiemstra, G. (2012). Universality for first passage percolation on sparse random graphs. arXiv:1210.6839.
Biggs, N. (1996). Algebraic Graph Theory, 2nd edn. (Cambridge University Press, Cambridge, U. K.).
Billingsley, P. (1995). Probability and Measure, 3rd edn. (John Wiley & Sons, New York).
Bisdikian, C., Lew, J. S., and Tantawi, A. N. (1992). On the tail approximation of the blocking probability of single server queues with finite buffer capacity. Queueing Networks with Finite Capacity, Proc. 2nd Int. Conf., 267-280.
Bollobas, B. (2001). Random Graphs, 2nd edn. (Cambridge University Press, Cambridge).
Bollobas, B. and Riordan, O. (2001). Mathematical results on scale-free random graphs. Handbook of Graphs and Networks, ed. S., Bornholdt and H. G., Schuster; Wiley-VCH, 1-34.
Borovkov, A. A. (1976). Stochastic Processes in Queueing Theory. (Springer-Verlag, New York).
Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. (Cambridge University Press, New York).
Breda, D., Diekmann, O., de Graaf, W. F., Pugliese, A., and Vermiglio, R. (2012). On the formulation of epidemic models (an appraisal of Kermack and McKendrick). Journal of Biological Dynamics 6, Supplement 2, 103-117.
Brockmeyer, E., Halstrom, H. L., and Jensen, A. (1948). The Life and Works of A. K. Erlang. (Academy of Technical Sciences, Copenhagen).
Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., and Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature Letters 464, 1025-1028.
Carlitz, L. (1963). The inverse of the error function. Pacific Journal of Mathematics 13, 459-470.
Cator, E., van de Bovenkamp, R., and Van Mieghem, P. (2013). Susceptible-Infected-Susceptible epidemics on networks with general infection and curing times. Physical Review E 87, 6 (June), 062816.
Cator, E. and Van Mieghem, P. (2012). Second order mean-field SIS epidemic threshold. Physical Review E 85, 5 (May), 056111.
Cator, E. and Van Mieghem, P. (2013a). Nodal infection in Markovian SIS and SIR epidemics on networks are non-negatively correlated.
Cator, E. and Van Mieghem, P. (2013b). Susceptible-Infected-Susceptible epidemics on the complete graph and the star graph: Exact analysis. Physical Review E 87, 1 (January), 012811.
Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., and Faloutsos, C. (2008). Epidemic thresholds in real networks. ACM Transactions on Information and System Security (TISSEC) 10, 4, 1-26.
Chalmers, R. C. and Almeroth, K. C. (2001). Modeling the branching characteristics and eiciency gains in global multicast trees. IEEE INFOCOM2001.
Chatterjee, S. and Durrett, R. (2009). Contact process on random graphs with degree power-law distribution have critical value zero. Annals of Probability 37, 2332-2356.
Chen, L. Y. (1975). Poisson approximation for dependent trials. The Annals of Probability 3, 3, 534-545.
Chen, W.-K. (1971). Applied Graph Theory. (North-Holland Publishing Company, Amsterdam).
Chen, Y., Paul, G., Havlin, S., Liljeros, F., and Stanley, H. E. (2008). Finding a better immunization strategy. Physical Review Letters 101, 058701.
Chuang, J. and Sirbu, M. A. (1998). Pricing multicast communication: A cost-based approach. Proceedings of the INET'98.
Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review 51, 4, 661-703.
Cohen, J. W. (1969). The Single Server Queue. (North-Holland Publishing Company, Amsterdam).
Cohen, R. and Havlin, S. (2010). Complex Networks: Structure, Robustness and Function. (Cambridge University Press, Cambridge, U. K.).
Cohen-Tannoudji, C., Diu, B., and Laloë, F. (1977). Mécanique Quantique. Vol. I and II. (Hermann, Paris).
Comtet, L. (1974). Advanced Combinatorics, revised and enlarged edn. (D. Riedel Publishing Company, Dordrecht, Holland).
Coppersmith, D. and Sorkin, G. B. (1999). Constructive bounds and exact expectations for the random assignment problem. Random Structures and Algorithms 15, 2, 113-144.
Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1991). An Introduction to Algorithms. (MIT Press, Boston).
Courant, R. and Hilbert, D. (1953a). Methods of Mathematical Physics, first English edition, translated and revised from the German original of Springer in 1937 edn. Wiley Classic Library, vol. II. (Interscience, New York).
Courant, R. and Hilbert, D. (1953b). Methods of Mathematical Physics, first English edition, translated and revised from the German original of Springer in 1937 edn. Wiley Classic Library, vol. I. (Interscience, New York).
Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley Series in Telecommunications, (John Wiley & Sons, New York).
Cramér, H. (1999). Mathematical Methods of Statistics, 19th edn. (Princeton Landmarks in Mathematics, Princeton, N. J.).
Crow, E. L. and Shimizu, K. (1988). Lognormal distributions, Theory and Applications. (Marcel Dekker, Inc., New York).
Cvetković, D. M., Doob, M., and Sachs, H. (1995). Spectra of Graphs, Theory and Applications, third edn. (Johann Ambrosius Barth Verlag, Heidelberg).
Da F. Costa, L., Rodrigues, F. A., Travieso, G., and Boas, P. R. V. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics 56, 1 (Februari), 167-242.
Daley, D. J. and Gani, J. (1999). Epidemic modelling: An Introduction.(Cambridge University Press, Cambridge, U. K.).
Darabi Sahneh, F. and Scoglio, C. (2011). Epidemic spread in human networks. 50th IEEE Conference on Decision and Control, Orlando, FL, USA; also on arXiv:1107.2464v1.
Darabi Sahneh, F., Scoglio, C., and Van Mieghem, P. (2013). Generalized epidemic mean-field model for spreading processes over multi-layer complex networks. IEEE/A CM Transactionon Networking 21, 5 (October), 1609-1620.
Dehmer, M. and Emmert-Streib, F. (2009). Analysis of Complex Networks. (Wiley-VCH Verlag GmbH& Co., Weinheim).
Diekmann, O., Heesterbeek, H., and Britton, T. (2012). Mathematical Tools for Understanding Infectious Disease Dynamics. (Princeton University Press, Princeton, USA).
Doerr, C., Blenn, N., and Van Mieghem, P. (2013). Lognormal infection times of online information spread. PLoS ONE 8, 5 (May), e64349.
Dorogovtsev, S. N. and Mendes, J. F. F. (2003). Evolution of Networks, From Biological Nets to the Internet and WWW. (Oxford University Press, Oxford).
Draief, M. and Massoulié, L. (2010). Epidemics and Rumours in Complex Networks. London Mathematical Society Lecture Node Series: 369, (Cambridge University Press, Cambridge, UK).
Embrechts, P., Klüppelberg, C., and Mikosch, T. (2001a). Modelling Extremal Events for Insurance and Finance, 3rd edn. (Springer-Verlag, Berlin).
Embrechts, P., McNeil, A., and Straumann, D. (2001b). Correlation and Dependence in Risk Management: Properties and Pitfalls. Risk Management: Value at Risk and Beyond, ed. M., Dempster and H. K., Moffatt, (Cambridge University Press, Cambridge, UK).
Erdős, P. and Rényi, A. (1959). On random graphs. Publicationes Mathematicae Debrecen 6, 290-297.
Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 5, 17-61.
Estrada, E. (2012). The Structure of Complex Networks. (Oxford University Press, Oxford, U.K.).
Faloutsos, M., Faloutsos, P., and Faloutsos, C. (1999). On power-law relationships of the Internet Topology. Proceedings of A CM SIGCOMM'99, Cambridge, MA, 251-262.
Feld, S. L. (1991). Why your friends have more friends than you do. American Journal of Sociology 96, 6 (May), 1464-1477.
Feller, W. (1970). An Introduction to Probability Theory and Its Applications, 3rd edn. Vol. 1. (John Wiley & Sons, New York).
Feller, W. (1971). An Introduction to Probability Theory and Its Applications, 2nd edn. Vol. 2. (John Wiley & Sons, New York).
Fetter, A. L. and Walecka, J. D. (1971). Quantum Theory of Many-particle Systems. (McGraw-Hill, San Francisco).
Floyd, S. and Paxson, V. (2001). Difficultiesinsimulating the Internet. IEEE Transactions on Networking 9, 4 (August), 392-403.
Fortz, B. and Thorup, M. (2000). Internet traic engineering by optimizing OSPF weights. IEEE INFOCOM2000.
Frieze, A. M. (1985). On the value of a random minimum spanning tree problem. Discrete Applied Mathematics 10, 47-56.
Gallager, R. G. (1996). Discrete Stochastic Processes. (Kluwer Academic Publishers, Boston).
Ganesh, A., Massoulié, L., and Towsley, D. (2005). The effect of network topology on the spread of epidemics. IEEE INFOCOM2005.
Gantmacher, F. R. (1959a). The Theory of Matrices. Vol. I. (Chelsea Publishing Company, New York).
Gantmacher, F. R. (1959b). The Theory of Matrices. Vol. II. (Chelsea Publishing Company, New York).
Gauss, C. F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem ambientium. (Hamburgi sumtibus Frid. Perthes et I. H. Besser).
Gauss, C. F. (1821). Theoria combinationis observationum erroribus minimus obnoxiae. Pars prior. Gauss Werke 4, 3-26.
Gibrat, R. (1930). Une loi des répartitions economique: l'effect proportionnel. Bulletin de la Statistique Générale de la France 19, 469-514.
Gilbert, E. N. (1956). Enumeration of labelled graphs. Canadian Journal of Mathematics 8, 405-411.
Gnedenko, B. V. and Kovalenko, I. N. (1989). Introduction to Queuing Theory, 2nd edn. (Birkhauser, Boston).
Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations, 3rd edn. (The John Hopkins University Press, Baltimore).
Goulden, I. P. and Jackson, D. M. (1983). Combinatorial Enumeration. (John Wiley & Sons, New York).
Gourdin, E., Omic, J., and Mieghem, P. V. (2011). Optimization of network protection against virus spread. 8th International Workshop on Design of Reliable Communication Networks (DRCN 2011), Krakow, Poland.
Grimmett, G. R. (1989). Percolation. (Springer-Verlag, New York).
Grimmett, G. R. and Stirzacker, D. (2001). Probability and Random Processes, 3rd edn. (Oxford University Press, Oxford).
Guo, D., Trajanovski, S., van de Bovenkamp, R., Wang, H., and Van Mieghem, P. (2013). Epidemic threshold and topological structure of Susceptible-Infectious-Susceptible epidemics in adaptive networks. Physical Review E 88, 4 (October), 042802.
Haccou, P., Jagers, P., and Vatutin, V. A. (2005). Branching processes: Variation, Growth and Extinction of Populations. (Cambridge University Press, Cambridge, UK).
Hardy, G. H. (1948). Divergent Series. (Oxford University Press, London).
Hardy, G. H. (1978). Ramanujan, 3rd edn. (Chelsea Publishing Company, New York).
Hardy, G. H., Littlewood, J. E., and Polya, G. (1999). Inequalities, 2nd edn. (Cambridge University Press, Cambridge, UK).
Hardy, G. H. and Wright, E. M. (1968). An Introduction to the Theory of Numbers, 4th edn. (Oxford University Press, London).
Harris, T. E. (1963). The Theory of Branching Processes. (Springer-Verlag, Berlin).
Harrison, J. M. (1990). Brownian Motion and Stochastic Flow Systems. (Krieger Publishing Company, Malabar, Florida).
Hooghiemstra, G. and Koole, G. (2000). On the convergence of the power series algorithm. Performance Evaluation 42, 21-39.
Hooghiemstra, G. and Van Mieghem, P. (2001). Delay distributions on ixed Internet paths. Delft University of Technology, Report20011020 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).
Hooghiemstra, G. and Van Mieghem, P. (2005). On the mean distance in scale free graphs. Methodology and Computing in Applied Probability (MCAP) 7, 285-306.
Hooghiemstra, G. and Van Mieghem, P. (2008). The weight and hopcount of the shortest path in the complete graph with exponential weights. Combinatorics, Probability and Computing 17, 4, 537-548.
Horn, R. A. and Johnson, C. R. (1991). Topics in Matrix Analysis. (Cambridge University Press, Cambridge, U.K.).
Iribarren, J. L. and Moro, E. (2011). Branching dynamics of viral information spreading. Physical Review E 84, 04116.
Jamin, S., C. Jin, A. R.Kurc, D. R., and Shavitt, Y. (2001). Constrained mirror placement on the Internet. IEEE INFOCOM2001.
Janic, M., Kuipers, F. A., Zhou, X., and Van Mieghem, P. (2002). Implications for QoS provisioning based on traceroute measurements. Proceedings of 3rd International Workshop on Quality of Future Internet Services, QofIS2002, ed. B. Stiller et al., Zurich, Switzerland; Springer Verlag LNCS 2511, 3-14.
Janson, S. (1995). The minimal spanning tree in a complete graph and a functional limit theorem for trees in a random graph. Random Structures and Algorithms 7, 4 (December), 337-356.
Janson, S. (2002). On concentration of probability. Contemporary Combinatorics; ed. B. Bollobas, Bolyai Soc. Math. Stud. 10, Janos Bolyai Mathematical Society, Budapest, 289-301.
Janson, S., Knuth, D. E., Luczak, T., and Pittel, B. (1993). The birth of the giant component. Random Structures and Algorithms 4, 3, 233-358.
Karlin, S. and McGregor, J. (1959). Random walks. Illinois Journal of Mathematics 3, 1, 66-81.
Karlin, S. and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd edn. (Academic Press, San Diego).
Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes. (Academic Press, San Diego).
Karrer, B. and Newman, M. E. J. (2010). A message passing approach for general epidemic models,. Physical Review E 82, 016101.
Keeling, M. J. and Rohani, P. (2008). Modeling Infectious diseases in Humans and Animals. (Princeton University Press, Princeton, USA).
Kelly, F. P. (1991). Special invited paper: Loss networks. The Annals of Applied Probability 1, 3, 319-378.
Kendall, D. G. (1948). On the generalized birth-and-death process. Annals of Mathematical Statistics 19, 1, 1-15.
Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society London, A 115, 700-721.
Kleinrock, L. (1975). Queueing Systems. Vol. 1 – Theory. (John Wiley and Sons, New York).
Kleinrock, L. (1976). Queueing Systems. Vol. 2 – Computer Applications. (John Wiley and Sons, New York).
Kooij, R., Schumm, P., Scoglio, C., and Youssef, M. (2009). A new metric for robustness with respect to virus spread. Networking 2009, LNCS 5550, 562-572.
Krishnan, P., Raz, D., and Shavitt, Y. (2000). The cache location problem. IEEE/ACM Transactions on Networking 8, 5 (October), 586–582.
Kuipers, F. A. and Van Mieghem, P. (2003). The impact of correlated link weights on QoS routing. IEEE INFOCOM2003.
Lanczos, C. (1988). Applied Analysis. (Dover Publications, Inc., New York).
Langville, A. N. and Meyer, C. D. (2005). Deeper inside Page Rank. Internet Mathematics 1, 3 (Februari), 335-380.
Leadbetter, M. R., Lindgren, G., and Rootzen, H. (1983). Extremes and Related Properties of Random Sequences and Processes. (Springer-Verlag, New York).
Lehmann, E. L. (1999). Elements of Large-Sample Theory. (Springer-Verlag, New York).
Leon-Garcia, A. (1994). Probability and Random Processes for Electrical Engineering, 2nd edn. (Addison-Wesley, Reading, Massachusetts).
Li, C., van de Bovenkamp, R., and Van Mieghem, P. (2012). Susceptible-infected-susceptible model: A comparison N-intertwined and heterogeneous mean-ield approximations. Physical Review E 86, 2 (August), 026116.
Linusson, S. and Wästlund, J. (2004). A proof of Parisi's conjecture on the random assignment problem. Probability Theory and Related Fields 128, 419-440.
Lovász, L. (1993). Random walks on graphs: A survey. Combinatorics 2, 1-46.
Mandelbrot, B. (1977). Fractal Geometry of Nature. (W. H. Freeman, New York).
Markushevich, A. I. (1985). Theory of Functions of a Complex Variable. Vol. I–III. (Chelsea Publishing Company, New York).
Marlow, N. A. (1967). A normal limit theorem for powersums of normal random variables. The Bell System Technical Journal 46, 9 (November), 2081-2089.
Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra. (Society for Industrial and Applied Mathematics (SIAM), Philadelphia).
Mitra, D. (1988). Stochastic theory of a fluid model of producers and consumers coupled by a bufer. Advances in Applied Probability 20, 646-676.
Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6, 2 and 3, 161-179.
Morse, P. M. and Feshbach, H. (1978). Methods of Theoretical Physics. (McGraw-Hill Book Company, New York).
Mountford, T., Mourrat, J.-C., Valesin, D., and Yao, Q. (2013). Exponential extinction time of the contact process on inite graphs. arXiv:1203.2972v1.
Nair, C., Prabhakar, B., and Sharma, M. (2005). Proofs of the Parisi and Coppersmith-Sorkin random assignment conjectures. Random Structures and Algorithms 27, 4, 413-444.
Nelsen, R. B. (2006). An Introduction to Copulas, 2nd edn. (Springer, New York).
Neuts, M. F. (1989). Structured Stochastic Matrices of the M/G/1 Type and Their Applications. (Marcel Dekker Inc., New York).
Newman, M. E. J. (2002). The spread of epidemic disease on networks. Physical Review E 66, 016128.
Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E 67, 026126.
Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 103, 23 (June), 8577-8582.
Newman, M. E. J. (2010). Networks: An Introduction. (Oxford University Press, Oxford, U.K.).
Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E 69, 026113.
Newman, M. E. J., Strogatz, S. H., and Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E 64, 026118.
Norros, I. (1994). A storage model with self-similar input. Queueing Systems 16, 3–4, 387-396.
Omic, J., Martin Hernandez, J., and Van Mieghem, P. (2010). Network protection against worms and cascading failures using modularity partitioning. 22nd International Teletraffic Congress (ITC 22), Amsterdam, Netherlands.
Omic, J., Van Mieghem, P., and Orda, A. (2009). Game theory and computer viruses. IEEE Infocom2009.
Papoulis, A. and Unnikrishna Pillai, S. (2002). Probability, Random Variables, and Stochastic Processes, 4th edn. (McGraw-Hill, Boston).
Parisi, G. (1998). A conjecture on random bipartite matching. arXiv:cond-mat/9801176.
Pascal, B. (1954). Oeuvres Completes. Bibliothèque de la Pléade, (Gallimard, Paris).
Pastor-Satorras, R., Castellano, C., Van Mieghem, P., and Vespignani, A. (2014). Epidemic processes in complex networks. Review of Modern Physics.
Pastor-Satorras, R. and Vespignani, A. (2001). Epidemic dynamics and endemic states in complex networks. Physical Review E 63, 066117.
Paxson, V. (1997). End-to-end Routing Behavior in the Internet. IEEE/ACM Transactions on Networking 5, 5 (October), 601-615.
Phillips, G., Schenker, S., and Tangmunarunkit, H. (1999). Scaling of multicast trees: Comments on the chuang-sirbu scaling law. ACM Sigcomm99.
Pietronero, L. and Schneider, W. (1990). Invasion percolation as a fractal growth problem. Physica A 170, 81-104.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in C, 2nd edn. (Cambridge University Press, New York).
Radicchi, F., Fortunato, S., and Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientiic impact. Proceedings of the National Academy of Science of the USA (PNAS) 105, 45, 17268-17272.
Rainville, E. D.(1960). Special Functions. (Chelsea Publishing Company, New York).
Riordan, J. (1968). Combinatorial Identities. (John Wiley & Sons, New York).
Roberts, J. W. (1991). Performance Evaluation and Design of Multiservice Networks. Information Technologies and Sciences, vol. COST 224. (Commission of the European Communities, Luxembourg).
Robinson, S. (2004). The prize of anarchy. SIAM News 37, 5 (June), 1-4.
Ross, S. M. (1996). Stochastic Processes, 2nd edn. (John Wiley & Sons, New York).
Royden, H. L. (1988). Real Analysis, 3rd edn. (Macmillan Publishing Company, New York).
Sansone, G. and Gerretsen, J. (1960). Lectures on the Theory of Functions of a Complex Variable. Vol. 1 and 2. (P. Noordhof, Groningen).
Schoutens, W. (2000). Stochastic Processes and Orthogonal Polynomials. (Springer-Verlag, New York).
Shockley, W. (1957). On the statistics of individual variations of productivity in research laboratories. Proceedings of the Institute of Radio Engineers (IRE) 45, 3 (March), 279-290.
Siganos, G., Faloutsos, M., Faloutsos, P., and Faloutsos, C. (2003). Power laws and the AS-level Internet topology. IEEE/ACM Transactions on Networking 11, 4 (August), 514-524.
Simon, P. L., Taylor, M., and Kiss, I. Z. (2011). Exact epidemic models on graphs using graph-automorphism driven lumping. Mathematical Biology 62, 479-507.
Smythe, R. T. and Mahmoud, H. M. (1995). A survey of recursive trees. Theory of Probability and Mathematical Statistics 51, 1-27.
Son, S.-W., Bizhani, G., Christensen, C., Grassberger, P., and Paczuski, M. (2012). Percolation theory on interdependent networks based on epidemic spreading. Europhysics Letters (EPL) 97, 16006.
Steyaert, B. and Bruneel, H. (1994). Analytic derivation of the cell loss probability ininite multiserver bufers, from ininite bufer results. Proceedings of the second workshop on performance modelling and evaluation of ATM networks, Bradford UK, 18.1-11.
Strecok, A. J. (1968). On the calculation of the inverse of the error function. Mathematics of Computation 22, 144-158.
Strogatz, S. H. (2001). Exploring complex networks. Nature 410, 8 (March), 268-276.
Syski, R. (1986). Introduction to Congestion Theory in Telephone Systems, 2nd edn. Studies in Telecommunication, vol. 4. (North-Holland, Amsterdam).
Tang, S., Blenn, N., Doerr, C., and Van Mieghem, P. (2011). Digging in the Digg online social network. IEEE Transactions on Multimedia 13, 5 (October), 1163-1175.
Taylor, H. M. and Karlin, S. (1984). An Introduction to Stochastic Modeling. (Academic Press, Boston).
Titchmarsh, E. C. (1948). Introduction to the Theory of Fourier Integrals, 2nd edn. (Oxford University Press, Ely House, London W.I).
Titchmarsh, E. C. (1964). The Theory of Functions. (Oxford University Press, Amen House, London).
Titchmarsh, E. C. and Heath-Brown, D. R. (1986). The Theory of the Zeta-function, 2nd edn. (Oxford Science Publications, Oxford).
Trajanovski, S., Kuipers, F. A., Martin-Hernandez, J., and Van Mieghem, P. (2013). Generating graphs that approach a prescribed modularity. Computer Communications 36, 363-372.
Trajanovski, S., Wang, H., and Van Mieghem, P. (2012). Maximum modular graphs. The European Physical Journal B 85, 7, 244: 1-14.
van den Broek, J. and Heesterbeek, H. (2007). Nonhomogeneous birth and death models for epidemic outbreak data. Biostatistics 8, 2, 453-467.
van der Hofstad, R. (2013). Random Graphs and Complex Networks, notes at www. win.tue/rhofstad/NotesRGCN.pdf edn.).
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2001). First passage percolation on the random graph. Probability in the Engineering and Informational Sciences (PEIS) 15, 225-237.
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2002a). The flooding time in random graphs. Extremes 5, 2 (June), 111-129.
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2002b). On the covariance of the level sizes in recursive trees. Random Structures and Algorithms 20, 519-539.
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2005). Distances in random graphs with inite variance degree. Random Structures and Algorithms 27, 1 (August), 76-123.
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2006). Size and weight of shortest path trees with exponential link weights. Combinatorics, Probability and Computing 15, 903-926.
van der Hofstad, R., Hooghiemstra, G., and Van Mieghem, P. (2007). The weight of the shortest path tree. Random Structures and Algorithms 30, 3, 359-379.
van der Hofstad, R. and Litvak, N. (2013). Degree-degree dependencies in random graphs with heavy-tailed degrees. arXiv:1202.3071v5.
van Doorn, E. A. and Schrijner, P. (1995). Geometric ergodicity and quasi-stationarity in discrete-time birth-death processes. Journal of the Australian Mathematical Society, Series B 37, 121-144.
Van Mieghem, P. (1996). The asymptotic behaviour of queueing systems: Large deviations theory and dominant pole approximation. Queueing Systems 23, 27-55.
Van Mieghem, P. (2001). Paths in the simple random graph and the Waxman graph. Probability in the Engineering and Informational Sciences (PEIS) 15, 535-555.
Van Mieghem, P. (2004). The probability distribution of the hopcount to an anycast group. Delft University of Technology, Report 2003605 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).
Van Mieghem, P. (2005). The limit random variable W of a branching process. Delft University of Technology, Report 20050206 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).
Van Mieghem, P. (2010a). Data Communications Networking, 2nd edn. (Piet Van Mieghem, ISBN 978-94-91075-01-8, Delft).
Van Mieghem, P. (2010b). Weight of a link in a shortest path tree and the Dedekind Eta function. Random Structures and Algorithms 36, 3 (May), 341-371.
Van Mieghem, P. (2011). Graph Spectra for Complex Networks. (Cambridge University Press, Cambridge, U.K.).
Van Mieghem, P. (2012a). Epidemic phase transition of the SIS-type in networks. Europhysics Letters (EPL) 97, 48004.
Van Mieghem, P. (2012b). Viral conductance of a network. Computer Communications 35, 12 (July), 1494-1509.
Van Mieghem, P. (2013). Decay towards the overall-healthy state in SIS epidemics on networks. arXiv:1310.3980.
Van Mieghem, P. (2014). Exact Markovian SIR and SIS epidemics on networks and an upper bound for the epidemic threshold. Delft University of Technology, Report20140210 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports); arXiv:1402.1731.
Van Mieghem, P., Blenn, N., and Doerr, C. (2011a). Lognormal distribution in the Digg online social network. European Physical Journal B 83, 2, 252-261.
Van Mieghem, P. and Cator, E. (2012). Epidemics in networks with nodal self-infections and the epidemic threshold. Physical Review E 86, 1 (July), 016116.
Van Mieghem, P., Doerr, C., Wang, H., Hernandez, J. M., Hutchison, D., Karaliopoulos, M., and Kooij, R. E. (2010a). A framework for computing topological network robustness. Delft University of Technology, Report20101218 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).
Van Mieghem, P., Ge, X., Schumm, P., Trajanovski, S., and Wang, H. (2010b). Spectral graph analysis of modularity and assortativity. Physical Review E 82, 5 (November), 056113.
Van Mieghem, P., Hooghiemstra, G., and van der Hofstad, R. (2000). A scaling law for the hopcount in the Internet. Delft University of Technology, Report2000125 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports).
Van Mieghem, P., Hooghiemstra, G., and van der Hofstad, R. (2001a). On the efficiency of multicast. IEEE/ACM Transactions on Networking 9, 6 (December), 719-732.
Van Mieghem, P., Hooghiemstra, G., and van der Hofstad, R. W. (2001b). Stochastic model for the number of traversed routers in Internet. Proceedings of Passive and Active Measurement: PAM-2001, April 23-24, Amsterdam.
Van Mieghem, P. and Janic, M. (2002). Stability of a multicast tree. IEEE INFO-COM2002 2, 1099-1108.
Van Mieghem, P. and Magdalena, S. M. (2005). A phase transition in the link weight structure of networks. Physical Review E 72, 5 (November), 056138.
Van Mieghem, P. and Omic, J. (2008). In-homogeneous virus spread in networks. Delft University of Technology, Report2008081 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports); arXiv:1306.2588.
Van Mieghem, P., Omic, J., and Kooij, R. E. (2009). Virus spread in networks. IEEE/ACM Transactions on Networking 17, 1 (Februari), 1-14.
Van Mieghem, P., Stevanović, D., Kuipers, F. A., Li, C., van de Bovenkamp, R., Liu, D., and Wang, H. (2011b). Decreasing the spectral radius of a graph by link removals. Physical Review E 84, 1 (July), 016101.
Van Mieghem, P. and Tang, S. (2008). Weight of the shortest path to the irst encountered peer in a peer group of size m. Probability in the Engineering and Informational Sciences (PEIS) 22, 37-52.
Van Mieghem, P. and Wang, H. (2009). The observable part of a network. IEEE/ACM Transactions on Networking 17, 1, 93-105.
Van Mieghem, P., Wang, H., Ge, X., Tang, S., and Kuipers, F. A. (2010c). Influence of assortativity and degree-preserving rewiring on the spectra of networks. The European Physical Journal B 76, 4, 643-652.
Vazquez, A., Rácz, B., Lukács, A., and Barabási, A.-L. (2007). Impact of non-Poissonian activity patterns on spreading processes. Physical Review Letters 98, 158702.
Veres, A. and Boda, M. (2000). The chaotic nature of TCP congestion control. IEEE INFOCOM2000.
Walrand, J. (1988). An Introduction to Queueing Networks. (Prentice-Hall, New York).
Walrand, J. (1998). Communication Networks, A First Course, 2nd edn. (McGraw-Hill, Boston).
Wang, H., Li, Q., D'Agostino, G., Havlin, S., Stanley, H. E., and Van Mieghem, P. (2013). Efect of the interconnected network structure on the epidemic threshold. Physical Review E 88, 2 (022801).
Wang, H. and Van Mieghem, P. (2010). Sampling networks by the union of m shortest path trees. Computer Networks 54, 1042-1053.
Wang, H., Winterbach, W., and Van Mieghem, P. (2011). Assortativity of complementary graphs. The European Physical Journal B 83, 2, 203-214.
Wang, Y., Chakrabarti, D., Wang, C., and Faloutsos, C. (2003). Epidemic spreading in real networks: An eigenvalue viewpoint. 22nd International Symposium on Reliable Distributed Systems (SRDS'03); IEEE Computer, 25-34.
Wästlund, J. (2006). Random assignment and shortest path problems. Proceedings of the Fourth Colloquium on Mathematics and Computer Science, Algorithms, Trees, Combinatorics and Probabilities; Institut Elie Cartan, Nancy, France.
Watson, G. N. (1995). A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library edn. (Cambridge University Press, Cambridge, UK).
Watts, D. J. (1999). Small Worlds, The Dynamics of Networks between Order and Randomness. (Princeton University Press, Princeton, New Jersey).
Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of “small-worlds” networks. Nature 393, 440-442.
Waxman, B. M. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6, 9 (December), 1617-1622.
Weibull, W. (1951). A statistical distribution function of wide applicability. ASME Journal of Applied Mechanics, 293-297.
Whittaker, E. T. and Watson, G. N. (1996). A Course of Modern Analysis, Cambridge Mathematical Library edn. (Cambridge University Press, Cambridge, UK).
Wilkinson, J. H. (1965). The Algebraic Eigenvalue Problem. (Oxford University Press, New York).
Woess, W. (2000). Random Walks on Infinite Graphs and Groups. (Cambridge University Press, Cambridge, UK).
Woess, W. (2009). Denumerable Markov Chains. (European Mathematical Society, Zurich, Switzerland).
Wolf, R. W. (1982). Poisson arrivals see time averages. Operations Research 30, 2 (April), 223-231.
Wolf, R. W. (1989). Stochastic Modeling and the Theory of Queues. (Prentice-Hall International Editions, New York).
Youssef, M., Kooij, R. E., and Scoglio, C. (2011). Viral conductance: Quantifying the robustness of networks with respect to spread of epidemics. Journal of Computational Science 2, 3 (August), 286-298.
Youssef, M. and Scoglio, C. (2011). An individual-based approach to SIR epidemics in contact networks. Journal of Theoretical Biology 283, 136-144.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.